0

1
0

文字

分享

0
1
0

你怎麼比宇宙還要老!嚴重超齡的恆星之謎

linjunJR_96
・2020/03/06 ・2310字 ・閱讀時間約 4 分鐘
  • 文/林祉均 就讀清大物理系的斜槓理工男,喜歡學習與嘗試新事物。目前對科學和翻譯有點上癮,看到 Netflix 上奇怪的字幕翻譯會皺眉頭。

瑪土撒拉 (Methuselah) 是聖經故事中最長壽的人,享壽 969 歲,堪稱世界級人瑞;瑪土撒拉同時也是宇宙中最老的星星,在 HD 星表中的編號是「HD 140283」。根據歐洲太空總署的觀測,它已經高齡 160 億歲了。

正如一般的高齡恆星,瑪土撒拉主要由氫氣與氦氣組成,缺乏金屬成分,因為較重的金屬元素在早期宇宙中非常少見。

在此為各位觀眾隆重介紹,宇宙中最老的星星──瑪土撒拉。圖/© Digitized Sky Survey (DSS), STScI/AURA, Palomar/Caltech, and UKSTU/AAO

不過,先等一下。

修但幾勒,好像有哪裡怪怪的!圖/Meme 梗圖倉庫

你現在可以回去翻翻高中課本,上面應該會寫到:「目前推測宇宙年齡約 140 億年。」但是,這根本就不合理啊!宇宙裡的星星怎麼可能比宇宙本身還要老呢?難道它在大爆炸之前就已經存在了?

年齡不是問題,先告訴我距離

瑪土撒拉 (HD 140283) 位於紅色十字處。圖/A. Fujii and Z. Levay (STScI)

要釐清這個謎團,必須先知道恆星的年齡該如何判定。年齡判斷守則第一條:確認距離才能決定年齡。

我們都知道,越年輕的恆星越明亮,但遙遠的恆星從地球上看起來會比較暗。掌握恆星跟地球之間的距離,才能回推恆星實際上發出的光芒強度,並進一步得知恆星年齡。

可是,距離的測量並非易事。

當你在高速公路上往車窗外看,較遙遠的山脈或高樓會以相對緩慢的速度後退。同樣的道理,當地球在繞日軌道上公轉,你也能看到遙遠的星體悄悄地移動。

理論上,由於我們已經清楚繞日軌道的大小,因此只要比較某顆星在不同晚上的位置變化,就能推算出它跟地球的距離。然而,大部分恆星距離我們實在太遠,移動的幅度往往極為微小,因此這項測量實際上並不容易。

時隔半年,地球公轉到太陽的另一側,可觀測到恆星在不同的位置。理論上,我們能從恆星移動的距離推知它與地球的距離。圖/NASA, ESA, and A. Feild (STScI)

賓州大學的天文學家 Howard Bond 和研究團隊重新檢視哈伯太空望遠鏡在 2003 到 2011 年間的觀測數據,想要參透這顆恆星的年齡之謎。

Bond 提到:「HD 140283 的精確距離是推算年齡時的不確定因素之一。」而除了距離之外,他們也重新考慮恆星核融合的理論模型。團隊假設外層的氦氣會向中心擴散,導致可作為燃料的氫氣減少。如此一來,恆星融合並老化的速度更快,反推回去的年齡應該要更小。他們也發現 HD 140283 中的氧氣量高出預期,而氧元素要在大爆炸後幾百萬年才出現,這個線索再度顯示了恆星應該比原先的預估要來得年輕。

他們最終在 2014 年估計 HD 140283 的真實年齡大約是 142.7 億年,誤差正負 8 億年。也就是說,就算已經重新考慮了那麼多因素,還是得有頗大的測量誤差才能讓這顆恆星低於宇宙年齡。

那麼反過來想,會不會 138 億年這個數字也該被重新檢視一下?

宇宙到底有多老?答案原來會不斷變動

宇宙到底有多老?這個問題的答案其實隨著最新的觀測而不斷變動。藉由觀測大爆炸殘留下來的熱輻射,可以回推宇宙膨脹的程度,以及相對應的年齡。普朗克太空望遠鏡在 2013 年利用這種方法,得出了 138 億年,也就是我們目前熟知的標準答案。

天文物理學家哈伯曾在 1929 年提出「宇宙膨脹說」,並宣稱我們在宇宙中的鄰居們正持續地遠離地球,速度正比於其與地球的距離。因此,另一種幫宇宙測齡的方法,就是透過星體的距離和遠離地球的速度,來推算大爆炸的時間點。近期的觀測結果指出:宇宙的年齡大約 127 億年,另一則研究得到的結果則僅僅只有 114 億年。這或許表示我們目前對早期宇宙和膨脹理論的了解仍不夠完備,而許多科學家認為可能是暗物質或暗能量在其中搞鬼。

不過別的先不談。我們的難題還是懸而未決,HD 140283依舊嚴重「超齡」,而且現在情況似乎更不樂觀。

年齡之謎難道無解?等重力波為我們解答吧!

究竟是觀測有誤差,導致 HD 140283 年齡被高估;還是宇宙學理論尚未完整,宇宙其實比想像中更老?

