0

0
0

文字

分享

0
0
0

在奈米尺度下探索鋰空氣電池的可逆性

only-perception
・2012/09/04 ・1722字 ・閱讀時間約 3 分鐘 ・SR值 529 ・七年級

-----廣告,請繼續往下閱讀-----

一如其名所暗示的,鋰空氣電池(Li-air batteries)利用空氣來運作,拉出氧分子以用於多孔、碳基的陰極,而陽極則用鋰。因為用的是空氣,意味這種電池不需要在陰極存放沈重的電荷源,所以該電池能提供極高的能量密度,幾乎與相同體積汽油所能提供的能量相當,是鋰離子電池的 5-10 倍以上。儘管有這些誘人之處,鋰空氣電池仍面臨諸多限制,有個研究團隊已著手對付其中一向挑戰:可逆性(reversibility),這對可重複充電多次的電池來說是必要的。

研究者,田納西州 ORNL 的 Thomas Arruda、Amit Kumar、Sergei Kalinin,以及 Stephen Jesse,已在最近一期的 《Nanotechnology》上發表一篇論文,在其中,他們探索控制粒子之可逆性的因素。這些粒子生長在電解質上,那構成鋰空氣電池與奈米電池的基礎。

「在材料系統中,範圍從鋰空氣電池到更加確立的領域,例如(電化學)腐蝕、電鍍及其他眾多領域,我們認為這項新研究替不可逆或準可逆(quasi-reversible)奈米級電化學的研究鋪路,」Kalinin 表示。

「最初的鋰電池(無法充電且用完即丟)具高能量密度,且從 1960 年代以來都能在市面上購得;然而,它們只能用一次,」Arruda 說。「為了要使這些電池能與,例如石化燃料(即汽車應用)競爭,它們需要被重複充電數百次,不然也要有數千次。考慮到通勤者平均每週加油一次。這等於十年間要裝 500 次以上。對一個汽車鋰空氣電池而言,將需要符合這項標準,即便不考慮成本或其他重要指標(metrics)。事實上,一如領導性電池專家在密集審查後所提出的證據,可逆性對鋰空氣電池來說,仍是一個最重要且最難達成的任務。」

-----廣告,請繼續往下閱讀-----

使用一個充飽電的鋰空氣電池時,陽極中的鋰離子會移動到陰極,在此它們經由氧化還原反應與氧產生反應。來自反應的電子接著被收穫並用來供電給電子裝置。將電池重新充電後,鋰離子必從陰極移回陽極。如研究者的解釋,鋰空氣電池之所以如此難以充電的原因是,因為這種電池結合了電池與燃料電池中,最困難的過程。

「構成這些過程的基礎是大量不受歡迎的化學物質,諸如難溶解的反應產物(LiOx,鋰氧化物)、緩慢的反應動力學以及金屬鋰不受歡迎的、幾乎與每樣東西起反應的傾向,」Jesse 說。「以陽極為例,鋰離子電沈積(electrodeposition)到金屬鋰,常伴隨著針狀鋰粒子的形成,那稱為樹枝狀結晶(dendrites,譯註:生物學中稱樹突)。這些粒子對電池產生的負面影響是 (1) 導致與陽極失連,因而無法參與反應,以及 (2) 增加內部短路的風險,那會導致熱耗散與火災。在陰極,氧化還原反應對鋰空氣電池來說,與燃料電池一樣,都是一大挑戰。當這二種反應結合起來,它們形成一種難溶產物的混合物,那難以逆向反應且最終會使陰極毒化(choke)。」

在他們的研究中,研究者使用原子力顯微鏡(AFM),透過分析鋰粒子的生長,來研究電池可逆性。當掃描 20-nm AFM 探針在鋰離子導電玻璃陶瓷電解質(conductive glass ceramic electrolyte)表面上的偏移時,他們在此一週而復始的過程中量測到探針高度的變化。他們發現,探針高度的增減與電流變化相關,讓他們能證明「可逆性的存在」以及測繪不同位置上的「可逆性程度」。

