0

0
0

文字

分享

0
0
0

20個炎上的新型冠狀病毒(武漢肺炎)傳言?用科學來破解!

Peggy Lo
・2020/01/29 ・8365字 ・閱讀時間約 17 分鐘 ・SR值 579 ・九年級

-----廣告,請繼續往下閱讀-----

文 / 羅佩琪、廖英凱

2019新型冠狀病毒(2019-nCoV,俗稱武漢肺炎)開始擴散後,隨著日益高張的疫情,各種網路上、群組中流傳的「聽說」也正如火如荼地蔓延。

本文蒐集20個關於2019-nCoV的傳言,並以截至2020年1月28日為止的科學文獻、可查證資料試圖回答。防疫如作戰,面對未知的新疾病,需要如履薄冰、心存謹慎;但同時,也別讓恐懼過度盤旋心頭,多一分認識、多一分力量。

Embed from Getty Images

-----廣告,請繼續往下閱讀-----

聽說#1

”最新研究曝光!武漢肺炎死亡率15%!”

這個說法主要來自國內醫師熱心摘錄Lancet 2020年1月24日發表的研究,並幫大家畫了這個重點:「驚人發現,41例個案中居然有6例死亡,死亡率高達15%」。

不過在1月26日中央流行疫情指揮中心記者會中,傳染病防治醫療網指揮官張上淳已提醒大家這樣的詮釋易造成誤解,因為 Lancet 的這份研究對象是針對疫情初期確診的41個「中度以上患者(皆已有肺炎)」,與臨床上仍有許多「不一定有肺炎的輕症患者」顯有不同(例如:台灣確診的前三例個案僅有一例明確有肺炎),故,不應以這41個案例來代表所有感染2019-nCoV的患者。

那,到底2019-nCoV實際的致死率是多少呢?在有比較大規模的監測數據後,致死率大約是維持在3%。這個數字是否會再隨時間變化,仍有待繼續追蹤。

聽說#2

”哈佛流行病專家說武漢肺炎的R0=3.8,是熱核武級別瘟疫。”

這個說法來自2020年1月25日哈佛大學公衛學院Dr. Eric Feigl-Dingtwitter貼文,他引用Lancaster大學Jonathan Read等人1月24日發布的研究指出新型冠狀病毒的基本傳染數(R0, 一個病人在易感染人群中平均能再感染人數)是3.8,並與流感1.28、H1N1 1.48、1918年西班牙流感1.8相比,2019-nCoV的R0是「thermonuclear pandemic level(熱核武器級的流行)」。

-----廣告,請繼續往下閱讀-----

這位哈佛專家引用的研究確實存在,但需留意該研究尚未通過同儕審查,必須對該研究論述持保留態度,且R0值的估算受資料品質、數學模型選用影響很大,隨疫情進展R0也是會變動的。

依據美國CDC2019年11月出版的Emerging Infectious Diseases觀點文章,以麻疹為例,在多個研究領域、使用不同模型、不同時期報告的麻疹R0值多達20多個版本,數值範圍是5.4到18;該文作者也慎重提醒,如果不使用相同建模與假設計算R0,並無法公平比較不同時間、不同傳染原的傳染性。

做為參考,目前針對2019-nCoV的R0估算,除了3.8的版本,亦有WHO 1.4-2.5MRC全球傳染病分析中心 2.6等不同版本。

聽說#3

”一個人被感染後,會傳染給身邊的14個人。”

這個說法來自網傳武漢醫療人員瑾惠(音)給家人的影片,我們無法驗證影片主角的背景,但如上所提目前各種R0估算版本中,最高的是3.8,這位瑾惠得到的「1人傳染14人」資訊可能高估。

-----廣告,請繼續往下閱讀-----
source: Youtube影片截圖。

然而,在特定條件下,仍有可能出現導致大量感染的「超級傳播者(super-spreaders)」個案,例如香港SARS疫情期間,至少出現兩起超級傳播者案例,其一為患者利用霧化器給藥治療肺炎時,因為醫院內通風系統老舊與人滿為患而導致院內138人感染;另一例則是在社區住宅中,因排水系統異常,使帶有病原體的汙水產生氣溶膠傳播至其他住戶,最終導致329人被感染。

因此,與其擔憂患者或病毒的傳染力,更應該在疫情擴大前,確保醫護環境與汙水處理,並未過於老舊或異常。

聽說#4

”因為是SARS的進化病毒,武漢肺炎已由WHO定名為SARI”

如果搜尋WHO的相關文件,還真的會發現「SARI」(severe acute respiratory infection)這個名詞,例如這份《WHO surveillance case definitions for ILI and SARI》…… 但,等等,這份文件出產年份居然是2014年,難不成六年前就預知會有這波疫情預先命好名!?

