2

1
0

文字

分享

2
1
0

正確劑量在哪裡?絕對難不倒你!AI 在醫療領域的各項應用——《AI 醫療》

PanSci_96
・2021/01/09 ・2296字 ・閱讀時間約 4 分鐘 ・SR值 578 ・九年級

-----廣告,請繼續往下閱讀-----

  • 作者/Eric Topol,本文摘自《AI 醫療》,旗標出版,2020 年 11 月 20 日

利用演算法搭配顯微鏡影像進行高通量藥物測試

影像處理公司 Recursion Pharmaceuticals 利用演算法及自動顯微鏡,針對細胞和細胞核的尺寸與形狀等極詳細的特徵,進行人體細胞的高通量藥物測試。他們建立了超過 2,000 個分子的模型,來觀察其中有哪些可以將基因疾病模型的病態細胞轉變成看起來較健康的細胞。該公司已利用這種策略辨識出至少 15 種新的潛在治療方式,其中一種針對腦部海綿狀血管畸形 (cerebral cavernous malformation) 的治療方法已進入臨床試驗階段。

利用演算法及自動顯微鏡,能針對細胞和細胞核的尺寸與形狀等極詳細的特徵,進行人體細胞的高通量藥物測試。圖/pixabay

Deep Genomics 則從名稱即可看出端倪,是一間針對基因體錨定 (anchoring) 方法進行深度學習的公司。這個位於多倫多、由 Brendan Frey 主導的團隊,曾於 2014 年就人類剪接密碼 (splicing code)1 發表了一篇令人印象深刻的論文,為泛自閉症障礙2和脊髓性肌肉萎縮症 (spinal muscular atrophy)3 等疾病的病患提供了數千種潛在標的 (target)4

自動化藥物開發過程目標是:縮減找出潛在藥物標的到研發出候選藥物的時間

Atomwise 公司利用深度學習演算法篩選了數百萬個分子以發展藥物開發計畫,至 2017 年底為止,已成立超過 27 個計畫,治療範圍包含伊波拉病毒感染 (Ebola)5 與多發性硬化症 (multiple sclerosis)6 等疾病。該公司的神經網路也藉由搭配 3D 模型,提出了一份包含 72 種最有可能與特定疾病在分子層面發生良好交互作用的藥物列表。瑞士聯邦理工學院 (Swiss Federal Institutes of Technology) 的 Gisbert Schneider 指出:「自動化藥物開發的概念可協助大幅減少藥物化學 (medicinal chemistry) 計畫所需測試的化合物數量,同時為調適性分子設計 (adaptive molecular design) 建立一個理性、無偏見的基礎。」

這些新方法也推動了一些新的公私合夥關係 (private-public partnership)。「加速藥物醫療機會聯盟」(Accelerating Therapeutics for Opportunities in Medicine) 為其中之一,簡稱 ATOM。此聯盟集合了數個學術中心,如杜克大學、杜蘭大學,與 Merck、Abbvie 及 Monsanto 等製藥公司共同開發、測試與驗證跨領域的癌症藥物開發方式,將現代科學、科技與工程學、超級計算 (supercomputing) 模擬、資料科學與 AI 高度整合至一個藥物開發平台,希望最終可與整個藥物研發社群共享。ATOM 的目標是縮減從辨識出潛在藥物標的(drug target,藥物作用的目標)到研發出可擊中標的之候選藥物所需的時間。這段過程通常最快也需要 4 年,ATOM 希望能夠壓低至 1 年。Project Survival 是一個由 BERG Health 資助的公私聯營單位 (public-private consortium),他們收集了癌症病患的生物樣本 (biological sample),並在一項為期 7 年的計畫中,仔細分析檢測與每位病患臨床資訊息息相關的整合資料,以促進生物標記探索開發 (biomarker discovery) 與早期發現。