在未來,研究者希望更進一步改善可逆性,並提到,當鋰空氣電池商業化前,它們仍會面臨許多其他的挑戰。

-----廣告,請繼續往下閱讀-----

「鋰空氣電池所有主要元件的技術發展與系統工程,都是讓這項科技上市所需要的東西,」Kalinin 說。「陰極需要更好的催化劑,鋰陽極在不損及功能的情況下獲得保護,仍最重要,另外優異的多功能電解質也需要開發。在最基礎的層次上理解關鍵電池元件的基礎過程的必要性,仍屬最優先考慮的事。只有在達到基礎過程的綜合理解後,化學家才能夠微調、系統才能夠經過適當的改造以符合應用所需的衡量標準。」

如果研究者能克服這些挑戰,鋰空氣電池有潛力為各類廣泛的應用儲存能量。

「若鋰空氣電池能被實現,首要應用將會是運輸與其它需要行動力的情況(例如:膝上型電腦等),因為那對於它們所儲存的能量數量而言,可說是非常輕量,」Arruda 表示。「最佳化鋰空氣電池,以包含大量充放電循環,將削減成本,並使不需要像目前那樣使用一堆沈重電池的全電動車成真。在這之後,可以很容易展望這項技術(鋰空氣奈米電池)被應用在 MEMS 與 NEMS。這些系統也許是使用這種能源的理想系統,因其能量需求十分低,所能運作的時間更久。」

資料來源:Researchers explore Li-air battery reversibility on the nanoscale. phys.org [August 8, 2012]

-----廣告,請繼續往下閱讀-----

轉載自 only perception

文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

1

1
1

文字

分享

1
1
1
超壓縮的水會變成冰?!二維奈米薄冰能在室溫下穩定存在嗎?有什麼用途?——專訪中研院原分所謝雅萍副研究員
研之有物│中央研究院_96
・2024/03/10 ・4907字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|張琬婷
  • 責任編輯|簡克志
  • 美術編輯|蔡宛潔

水能被擠壓成冰?

水在攝氏零度以下會結冰。然而,當水被擠壓到極限時,會形成二維的奈米薄冰,不僅室溫下穩定存在,還有從未見過的鐵電特性(Ferroelectricity),而石墨烯則是實現這種擠壓條件的關鍵。中央研究院「研之有物」專訪院內原子與分子科學研究所的謝雅萍副研究員,她與我們分享了實驗室如何意外發現這層特殊的二維薄冰,以及團隊如何利用二維薄冰的鐵電特性製作有記憶電阻功能的奈米元件,研究成果發表在科學期刊《自然通訊》(Nature Communications)。

奈米尺度下,物質特性會跟著改變?

謝雅萍的主要研究題目之一就是合成新穎的二維材料,這是奈米科技的領域。奈米是什麼?奈米(nanometer)是長度單位,即 10-9 公尺,一根頭髮的直徑長度約為 1 奈米的十萬倍。奈米尺度之下,很多物質的特性會隨之改變,最常見的例子是「蓮花效應」,因為蓮花葉上具有奈米等級的表面結構,為蓮葉賦予了疏水與自我清潔的特性,髒污與水珠都不易附著在蓮葉上。

電腦模擬圖(左)和實際照片(右),蓮葉上密集的微小突起,讓大顆的水珠和灰塵不易附著,這讓蓮葉具有疏水與自我清潔的特性。
圖|William ThielickeGJ Bulte

奈米材料(nanomaterial)是指三維尺寸的材料,至少有一個維度的尺寸小於 100 奈米。只縮小一維,就是平面的二維材料(2D),例如石墨烯;縮小兩個維度,就是奈米線(1D);三維都縮小,就是零維的奈米顆粒(0D)。

奈米科技(nanotechnology)的概念最早可追溯到 1959 年美國物理學家理查費曼(Richard Feynman)在演講中提出的願景「為什麼我們不能把大英百科全書全部寫在一根針頭上呢?」。1974 年日本科學家谷口紀男則是首度創造「奈米科技」這個詞的人,他認為奈米科技包括原子與分子層次的分離、固定與變形。