「過往科學發展的經驗告訴我們,應該是兩者皆有」,英國阿斯頓大學的物理學家 Robert Matthews 提供了他的預測。他認為,暗能量的強度隨著時間而有所消長,膨脹速度也因此忽快忽慢。要驗證這個理論,可能需要重力波的幫忙。

所謂重力波,是兩個巨大的質量互相繞行所產生的時空漣漪,從它的頻率能夠計算出兩個質量的大小,以及撞擊將釋放的能量多寡。當重力波橫跨遙遠的宇宙,這股能量會隨著距離衰減。於是我們便可以從地球上觀測到的重力波能量,反推出重力波源和我們的距離。

只要有距離和速度,就能建構哈伯定律,推論出宇宙的年齡。速度的部分可以交給可見光。我們知道消防車的警笛聲在駛離時會逐漸「降 key」,而光線也是一樣的道理。當光源遠離我們,波長會被拉長,顏色會偏向紅色,其程度和光源的速度有關。因此,利用撞擊發出的可見光,便能推測星體遠離我們的速度。

宇宙初期恆星形成的概念圖示。圖/Wise, Abel, Kaehler (KIPAC/SLAC))

儘管愛因斯坦的廣義相對論中早已預測重力波的存在,它卻一直到 2015 年才首次現形,顯示其觀測的困難。不過,在未來的幾年內,科學家計畫觀測兩顆中子星的撞擊,有機會在重力波觀測上獲得重大的突破。屆時可能會讓科學家對哈伯定律和宇宙的年齡有全新的看法。

如此看來,「超齡星星」的謎團大概還會讓天文學家再頭痛一陣子,不過也有望為觀測技術和宇宙學理論帶來嶄新的發展。

參考資料:

文章難易度
linjunJR_96
21 篇文章 ・ 223 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。

0

8
0

文字

分享

0
8
0

地震規模越大,晃得越厲害?

鳥苷三磷酸 (PanSci Promo)_96
・2021/09/16 ・3706字 ・閱讀時間約 7 分鐘

本文由 交通部氣象局 委託,泛科學企劃執行。

某天,阿雲跟阿寶分享了一個通訊軟體上看到的資訊:

阿雲:「欸,你知道最近有個傳言說,花蓮有 7.7 級地震,如果發生的話台北會有 5.0 級的震度耶!」

阿寶:「蛤?那個傳言也太怪了吧,應該是把規模和震度搞混了!」

震度:量度地表搖晃的單位

確實常常有人把地震的規模跟震度搞混,實際上,因為規模指的是地震釋放的能量大小,所以當一個地震發生時,它的規模值已經決定了,只是會因為測量或計算的方式不同,會有些許的數字差異,而一般規模計算會到小數點後第一位,故常會有小數點在裡面。然而震度指的意思是地表搖晃的程度,度量表示方式通常都是以「分級」為主,比如國外常見、分了 12 級震度的麥卡利震度階,就是用 12 種不同分級來描述,而中央氣象局目前所使用的震度則共分十級,原先是從 0 級到 7 級,而自 2020 年起,在 5 級與 6 級又增了強、弱之分,也就是震度由小而大為 0-1-2-3-4-5弱-5強-6弱-6強-7 等分級,所以在表示上我們以整數 + 級或是強、弱等寫法,就可以區分規模和震度,不被混淆了!

而為什麼專家常需要強調震度和規模不一樣?那是因為震度的大小,是受到許多因素的影響。地震發生後,造成地表搖晃的主要原因是「地震波」傳來了大量能量,規模越大的地震,代表的就是地震釋放的能量越大,就像是你把擴音的音量不斷提高時,會有更大的聲音傳出一般。所以當其他的因素固定時,確實會因為規模越大、震度越大。

可是,地震波的能量在傳播過程中也會慢慢衰減,就像在演唱會的搖滾區時,在擴音器旁往往感覺聲音震耳欲聾,但隔了二、三十公尺之外,音量就會變得比較適中,但到了會場外,又會變得不是那麼清楚一樣。所以無論是地震的震源太深、或是震央離我們太遙遠,地震波的能量都會隨著距離衰減,一般來說震度都會變得比較小。

「所以,只要把那個謠言的台北規模 5.0 改為震度 5 弱,說法就比較合理了嗎?」阿雲說。

「可是,影響震度的因素還有很多,像是我們腳下的岩石性質,也是影響震度的重要因素。」阿寶說。

場址效應:像布丁一樣的軟弱岩層放大震波

原本我們都會覺得,如果地震釋放能量的方式就像是聲音或是爆炸一般,照理說等震度圖(地表的震度大小分布圖)上會呈現同心圓分布,但因為地質條件的差異,分布上會稍微不規則一些,只能大致看出震度會隨著離震央越遠而越小。地震學上有一個專有名詞叫做「埸址效應」,指的就是因為某些特殊的地質條件下,反而讓距離震央較遠的地方但震度被放大的地質條件。其中最常見的就是「軟弱岩層」和「盆地」兩種條件,而且這兩種還常常伴隨在一起出現,像是 1985 年的墨西哥城大地震,便是一個著名的例子。