-----廣告,請繼續往下閱讀-----

預測實驗性藥物 (experimental drug) 的正確劑量

AI 在此領域的用途不只有藥物開發,還可預測實驗性藥物 (experimental drug) 的正確劑量。由於最佳藥物劑量可能取決於每個個體身上的許多變數,如年齡、性別、體重、基因體 (genetics)、蛋白質體學及腸道微生物體等,因此是建立模型與使用深度學習演算法的理想題材。不過藥物之間產生交互作用的可能性,也提高了確定正確劑量的困難度。目前已有多間學術中心採取這種預測方式,包括加州大學洛杉磯分校、史丹佛大學、加州大學舊金山分校、維吉尼亞理工大學 (Virginia Tech) 和堪薩斯大學 (University of Kansas)。正如維吉尼亞理工大學的 Josep Bassaganya-Riera 所言:「每個人都會有一套自己的參數集,但與其分析每一項特徵,我們更應該了解的是由各項特徵混合而成的獨特組合所代表的意義。而機器學習能夠幫助我們做到這一點。」

運用 AI 建立模型與使用深度學習演算法能幫助學者更快速找到實驗性藥物的正確劑量。圖/pixabay

目前的確有許多針對 AI 與藥物開發的炒作,如「AI 成為救星!可望於阿茲海默症的藥物開發有所突破」等新聞。或是類似 BenevolentAI 之前的宣稱:「可以將藥物研發時程縮短 4 年,並將效率提升至高出製藥業界平均的 60%」。但唯有時間才能證明,這些致力於加速藥物開發的各種方法,是否真的能夠實現。

註解

  1. 剪接(splicing,又稱拼接),是一種基因重組現象。在分子生物學中,主要是指細胞核內基因資訊在轉錄過程中或是在轉錄過後的一種修飾。
  2. 泛自閉症障礙 (Autism Spectrum Disorder, ASD) 指兒童早期即出現社會互動、溝通表達的困難,對某些事物有強烈的執著性、要求同一性等現象。再依兒童語言能力,從完全無法用口語表達到流利的語言,區分成輕、中、重度障礙。
  3. 脊髓性肌肉萎縮症 (spinal muscular atrophy, SMA) 屬於體染色體隱性遺傳疾病,因 SMN 基因缺失而造成脊髓的前角運動神經元漸進性退化,使得肌肉逐漸軟弱無力、萎縮的一種疾病,但不影響智力。
  4. 藥物標的為藥物作用的目標,例如找出最可能導致疾病的蛋白質。
  5. 伊波拉病毒感染 (Ebola) 為伊波拉病毒所引起的嚴重急性疾病,其初期症狀為突然出現高燒、嚴重倦怠、肌肉痛、頭痛等,接著出現嘔吐、腹瀉、腹痛、皮膚斑點狀丘疹與出血現象。重症者常伴有肝臟受損、腎衰竭、中樞神經損傷、休克併發多重器官衰竭。
  6. 多發性硬化症 (multiple sclerosis,MS) 發病原因不明,病灶位於腦部和脊髓,是常見的中樞神經系統非外傷性疾病。正常的中樞神經纖維表面覆蓋了一層神經髓鞘,具有神經傳遞和保護神經纖維的作用。如果人體自身免疫系統攻擊和破壞髓鞘就會導致多發性硬化症的發生。在自身免疫反應引起的炎症停止後,無數受到破壞的神經纖維所形成的疤痕,稱為「硬化」。
——本文摘自《AI 醫療 DEEP MEDICINE》,旗標出版,2020 年 11 月 20 日
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
PanSci_96
1261 篇文章 ・ 2388 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
0

文字

分享

0
3
0
AI 破解生命密碼!AlphaFold 3 揭開蛋白質折疊的終極謎團
PanSci_96
・2024/10/07 ・1624字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

AlphaFold的誕生:人工智慧的奇蹟

2018 年,Google 旗下的 DeepMind 團隊推出了第一代 AlphaFold,這是一款基於深度學習的 AI 模型,專門用於預測蛋白質的三維結構。AlphaFold 的命名取自「fold」一詞,意為折疊,指的是蛋白質在胺基酸鏈構成後迅速摺疊成其功能所需的三維結構。

AlphaFold 的突破在於其能夠預測出蛋白質折疊的可能性,這是一個傳統計算方法無法達到的領域。第一代 AlphaFold 在國際 CASP 比賽中取得了一定的成功,雖然其預測準確度尚未達到實驗室標準,但其潛力讓科學家們充滿期待。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

為什麼蛋白質結構預測如此重要?