當然不是啦,SARI其實是指「需要住院的肺炎」,可能由多種病原引起,而不是特定指本次疫情的主角新型冠狀病毒,疾管署也有發新聞稿澄清了哦!

-----廣告,請繼續往下閱讀-----

聽說#5

”武漢肺炎比SARS更強,潛伏期更長!”

傳染途徑、病毒接受劑量、個案免疫狀況都有可能影響潛伏期長短,一般來說SARS的潛伏期是2-7天,最長可達10天以上。(實際上SARS期間各國回報的潛伏期最小/大值、中位數都略有不同,有興趣了解細節可看這份WHO文件的Table 1。)

那2019-nCoV的潛伏期有比較長嗎?其實差不多。依據2020年1月27日WHO的疫情報告P6,目前估算為2-10天;但因疫情進展中,WHO也強調這個數字會依新的數字追蹤調整。

聽說#6

”與SARS不同,武漢肺炎潛伏期就有傳染性!”

SARS病患多數情況下的確要到潛伏期結束、有發燒或咳嗽等症狀了才會傳染給他人

那感染2019-nCoV的病患呢?早在潛伏期就有傳染性嗎?答案是:目前「尚無」官方研究或報告可證實。目前僅有的依據,是來自中國國家衛生健康委員會2020年1月26日記者會逐字稿的一句話,該會主任馬曉偉提到:「從觀察情況看潛伏期也具有傳染性」。須待更多研究報告資料公布,才能更確切地了解。

-----廣告,請繼續往下閱讀-----

聽說#7

”有患者從感染到發病到死亡,體溫都正常⋯⋯所以量體溫查不出來!”

很難得,這是正確的。

依據2020年1月24日發表在Lancet的這篇研究,其調查的患者中有發燒(溫度>37.3度)的比例佔98%,已確診但未發燒者確實存在;同天發布在Lancet的另篇研究也證實有「無症狀」但確診已感染2019-nCoV的患者。

也正因為只量體溫會有漏網之魚,因此疾管署有持續調整通報定義(臨床條件(一)中發燒原本是必要條件,現已放寬),且通報定義除了臨床條件,也包含檢驗條件、流行病學條件等。

聽說#8

”別以為戰勝過一次SARS就不用怕,當年SARS消失不是因為被消滅或治癒,主要是氣温因素。”

SARS至今的確「沒有」已證實療效的特效藥物或疫苗,臨床上多採支持性療法(給予氧氣、保守的靜脈輸液等)協助病人痊癒。

-----廣告,請繼續往下閱讀-----

至於氣溫因素,回顧SARS疫情,主要發生在北半球,首例個案出現在2002年11月、最後一例在2003年7月,似乎氣溫由寒至暖、整體疫情逐漸趨緩;2006年的這篇研究指出SARS每日發生數在「氣溫低時」比「氣溫高時」多18.18倍,但細究其原因,除了氣溫有影響外,也與流行日變長較多人具 SARS 抗體;醫院內重症患者比例;以及醫院內疾病管制措施成效有關。

此外,疫情控制也絕對與世界各國有無進行適當感控措施有關,若想了解WHO官方對SARS疫情終止的詮釋,可參考WPRO出版的《SARS : how a global epidemic was stopped》。

聽說#9

”武漢肺炎跟SARS一樣,都來自蝙蝠!”

again,作為新病毒,我們對2019-nCoV的最初動物宿主還沒有實證資料可確認;而SARS病毒的最初動物宿主,在疫情發生十數個年頭後的2018年,的確已藉由在Nature發表的這份研究證實來自蹄鼻蝙蝠(horseshoe bats,又稱菊頭蝠)。由於目前初始多起病例與武漢華南海鮮批發市場高度相關,因此有研究建議應管制野生肉品食用與貿易,對於個人也應避免接觸野生動物、禽鳥。

蹄鼻蝙蝠(horseshoe bats,又稱菊頭蝠)source: Patrick Randall @Flickr

聽說#10

”病毒除了從動物傳人、也會動物傳動物,家裡有寵物的小心!”