-----廣告,請繼續往下閱讀-----

過去有不少科學家嘗試奈米材料的研發,但受限於製造技術不成熟,而無法順利製作出精細製程的奈米材料。1981 年,在掃描隧道顯微鏡(Scanning Tunneling Microscope, STM)發明之後,不僅有助於材料的微觀分析,操縱單個原子和分子也成為可能,奈米科技也逐漸實現。

2013 年 IBM 研究人員使用 STM 顯微鏡將上千個一氧化碳分子製作成原子等級的動畫「男孩與他的原子」,目前是金氏世界紀錄最小的定格影片。

無處不在的奈米科技?

我們生活周遭的奈米科技俯拾即是,從大賣場商品到半導體產業的電子元件都有。謝雅萍舉例:防曬霜之所以是白色,是因為裡面有二氧化鈦的奈米顆粒;許多塗料與噴漆亦會以奈米添加物,來增進耐蝕、耐磨、抗菌與除汙的特性,例如汽車鍍膜或奈米光觸媒;羽球拍或牙醫補牙會使用奈米樹脂,讓球拍和補牙結構更堅固。

至於半導體產業,奈米科技更是關鍵。透過縮小元件尺寸以及調整奈米元件的幾何形狀,以便於在單一晶片上乘載更多電晶體。「當今的電晶體大小皆是奈米等級,製作電子元件就等同在處理奈米科技的問題」,謝雅萍說道。

IBM 展示 5 奈米技術的矽奈米片電晶體(nanosheet transistors),圖中堆疊起來的一顆顆橢圓形結構是電子通道的截面,IBM 設計立體結構以因應愈來愈小的元件尺寸。
圖|IBM

實驗中的難題,反而促成驚奇發現?

鐵電性是什麼?二維奈米薄冰有哪些可能的應用方式?

對謝雅萍來說,發現二維的奈米薄冰是個意外的驚喜。最初謝雅萍團隊其實是要製作以石墨烯為電極的開關,畢竟石墨烯是實驗室的主要研究項目,理論上當兩層石墨烯很靠近時,分別給予兩端電壓會是導通的「ON」狀態,沒電時就是斷開的「OFF」狀態。

-----廣告,請繼續往下閱讀-----

然而,實驗過程中團隊卻發現當電壓為零時,石墨烯開關仍會導通,甚至要給予負電壓時才會成為 OFF 狀態。這個奇特的現象讓研究團隊苦惱許久,嘗試思考了各種可能性,但都無法完善的說明此現象。

「原本以為實現石墨烯開關應該是一件能夠很快完成的題目,沒想到過程中卻出現了這個意料之外的難題,因此這個研究比預期多花了一兩年」,謝雅萍無奈地笑道。

靈感總是突如其來,某次謝雅萍在與朋友討論研究時,突然想到一個可能的方向:「一直以來都有人猜測水是否為鐵電材料,但都沒有真正證實。臺灣氣候潮濕,開關關不緊會不會就是水的影響?」

設計實驗跑下去之後,謝雅萍團隊終於擺脫了一直以來的疑雲。原來,兩層石墨烯結構中,真的有水分子的存在!「一般水分子用手去捏,還是會維持液體的狀態。但是我們發現,當水被兩層石墨烯擠壓到剩下原子厚度時,水分子就會變成具有鐵電特性的二維薄冰!」,謝雅萍開心地說道。

-----廣告,請繼續往下閱讀-----

換句話說,當極限擠壓之下,水會結成冰,而這層超薄的平面奈米薄冰會轉變成鐵電材料,而且可以在室溫下穩定存在!