影片:「場址效應」是什麼? 布丁演給你看

墨西哥城在人們開始在這邊發展之前,是個湖泊,湖泊中常有鬆軟的沉積物,而當湖泊乾掉之後,便成了易於居住與發展的盆地。雖然 1985 年發生的地震規模達 8.0,但震央距離墨西哥城中心有 400 公里,照理說這樣的距離足以讓地震波大幅衰減,而地震波傳到盆地外圍時,造成的加速度(PGA)大約只有 35gal,在臺灣大約是 4 級的震度,然而在盆地內的測站,卻觀測到 170gal 的 PGA 值,加速度放大了將近五倍,換算成震度,也可能多了一至二級的程度,也造成了相當程度的災情。盆地裡的沉積物,就像是裝在容器裡的布丁一樣,受到搖晃時,會有更加「Q 彈」的晃動!

1985 年墨西哥城大地震的等震度圖。圖/wikipedia

因此,在臺灣,雖然臺北都會區並沒有比其他區有更多更活躍的斷層,但地震風險仍不容小覷,因為臺北也正是一個過去曾為湖泊的盆地都市,仍有一定程度的地震風險,也需要小心來自稍遠的地震,除了建築需要有更強靭的抗震能力,強震警報能提供數秒至數十秒的預警,也多少讓人們能即時避災。

斷層的方向與震源破裂的瞬間,也決定了等震度圖的模樣

阿雲似懂非懂的接著問:「可是啊,為什麼有的時候大地震的等震度圖長得很奇怪,而且有些時候震度最大的地方都離震央好遠呢!也太巧合了吧?」

「這並不是巧合,因為震央下方的震源,指的其實是地震發生的起始點,並不是地震能量釋放最大的地方啊!」阿寶繼續解釋著。

「蛤!為什麼啊?」阿雲抓抓頭,一邊思考著。

地震是因為地下岩層破裂產生斷層滑動而造成的,雖然不是每個地震都會造成地表破裂,但目前科學家大多認為,地震的破裂只是藏在地底下,沒有延伸到地表而已,而且從地震的震度,也可以看出地底下斷層滑移的特性。

斷層在滑動時,主要的滑動和地震波傳出的地方,會集中在斷層面上某些特定的「地栓」(Asperity)之上,這些地栓又被認為「錯動集中區」,而通常透過傳統的地震定位求出來的震源,其實只是這些地栓中,最早開始錯動的地方。但實際上,整個斷層錯動最大的地方,往往都不會在那一開始錯動的地方,就像是我們跑步時,跑得最快的瞬間,不會發生在起跑的瞬間,而是在起跑後一小段的過程中,而錯動量最大的區域,才會是能量釋放最大的地方。而或許是小地震的地栓範圍小,震央幾乎就在最大滑移區的附近,因此也看不太出來,通常規模越大,震源的破裂行為會隨著時間傳遞,此效應才會越明顯。

震源與震央位置示意圖。圖/中央氣象局

那麼斷層上的地栓位置能否確認?這仍是科學上的難題,但近年來科學進展已經能讓我們透過地震波逆推斷層上的錯動集中區,至少可以透過地震波逆推斷層破裂滑移的型式,得以用來比對斷層破裂方向對震度分布的影響。以 2016 年臺南—美濃地震為例,最大錯動量的地區並不在震央所在的美濃附近,而是稍微偏西北方的臺南地區,也就是因為從地震資料逆推後,發現斷層在破裂時是向西北方向破裂。而更近一點的 2018 年花蓮地震,錯動量大、災害多的地方,也是與斷層破裂方向一致的西南方。

一張含有 地圖 的圖片  自動產生的描述
2016 年臺南美濃地震的等震度圖。圖/中央氣象局

透過更多的分析,現在也逐漸發現破裂方向性對於大地震震度分布的影響確實是重要議題。而雖然我們無法在地震發生之前就預知地栓的位置,但仍可從各種觀測資料作為基礎,針對目前已知的活動斷層進行模擬,就能做出「地震情境模擬」,並且由模擬結果找出可能有高危害度的地區,就能考慮對這些地區早先一步加強耐震或防災的準備工作。

多知道一點風險和危害度,多一份準備以減低災害

但是,直到目前為止,我們仍無法確知斷層何時會錯動、錯動是大是小。科學能給我們的解答,只能先評估出斷層未來的活動性中,哪個稍微大一些(機會小的不代表不會發生),或者像是斷層帶附近、特殊地質特性的場址附近,或許更要小心被意外「放大」的震度。而更重要的是,當地震來臨前,先確保自己的住家、公司或任何你所在的地方是安全還是危險,在室內要小心高處掉落物、在路上要小心掉落的招牌花盆壁磚、在鐵路捷運上要注意緊急煞車對你產生的慣性效應…多一些及早思考與演練,目的就是為了防範不知何時突然出現的大地震,在不恐慌的情況下保持適當警戒,會是對你我都很重要的防震守則!

【參考文獻】

鳥苷三磷酸 (PanSci Promo)_96
4 篇文章 ・ 7 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策