目前普遍認為2019-nCoV與SARS病毒類似,是由最初動物宿主傳給中間動物宿主,再傳給人類,再進入人傳人階段。

-----廣告,請繼續往下閱讀-----

雖然尚未證實最初/中間動物宿主為何,但針對貓狗等寵物的患病風險,2020年1月28日WHO已公開說明,目前無任何證據顯示有寵物被新型冠狀病毒感染,若有擔心,與寵物接觸後用肥皂洗手是多種傳染病通用的預防方式。

聽說#11

”比武漢肺炎更危險!美四個月內1500萬人染流感,2萬人死亡!”

這個說法來自2020年1月25日Insider的文章,其呼籲,對多數美國人來說流感比2019-nCoV更具威脅。本文不評論流感 vs 2019-nCoV誰更危險、更該被關注(其為不同判准不同觀點),單就數據做確認:依美國CDC官網,2019年10月1日至2020年1月18日預測的流感疫情如下:

source: 美國CDC – 2019-2020 U.S. Flu Season: Preliminary Burden Estimates

與傳言數字相仿,但須留意,在美國多數地區流感「並非」應通報疾病,所以美國CDC無法準確知道疫情人數,而是透過實驗室確認的流感住院率,用數學模型估算。因此,所估計的疫情數是採區間呈現,也會再隨時間、疫情進展變動。

聽說#12

”武漢肺炎目前只獲得空氣傳播的證據,不能確定是否還有其它途徑。”

雖然新型冠狀病毒是新病毒,相關研究尚少,但大部分人類冠狀病毒是以「接觸傳染」、「飛沫傳染」為主,而不是傳言寫的「空氣傳染」。

打噴嚏、咳嗽,是飛沫傳染常見的途徑。source :Tina Franklin@Flickr

飛沫傳染通常透過咳嗽等將病毒傳染給他人,是近距離傳染(約2公尺內);空氣傳染的病原可在空氣中飄浮、可傳染的距離能更遠,例如麻疹病毒可透過飛沫與空氣傳染,水痘病毒則可透過接觸、飛沫與空氣傳染,導致學校或家庭若有兒童感染時,則很容易引發群聚感染。不同傳染途徑,預防措施也不同,詳細說明可看前台灣感染科醫學會理事長林奏延教授2020年1月23日在官方QA的回答

聽說#13

”戴口罩已經防護不了⋯⋯眼角膜也會傳染。”

只待口罩沒用嗎?source:Piqsels

如上述,冠狀病毒多屬接觸或飛沫傳染,與患者共用毛巾等直接與間接接觸行為有可能碰到病毒,而手摸到沾有病毒的物品後再觸及口、鼻、眼,是有可能讓病毒進入身體而感染的。

也因此,美國CDC的2019-nCoV預防建議有提醒要「勤洗手」、「尚未洗手時,避免碰觸口、鼻、眼」;同時,注意咳嗽禮節、戴口罩仍是預防飛沫傳染的主要方式,皆應並重

聽說#14

”既然可能透過眼睛感染,要準備護目鏡嗎?”

這個說法主要源自確診感染2019-nCoV的北大第一醫院呼吸內科王廣發主任2020年1月22日微博貼文,其推測自己是因接觸患者時未配戴護目鏡而感染;但王廣發於1月23日有進一步澄清,「需要護目鏡」是針對處理疫情的醫師,而非給一般民眾的建議。

這個建議與WHO、美國CDC、我國疾管署相同,護目鏡眼部保護是出現在臨床暫行指引給會接觸到患者的醫護人員的建議給醫療照護工作人員個人防護裝備建議中,而非屬給一般民眾的預防建議。

Embed from Getty Images

聽說#15

”抗感冒也抗新型肺炎,醫師主張大量吃維他命C”

這個說法主要源自香港星島日報2020年1月23日的報導,但大概是被很多人抗議已下架了,我國疾管署也已於1月24日發布澄清稿闢謠

不過長期以來,關於維生素C的效果一直是藥理與營養的熱門研究主題,例如透過靜脈注射高劑量維生素C來破壞癌細胞,但對普通感冒來說,一則統計了29306名受試者的回顧性研究指出,服用維生素C的補充劑並無法減少一般大眾的發病率,對能否減緩症狀也尚無定論。此外,將維生素C作為預防或治療 2019-nCoV 的論點仍缺乏科學根據。

聽說#16

”乙酸(白醋)對武漢病毒有效!”