示意圖,當水受到兩層石墨烯的極限擠壓之下,會形成單原子厚度的二維奈米薄冰,這層薄冰是鐵電材料,而且可以在室溫下穩定存在。
圖|之有物(資料來源|謝雅萍)

鐵電材料乍聽之下很抽象,謝雅萍表示:「相較於會吸磁鐵的鐵磁材料,大多數人對鐵電材料比較不熟悉,其實概念十分相似」。她說,鐵磁材料經過外加磁場的「磁化」之後,即使不加磁場仍可維持原本的磁性。相對地,鐵電材料經過外加電場的「極化」之後,即使不加電場仍可維持原本的電荷極化方向。

謝雅萍團隊發現的二維冰具有鐵電性,這意味著水分子的正負極在外加電場之下會整齊排列,形成一個永久的電偶極,並且在電場消失後保持不變。

鐵電材料經過外加電場的「極化」之後,即使不加電場仍可維持原本的電荷排列方向。圖片顯示為順電狀態,極化方向和外加電場相同,箭頭表示每一小塊區域(Domain)的平均極化方向。
圖|之有物(資料來源|Inorganics

接著,謝雅萍發現,二維冰的鐵電性只存在於單層原子,增加多層原子之後,鐵電性會消失,變成普通的冰,這是因為多層原子的交互作用會打亂原本的極化排列。因此研究團隊發現的二維冰,是非常特殊的固態水,不是手搖飲加的冰塊那麼簡單。

因為石墨烯的擠壓和固定,二維冰可以在室溫下穩定存在,不會蒸發。謝雅萍團隊實驗發現,要升溫到攝氏 80 度,被夾住的二維冰才會變成水。如此大範圍的操作溫度,這讓謝雅萍開始思考將二維冰作為鐵電材料使用的可能性。

-----廣告,請繼續往下閱讀-----

於是,謝雅萍團隊嘗試開發新型的電子元件,他們將二維冰與石墨烯整合成機械式的奈米開關。由於二維冰具有鐵電特性,在施加不同外加電壓之後,元件可以維持上次操作的電阻值,並保留至下次操作,有這種特性的元件稱為「憶阻器」(memristor)。

憶阻器這個詞是由記憶體(memory)與電阻(resistor)組合而成,字面上的解釋便是:具備記憶先前電阻值的能力。

謝雅萍表示:「我們可以藉由不同的外加大電壓寫入電阻值,再以微小電壓讀取之前的電阻值,允許快速存取」。而單獨一個二維冰奈米開關可以記住 4 個位元的資料,具備未來記憶體的發展潛能。

此外,二維冰奈米開關也是很好的開關裝置,團隊驗證導通電流和截止電流的比值可以達到 100 萬,開路和斷路的功能極佳,並且允許雙向操作。而開關的功能經過 1 萬次循環還不會衰減,相當穩定。

謝雅萍團隊是全世界第一個證實二維薄冰鐵電性的團隊,並實現第一個以石墨烯為架構的二維冰機械式憶阻器。她的團隊將往新穎二維材料的方向繼續邁進,目前實驗室有和台積電(TSMC)合作,希望透過產學合作,將更多奈米技術的應用落地實現。

-----廣告,請繼續往下閱讀-----
謝雅萍與研究團隊用意外發現的二維奈米薄冰,以石墨烯為架構,做出了全世界第一個機械式的憶阻器。
圖|之有物

與二維材料實驗的相遇?

謝雅萍目前除了是中研院原分所的副研究員,同時也是國立臺灣大學 MY Lab 實驗室的共同主持人,她和人生伴侶 Mario Hofmann 教授共同指導的 MY Lab 發揮了 1+1>2 的效果,創意與想法的激盪和交流,是產生傑出研究的關鍵。

回到碩博士時期,謝雅萍都在臺大物理所,鑽研材料的光電性質與新穎光電元件的機制。她回憶:「當時我們都要向化學系要材料,他們給什麼我們就得用什麼,但難以了解整個材料製造的細節。」後來她體認到,擁有製造材料的調控能力才能真正突破元件設計上的侷限。

謝雅萍在博士班時申請到了千里馬計畫,讓臺灣博士生獲得國科會補助前往國外頂尖研究機構,進行為期約半年至一年的研究。「我認為這個計畫非常好,也可以幫助學生建立重要人脈!」在指導教授引薦下,謝雅萍因緣際會進入美國麻省理工學院(MIT)的二維材料實驗室,自此與二維材料結下不解之緣,她認為:「好材料與好元件是相輔相成的,前瞻材料更是如此。」