蛋白質是生命的基石,它們的功能取決於其複雜的三維結構。然而,僅靠實驗技術來解析蛋白質的結構既昂貴又耗時。過去科學家依賴於如 X 光晶體繞射等技術來解析蛋白質的結構,然而這種方法雖然精確,但往往需要數年時間來得出一個結論。

到目前為止,人類已知的蛋白質數據庫中,全球僅解析了大約 22 萬種蛋白質的結構,這遠遠不足以滿足生物學和醫學研究的需求。尤其是人類的許多蛋白質結構仍然未知,這成為阻礙醫學進步的一個主要瓶頸,特別是在藥物開發和疾病治療上,因此如何加速對蛋白質的結構的解析至關重要。

-----廣告,請繼續往下閱讀-----

AlphaFold 2:技術飛躍

2020 年,AlphaFold 2 橫空出世,改進了多項技術,預測準確度大幅,幾乎達到了與實驗結果相媲美的程度。這一成就震驚了全球生物學界,許多科學家開始將 AlphaFold 2 應用於實際研究中。

AlphaFold 2 的成功源自於其三大技術革新:

  • 注意力機制:模仿人類的思維模式,從大局出發,關注蛋白質結構中的每一個細節,進而提高預測的準確性。
  • 多序列比對功能:通過搜尋類似的胺基酸序列,推斷新的蛋白質結構。
  • 端到端預測模式:利用深度學習神經網路,不斷反饋預測結果,持續優化模型。
AlphaFold 2 預測準確度大幅提升。 圖/envato

AlphaFold 3:下一代 AI 的力量

隨著 AlphaFold 2 的成功,DeepMind 並未停止其腳步。2024 年 5 月,AlphaFold 3 正式推出,這標誌著 AI 技術在生物學領域的又一個里程碑。AlphaFold 3 的改進再次吸引了科學界的目光,它強化了注意力機制,並引入了擴散模型,這使其能夠更快且更準確地預測複合蛋白質的結構。

擴散模型是一項關鍵技術,它能夠生成大量的可能蛋白質結構,並快速篩選出最可能的解答。與此同時,AlphaFold 3 還內建了「減幻覺」功能,這讓其在產生結果時能夠避免過多不切實際的預測,提升了結果的可信度。

-----廣告,請繼續往下閱讀-----

AlphaFold 的實際應用:醫學與藥物開發

AlphaFold 3 的誕生,不僅是一個技術突破,還為醫學和藥物開發帶來了巨大的希望。過去,癌症治療中的標靶藥物需要經過漫長的實驗才能確定其作用原理,然而現在,通過 AlphaFold 的預測,科學家可以更加精確地針對癌細胞中的錯誤蛋白質,設計出更有效的藥物。

除此之外,AlphaFold 3 還在抗病毒藥物、抗生素以及阿茲海默症等領域展現了潛力。其能夠預測蛋白質與其他分子(如DNA、RNA)的交互作用,這使得研發新藥的過程大大加速。

AlphaFold 3 的挑戰與未來

儘管 AlphaFold 3 取得了驚人的進展,但其仍然面臨一些挑戰。首先,目前 AlphaFold 3 的模型尚未完全開源,這限制了研究人員對其內部運作的了解。為此,一些科學家已聯名要求 DeepMind 開放其程式碼,以便進行更深入的研究和應用。

不過,隨著 AlphaFold 3的逐步推廣,生物學家相信它將繼續改變生物學研究的方式。未來,這項技術有望在解決更多未解難題中發揮關鍵作用,並為醫學領域帶來更大的突破。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
0

文字

分享

0
1
0
免費字幕君!怎麼用 AI 語音辨識幫你自動生成字幕?
泛科學院_96
・2024/07/08 ・2458字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

下載 Youtube 影片、自動生成影片逐字稿、AI 智慧翻譯、匯出雙語 SRT 字幕、字幕內嵌 MP4 影片,甚至是把你的電腦當成 AI 運算伺服器、使用多模態 AI 模型來做圖片辨識……這一切的一切通通都免費,敢有可能 (Kám ū khó-lîng)?