目前2019-nCoV無實證有效的治療藥物,當然,也沒有任何食物被證實有療效。

至於⋯⋯如果是想拿來消毒、預防感染,不論食用白醋或工業用乙酸都請別用。消毒手,依WHO建議可用乙醇(酒精)搓手液;消毒環境,依疾管署建議,一般環境如廚房可用1:100稀釋漂白水(500 ppm),浴室或馬桶可用1:10稀釋漂白水(5000 ppm)。若是醫療機構內因應新型冠狀病毒的消毒作業,就請看更複雜的疾管署指引了。

聽說#17

”武漢病毒56℃就會被殺死,治療方式很簡單,到蒸氣室呆30分鐘”

2020年1月23日中國國家衛生健康委員會發布的新型冠狀病毒診療方案第三版的確提到「病毒對熱敏感,56℃ 30分鐘乙醚、75%乙醇、含氯消毒劑、過氧乙酸和氯仿等脂溶劑均可有效滅活病毒」,但請注意,這是指消毒方式,而非治療方式。

當病毒在環境中,用上述方式消毒是可以的;但當病毒已在體內,上述方式皆無法用來治療,且會對人體產生明顯危害。例如部分蒸氣室或烤箱雖然溫度可逾60℃以上,但人體體溫上升時的自然排汗散熱,仍會使體溫維持恆定,在維持健康的狀況下,不可能將人體加熱到56℃,因此透過高溫蒸氣室或烤箱,絕不可能清除體內病毒。

而體外病毒等飛沫的清潔,僅須正常使用肥皂、沐浴乳等正常清潔方式即可。詳情也可參考1月26日中央流行疫情指揮中心記者會台大醫院兒童感染科主任黃立民的說明。

聽說#18

”武漢病毒56℃就會被殺死,因此碗筷定期煮一煮,煮沸到100℃其它病毒也殺死了。食物要吃煮熟的。”

WHO的說明,即使在疫情爆發地區,只要有煮熟、端盛時留意環境清潔,食用肉類的確也是安全的。不過,碗筷需用56℃熱水燙過30分鐘以上,或煮沸數秒,也可利用紫外光或一般清潔劑洗滌,其實就已足夠殺死冠狀病毒

愛做菜的作者OS:多提醒一下,這類清潔消毒法並非適用所有病原體。冠狀病毒因為是一種具有外套膜(envelop)的病毒,利用加熱、酸、乾燥、清潔劑與各類有機溶劑可以輕易破壞外套膜(這類病毒在胃中也會因胃酸的強酸而迅速消滅);但對於無外套膜的病毒,如腸病毒,則僅能使用加熱、紫外線來清潔餐具,或使用含氯消毒劑清潔環境。

聽說#19

”壞消息,病毒已發生第二代變異,傳染機率爆發性成長!”

依據WHO 2020年1月26日的疫情報告P5,WHO表示目前「沒有」收到任何證據顯示病毒已變異,並表示更多資訊的確認須待中國大陸官方提供更多資料。

聽說#20

”好消息,疫苗出來啦!中國科學家已讀取全部基因序,製出高效試劑⋯⋯將病毒抗原基因切取出來,用轉基因手段培養人體組織,獲取抗性藥物!”

萬用回答上場:目前2019-nCoV「尚無」實證有效的疫苗與專治藥物。

本次疫情爆發後,中國大陸的科學家的確迅速分離病毒並公開基因定序,使各國藥廠可以製作篩檢用試劑盒。不過,試劑盒是用在「診斷是否感染2019-nCoV」,而不是預防用疫苗,也不是治療用藥。

但,縱使研發疫苗與藥物之路遙,多國已動身啟程:

美國NIH NIAID(國衛院國家過敏和傳染病研究所)所長Dr. Fauci等2020年1月23日在JAMA Viewpoint 的文章表示,相關研究人員正探索廣效(broad-spectrum)抗病毒藥物用於2019-nCoV的可能,也調整用於SARS、MERS疫苗的方法,加快2019-nCoV候選疫苗開發,最短三個月內完成早期人體試驗準備;