「我到了 MIT 之後,深刻體悟到他們做研究的態度與臺灣學生的不同。臺灣學生像是把研究當作一份工作,然而我在 MIT 時就感受到他們學生對於自身研究的熱忱。討論風氣也非常盛行,學生之間會互相分享自己的研究內容,互相幫忙思考、激盪出新想法」,謝雅萍分享自己在 MIT 時期的觀察。

-----廣告,請繼續往下閱讀-----

當年二維材料還在萌芽階段,她所在的 MIT 實驗室已是此領域的佼佼者,她也因此立下了目標:「希望未來我有能力時,能夠自己掌控自己的材料做出好元件!」如今,謝雅萍正走在自己目標的道路上,過去認識的朋友也都是各頂尖大學的二維材料實驗室主持人,直到現在都還會互相幫忙。

從物理到二維材料,身處這些男性為主的學術環境,謝雅萍顯得自在,而且積極參與討論和交流。「我發現女科學人會把自己變得較中性,讓自己融入整個以男性居多的環境中,才不會在團體中有突兀的感覺」,她分享道。

謝雅萍的實驗室 MY Lab,是與臺大物理系 Mario Hofmann 教授共同主持的奈米科技實驗室,他們除了是工作上的夥伴,更是人生中的最佳拍檔!當初兩人就是在美國麻省理工大學 MIT 相識,再一起回到臺灣。

讓「研之有物」團隊好奇的是:這種共同主持的模式與一般實驗室相比,是否有特別之處?

-----廣告,請繼續往下閱讀-----

「從多個面向而論,我認為都是 1+1>2 的」,謝雅萍說道,「實驗室會有兩倍的資源、儀器、計畫與兩倍的人脈。遇到一個題目,兩個人思考時會從不同的觀點切入。即便是夫妻,我們在研究上看的面向也都不一樣,因此可以激盪出許多有趣的想法」。

她補充,不僅對實驗室本身而言,對學生也有很大的好處,「因為學生的研究必須同時說服我們兩個人,代表學生的研究成果會非常扎實,也可以為學生帶來信心。」重要的是,「學生也會得到兩倍的照顧與關愛,我覺得我們的學生是蠻幸福的」,謝雅萍笑笑地說。

所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3397 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

5
1

文字

分享

0
5
1
越南車廠將撼動特斯拉電動車地位!?誰能在電池戰中獲勝?
PanSci_96
・2023/02/26 ・2723字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

2022 年 12 月,來自越南的 999 台 VinFast VF 8 City 型智慧電動車乘坐貨輪抵達抵舊金山貝尼西亞港,敲開特斯拉的電動車帝國大門。

除了吹響這次的電動車戰爭號角的 VinFast,眾多車廠像是通用汽車(General Motors)或是來自中國的比亞迪等,都拿起籌碼坐上桌,準備要搶攻這塊市場。而大家手上握的籌碼,就是自家生產的電池。

氫與鋰,都幾?

在電動車產業中,要掌握電動車,就得先掌握好電池。光是電池就佔了整台車 35~40% 的成本,選擇不同種類的電池,更會影響到續行里程、充電效率和安全性。而目前電動車所使用的均為「鋰離子電池」。

大家是否還記得,在十幾年前,與電動車角逐未來「環保車」位置的,還有氫能車。

-----廣告,請繼續往下閱讀-----

氫與鋰的競爭勢必發生,它們排在元素週期表最前面,原子序最小的一、三名。鋰的密度甚至僅有每立方公分 0.534 克,比水還要輕,代表在相同的重量下,可以放入更多的原子,攜帶更多的電量,這正是我們最需要的。由於氫氣的分子量小,在燃料電池中的能量轉換效率也不錯,因此「理論上」氫燃料電池的能量密度是鋰離子電池的 150 倍。