今天的影片要來跟你分享開源 AI 套件 Ollama,這個開源套件AJ 最近上課演講工作坊逢人必教。

今天的影片,我們要手把手教你使用 Ollama 在你的電腦裡執行各種免費開源 AI 模型,希望你能跟我一樣成為 AI 暈船仔……Ollama 真香……啊扯遠了,我們沒有點數可以送。

今天的影片會分成三個部分:

-----廣告,請繼續往下閱讀-----
  1. Ollama 安裝與模型下載
  2. 結合 Memo 翻譯影片字幕
  3. 用多模態模型做圖片辨識

Ollama 安裝與模型下載

首先我們要先安裝 Ollama:

來到 ollama.com 點選 Download,下載適合自己的版本後進行安裝,安裝完畢之後,啟動 Ollama。以我的電腦來說右上角就會出現一個小小的 Ollama 圖示,這樣就成功安裝囉!

接著我們需要下載 AI 模型到你的電腦:

回到 Ollama 首頁,點選右上角 Models,這邊就會列出所有官方支援的模型,比如最近很流行的 Meta LLAMA 3、微軟的 Phi3、法國 Mistral AI 公司的 Mistral、Google Gemini 模型的開源版 Gemma 都有,你可以挑選喜歡的來測試。

-----廣告,請繼續往下閱讀-----

比如我點選 LLAMA 3 的連結,模型頁面有兩個地方要注意:一是模型大小,LLAMA3 是 4.7G,一般而言要玩大模型,電腦記憶體至少 16G,預算夠就 24G 不嫌多;如果你是使用一般文書電腦,記憶體 8G 的話,建議你現在馬上停止你的任何動作。我有測試過電腦會直接當機……不要說我沒有提醒你。

點開 Latest 選單可以依照需求選擇不同版本的模型:

不過我們直接點選最右邊複製執行指令,打開電腦的終端機程式,或著命令提示字元,貼上,這樣電腦就會開始下載並且自動安裝囉。

你可以用 ollama list 指令查看現在電腦內有哪些模型,如果硬碟容量有限,用 ollama rm 後面加上模型名稱可以刪除模型。比如:ollama rm llama3。我們這邊另外安裝 llava 模型:ollama run llava,這樣準備工作就完成囉。

-----廣告,請繼續往下閱讀-----

Ollama + memo

最近只要演講上課,我一定會分享 Memo 這套好用的軟體,我們之前也有一支影片分享他的用法。

最近 Memo 更新之後,我們就可以直接使用 Ollama 結合特定的模型來進行字幕的翻譯。舉例來說,我們打開 memo,複製 Youtube 網址;我們用這支 楊立昆 的演講,貼上網址,開始下載,下載完畢後使用電腦進行語音辨識,接著我們就可以使用 Ollama 搭配剛剛準備好的 LLama3 模型來做翻譯!


翻譯完畢之後就可以匯出 SRT 字幕


如果你本身是影片創作者,這招就可以輕鬆製作你的 SRT 字幕,再也不用花時間對字幕時間軸了。

-----廣告,請繼續往下閱讀-----

或者你要把影片字幕直接內嵌在做簡報的時候播放影片:


匯出 MP4 格式,語言選雙語。如果你還沒用過這招處理影片,我強烈建議你一定要試試看!