只是,就現在技術成熟度來說,明顯是鋰離子電池獲勝,不論是手機、電動車還是大型儲電設備,到處都見得到鋰離子電池的身影。

手機也是使用鋰離子電池。圖/Envato Elements

鋰離子電池

1970 年代,英國化學家惠廷翰(M. Stanley Whittingham)發明了第一個可以充放電的鋰離子電池,其單位重量的儲電效率遠超過當時的鉛蓄電池與鎳鎘電池。在電池中,金屬鋰會在負極丟下電子,以鋰離子的狀態移動到正極,並被特殊設計的二硫化鈦夾層捕捉,電路中的電子則會從負極流往正極,完成電路循環。

不過當時負極所使用的是純金屬鋰,因此,在電池充電、鋰離子會回到負極再結晶成金屬鋰的過程中,會容易形成如同鐘乳石般的晶鬚(Lithium Dendrite),當晶鬚因為反覆充放電變的更長,甚至會戳破電池的保護層,導致短路爆炸。

-----廣告,請繼續往下閱讀-----

好在後來美國的古迪納夫(John B. Goodenough)與日本的吉野彰(Akira Yoshino),分別將正極材料換成了鋰鈷氧化物,負極換成可以捕捉鋰離子的碳材料;整顆電池不再有純金屬鋰,只有鋰離子在電解液中移動,確保了安全性,讓鋰離子電池得以商業化。

而這孕育出鋰離子電池的這三位科學家惠廷翰、古迪納夫以及吉野彰,在 2019 年抱回諾貝爾化學獎,實至名歸。

2019 年諾貝爾化學獎,頒給了孕育出鋰離子電池的三位科學家。圖/The Nobel Prize

電池的負極在吉野彰將負極換成石墨烯等碳材料後,至今沒有太大的變化,鋰離子電池最主要的改良還是圍繞在正極材料的改變上,我們習慣將不同的鋰離子電池依照它的正極材料來命名,例如:將鋰離子電池的正極改為鋰鈷氧化物,則稱為鈷酸鋰電池。電池發展到現在,陸續登上舞台的還有磷酸鐵鋰電池、磷酸鋰錳鐵電池、鋰鎳鈷鋁電池、鋰鎳錳鈷電池等。

哪個才是最強的電池

「三元電池」是目前市面上可量產的產品中、能量密度最高的電池,也是現在電動車的電池首選。「三元」指的是正極材料中除了鋰以外,加進了鎳、鈷、錳三種元素,具有高容量、低成本的巨大優勢。

-----廣告,請繼續往下閱讀-----

除此之外,材料學家發現,如果提高鎳含量,可再進一步提升單位體積的電容量。許多車廠推出的高鎳電池,其鎳含量甚至高達 80 至 90%。這種高鎳三元電池的電容量可以高達每公斤 280~300瓦時(280~300 Wh/kg),相較之下,馬斯克最愛的「磷酸鐵鋰電池」每公斤只有 140~150 瓦時(140~150 Wh/kg),僅三元電池電容量的一半。

那為什麼電動車龍頭特斯拉反而選擇了磷酸鐵鋰電池呢?就是成本考量。

磷酸鐵鋰的成分除了鋰以外,只需要常見的鐵跟磷,完全移除了昂貴的稀有金屬鎳跟鈷,在俄烏戰爭爆發之初,由於俄羅斯是鎳的生產大國,導致鎳的價格在一個月內暴漲了 250%,大大增加了高鎳三元電池的成本負擔。

另外,相對三元電池,磷酸鐵鋰電池不僅成本低,安全性也較高。

-----廣告,請繼續往下閱讀-----

除了特斯拉,在 2022 年電動車銷售數量超越特斯拉的中國車廠比亞迪也很愛!比亞迪自行研發的「刀片電池」用的就是磷酸鐵鋰電池,並且透過物理結構的改良,在不過多改變材料的情況下,增加相同體積中的電容量。

特斯拉電動車用的是磷酸鐵鋰電池。圖/Wikipedia

次世代電池,Taiwan can help?

科學家預估,鋰離子電池的物理極限大約就在每公斤 300 瓦時,三元電池也差不多摸到這條線了。而這個結果離「完美」絕對還有很大一段距離,因為汽油的能量密度可是每公斤一萬兩千瓦時,鋰離子電池的 40 倍!

先別失望!隨著科技進步,鋰離子電池也將進入次世代。2022 年 3 月,Gogoro 與台灣電池廠商輝能科技共同發表,將在 2024 年導入固態鋰電池,用固態電解質來取代傳統鋰電池中的液態電解液。藉此不僅重量僅有鋰電池的一半,去掉液態成分後更大幅減少漏液、燃燒的風險;更重要的是,固態電池的能量密度上看每公斤 500 瓦時,是三元鋰電池的兩倍,車主們就可以少換幾次電池。

想開電動車的車迷也可以期待,除了 Gogoro 以外,輝能科技也宣布結盟 VinFast,可望在電動車市場上掀起一波固態電池車風潮。

-----廣告,請繼續往下閱讀-----

這邊有個更好的消息,超越固態電池,能量密度可以逼近汽油的「空氣鋰電池」已經在研發路上。空氣電池的負極使用鋰金屬,正極則替換為氧氣或二氧化碳,成為鋰氧氣電池(Li–O2 Battery),或是鋰二氧化碳電池(Li–CO2 Battery);用氣體取代了原先沉重的金屬正極,大大提高了相同重量的電容量。

雖然空氣電池仍在研發,一樣需面對負極沉積時產生的晶鬚、安全等問題;但至少在過去 20 年,鋰電池遇到的困難已經多次被解決,電化學儲能的方式大有可為。

電動車的發展持續受到關注。圖/Envato Elements

不論是市場上電動車的銷量年年攀升,還是各國政府、車廠的全力投入,電動車主導汽車市場的未來已經清楚可見。未來會不會出現顛覆市場的電池、電動車,甚至是全新型態的交通工具,都令人期待。而在工業製程與材料改革中,「電動車是否真的有比較環保」這個問題,也希望能有個解答。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1219 篇文章 ・ 2177 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
2

文字

分享

0
2
2
蠶繭電池是綠能的未來?!
胡中行_96
・2022/08/25 ・2454字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

一襲華美的傳統印度紗麗,在燈光下反射出璀璨的光芒。仔細收縫的布邊,附了一只小標籤,上頭繡著飛蛾般的圖樣。那是印度絲綢標誌組織,授予的真絲證明。[1] 買衣服看布料成份,天經地義。不過,如果有一天市面上販售蠶繭電池,廠商是否也會標榜百分之百純天然蠶絲? 2022 年 8 月的《科學報告》期刊上,二名印度學者詳細解說他們攜手打造蠶繭電池的流程,以及背後的科學原理。[2]

將來蠶繭電池廠商,也可以申請印度絲綢組織的真絲證明嗎?圖/Satish Krishnamurthy on Flickr(CC BY 2.0

蠶繭電池的製作

首先,他們弄來一些印度當地家蠶(Bombyx mori)的繭,攤在陽光下曝曬,以確保裡面沒有活著的蛹。吹掉灰塵後,再把蠶繭儲存在木櫃子裡備用。接著,於 25 毫升的再蒸餾水中,加入 12.5 公克的食鹽(NaCl),然後把蠶繭丟進去浸泡 24 小時。另外,也用雷同的方法,準備分別泡了再蒸餾水和氯化鉀(KCl)水溶液的兩個組別。[2]

(a)每個蠶繭都被切成兩份,做一顆蠶繭電池需要 8 份。[2]

(b)切好的蠶繭內面緊實地套住鋁片;外頭則綑上銅線。鋁是負極;銅為正極。[2]

(c)將組裝好的 8 份蠶繭串起來,放在吹風機和圓底瓶之間。上頭吹熱風;下面供應水蒸氣。[2]

(圖/參考資料 2,Figure 2)