Ollama + Enchanted

接下來我們要分享另一套非常實用的工具——Enchanted。他也是開源,可以讓原本是文字介面的 Ollama
提供類似 ChatGPT 的對話視窗,甚至支援圖片辨識的多模態模型 llava,Mac 用戶可以直接去 App Store 免費安裝。


同時開啟 Ollama 跟 Enchanted LLM:

-----廣告,請繼續往下閱讀-----


就擁有一個漂亮的視窗介面,可以優雅的啟用各種想要測試的 AI 模型,他甚至有手機版 APP!用手機連線自己的蘋果電腦跑 AI 模型?這……這,真的可以免費用嗎?

讓我來試試看!

首先要先安裝 ngrok 這套程式,選擇自己的作業系統然後下載。Windows 用戶應該直接安裝就可以了,Mac 的用戶在終端機執行這行 Sudo 指令把程式解壓縮到 user local bin 資料夾,接著註冊一個免費的 ngrok 帳號。

複製 ngrok config 指令,貼回自己電腦的終端機,把連線金鑰寫入自己的電腦。

-----廣告,請繼續往下閱讀-----

最後一步,啟動連線,指令是:ngrok http 11434 –host-header=”localhost:11434″

一切順利的話就會看到類似這個畫面。

然後把 forwarding 的網址複製,打開 iPhone 或 iPad 的 Enchanted app,在設定 Setting 裡面把 Ollama 網址貼上,這樣就可以遠端調用電腦的 Ollama 來使用 AI 模型,比如選用稍早下載的 LLava 多模態模型。

傳一張照片,問它這是什麼?

-----廣告,請繼續往下閱讀-----


是不是非常神奇呢?
快練習把 ollama、ngrok 跟 Enchanted 串起來跟朋友炫耀吧!

總結

今天的影片跟各位分享了基於 Ollama 這個開源 AI 套件的各種有趣應用,你是否有成功在 iphone 上打造自己的 AI 服務呢?

  1. 太複雜了我決定躺平
  2. 笑話,我可是尊榮的 GPT Plus 用戶
  3. 沒有 Mac 電腦不能玩……嗚嗚嗚
  4. 你怎麼不介紹那個 ooxx Ollama 套件

如果有其他想看的 AI 工具測試或相關問題,也可以留言告訴我們~

更多、更完整的內容,歡迎上泛科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

泛科學院_96
44 篇文章 ・ 52 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

0

0
0

文字

分享

0
0
0
Claude、ChatGPT 提示詞優化!4 個技巧讓 AI 更懂你的需求!
泛科學院_96
・2024/07/06 ・713字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

聽說 Office 365 Copilot 終於支援中文了!

我還不馬上拿出魔術小卡——加入會員,訂閱,開啟小鈴鐺,啊不是我是說,訂閱 Copilot……

嗯?20 美金?嗯?這沒有 Office 365 Copilot 啊?我找找……

靠,現在訂閱 Office 365 Copilot,最便宜要用商務標準版才能加購,而且加購只能一次買一年,要一萬一……我們本來都準備好各種有趣的測試了,但這錢我真的花不下去阿……那今天準備好的測試該怎麼辦呢?

-----廣告,請繼續往下閱讀-----

別擔心,今天的影片,我來回答三個問題:

  1. 如果 copilot 真的開放,我想像中會遇到什麼問題
    抱歉了,一萬一真的刷不下去……
  2. 用 GPT4 示範大語言模型的進階提示技巧,應用於文稿撰寫的方法
    畢竟 copilot 也是借鑑 GPT4,性能應該差不多啦!(屁啦)
  3. 這些技巧在其他語言模型也可以用嗎?

本集的「進階 AI 提示語」有沒有打開你的 AI 使用靈感呢?

  1. 太複雜了我決定躺平
  2. 炫技,等 GPT-5 出來這些都不再重要
  3. 我決定仿效泛科學院精神鑽研出神級提示語跟大家分享
  4. 其他也可以留言分享喔

欸嘿,前面提到的 QR code 在這邊 ^.< 不要告訴別人喔(噓)


如果有其他想看的 AI 工具測試或相關問題,也可以留言告訴我們~

-----廣告,請繼續往下閱讀-----

更多、更完整的內容,歡迎上泛科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

泛科學院_96
44 篇文章 ・ 52 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!