經過一番測試之後,研究團隊最滿意食鹽水這組的結果,決定再做一個進階版的裝置:他們將蠶繭電池放在熱水壺的壺嘴,並接上 LED 燈泡。熱水大滾,水壺裡冒出來的蒸氣觸發蠶繭電池,燈泡就會發光,像下面影片中看到的模樣。[2] (畫面長寬比例差距過大,建議開全螢幕較方便觀賞。)

安裝了蠶繭電池和 LED 燈的熱水壺。來源:參考資料 2,Supplementary Video S1

蠶繭電池的原理

(a)蠶繭是一層內外結構不對稱的絲質薄膜。圖中黃色代表內面;褐色則為外側。[2]

(圖/參考資料 2,Figure 9a)

(b)此為蠶繭薄膜切面的局部放大圖。由內(黃色)而外(褐色),蠶繭上面細孔通道的尺寸逐漸變大。[2]這個結構平時的功能,是令水分子和二氧化碳得以快速地排出,但卻只能緩慢地滲入。前者確保蠶繭幾乎防水;後者則避免類溫室效應的發生。[3]

(圖/參考資料 2,Figure 9b)

(c)圓底瓶供應的水蒸氣,被困在細孔通道中。當吹風機為蠶繭加熱,水分子與蠶繭蛋白作用,H3O+ 等電荷載體應運而生。它們會因為通道內外寬窄帶來的水壓不對等,而朝單一方向運動。[2][註]

(圖/參考資料 2,Figure 9c)

(d)鋁和銅基於電負度(electronegativity)不同,也就是吸引電子的能力有所差異,更加劇了方向性移動的效果。[2, 4] 另外,食鹽水能增加電荷載體的濃度,促進蠶繭電池導電的效能。[2]

(圖/參考資料 2,Figure 9d)

吹風機的熱風與圓底瓶的水蒸氣,讓水分子迅速穿過蠶繭的細孔通道,也就是快速充電的意思。[2] 這個乾溼無限循環的靈感,源自蠶繭所處的自然環境。蠶繭通常吊在樹上,樹葉會給它滋潤的水氣,但陽光又導致水份蒸散,二者不斷改變溫度與濕度。然而,當蠶繭被放在攝氏 5 和 50 度的環境下,裏頭還能分別維持 25 與 34 度。[3] 在調節溫度的過程中,從溫差產生電能,便是熱電效應(thermoelectric effect)的展現。[2, 5] 當溫溼度都極高,充飽電的蠶繭就會用類似腦波的信號,通知蛾該退房了。[2, 3] 這也就是蛻變的現象,具有季節性的原因。[3]

-----廣告,請繼續往下閱讀-----
(蠶的一生。圖/Internet Archive Book Images on Flickr(Public Domain))

蠶繭綠電建築

蠶繭電池製作起來雖然事倍功半,但是研究團隊寄予它極高的期望。充電靠水蒸氣;導電用食鹽,二者都是地球上容易採集的資源。因此,他們認為蠶繭電池的前景,必然優於目前市售的儲電或發電裝置。是不是純天然蠶絲不要緊,重點是希望未來能夠人工模仿蠶繭的結構,以生態友善的方式,建造會自體發電的生物聚合建築。如此一來,就能輕易滿足偏遠地區、戰略要地以及其他地方的用電需求。[2]

  

備註

原文專業的說法是,內外寬窄不對稱的細孔通道中,水壓梯度會導致電位差,進而使電荷載體出現方向性的運動。

參考資料

  1. Silk Mark – A Quality Assurance label (Silk Mark Organisation of India, 2017)
  2. Jangir H & Das M. (2022) ‘Designing water vapor fuelled brine-silk cocoon protein bio-battery for a self-lighting kettle and water-vapor panels’. Scientific Reports, 12, 13999.
  3. Tulachan B, Srivastava S, Kusurkar T, et al. (2016) ‘The role of photo-electric properties of silk cocoon membrane in pupal metamorphosis: A natural solar cell’. Scientific Reports, 6, 21915.
  4. 電負度(國立臺灣大學 科學Online,2010)
  5. Chandler DL. (2010) ‘Explained: Thermoelectricity’. Massachusetts Institute of Technology.
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。