中國衛健委在2020年1月26日記者會表示已成立國家科研攻關專家組負責疫苗研發,並與WHO討論分享生物資料以加速推進

我國疾管署在2020年1月27日記者會表示正培養研發疫苗用的病毒,國衛院則與NIAID意見雷同,認為開發廣效抗病毒藥物能在突變的新型冠狀病毒發生時,提供罹病者最快的第一線治療

Embed from Getty Images

最後仍要提醒,2019-nCoV是新病毒,相關資訊皆會隨疫情發展、新出爐研究而變化,國內最新資訊請追蹤疾管署官網,國際最新資訊請追蹤WHO官網美國CDC歐洲疾病預防控制中心醫學期刊 The Lancet等。

當疫情還在蔓延時,多一點認識就少一點恐懼。
Keep calm and carry on. 

 

若有轉載需求,請寄信至:contact@pansci.asia

文章難易度
Peggy Lo
23 篇文章 ・ 2 位粉絲
非典型的人生迷茫組,對資訊整理有詭異的渴望與執著。

0

1
2

文字

分享

0
1
2
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 54 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

5
3

文字

分享

0
5
3
除了蚯蚓、地震魚和民間達人,那些常見的臺灣地震預測謠言
鳥苷三磷酸 (PanSci Promo)_96
・2024/02/29 ・2747字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

災害性大地震在臺灣留下無數淚水和難以抹滅的傷痕,921 大地震甚至直接奪走了 2,400 人的生命。既有這等末日級的災難記憶,又位處於板塊交界處的地震帶,「大地震!」三個字,總是能挑動臺灣人最脆弱又敏感的神經。

因此,當我們發現臺灣被各式各樣的地震傳說壟罩,像是地震魚、地震雲、蚯蚓警兆、下雨地震說,甚至民間地震預測達人,似乎也是合情合理的現象?

今日,我們就要來破解這些常見的地震預測謠言。

-----廣告,請繼續往下閱讀-----

漁民捕獲罕見的深海皇帶魚,恐有大地震?

說到在坊間訛傳的地震謠言,許多人第一個想到的,可能是盛行於日本、臺灣的「地震魚」傳說。

在亞熱帶海域中,漁民將「皇帶魚」暱稱為地震魚,由於皇帶魚身型較為扁平,生活於深海中,魚形特殊且捕獲量稀少,因此流傳著,是因為海底的地形改變,才驚擾了棲息在深海的皇帶魚,並因此游上淺水讓人們得以看見。

皇帶魚。圖/wikimedia

因此,民間盛傳,若漁民捕撈到這種極為稀罕的深海魚類,就是大型地震即將發生的警兆。

然而,日本科學家認真蒐集了目擊深海魚類的相關新聞和學術報告,他們想知道,這種看似異常的動物行為,究竟有沒有機會拿來當作災前的預警,抑或只是無稽之談?

-----廣告,請繼續往下閱讀-----

可惜的是,科學家認為,地震魚與地震並沒有明顯的關聯。當日本媒體報導捕撈深海魚的 10 天內,均沒有發生規模大於 6 的地震,規模 7 的地震前後,甚至完全沒有深海魚出現的紀錄!

所以,在科學家眼中,地震魚僅僅是一種流傳於民間的「迷信」(superstition)。

透過動物來推斷地震消息的風俗並不新穎,美國地質調查局(USGS)指出,早在西元前 373 年的古希臘,就有透過動物異常行為來猜測地震的紀錄!

人們普遍認為,比起遲鈍的人類,敏感的動物可以偵測到更多來自大自然的訊號,因此在大地震來臨前,會「舉家遷徙」逃離原本的棲息地。

-----廣告,請繼續往下閱讀-----

當臺灣 1999 年發生集集大地震前後,由於部分地區出現了大量蚯蚓,因此,臺灣也盛傳著「蚯蚓」是地震警訊的說法。

20101023 聯合報 B2 版 南投竹山竄出蚯蚓群爬滿路上。

新聞年年報的「蚯蚓」上街,真的是地震警訊嗎?

​當街道上出現一大群蚯蚓時,密密麻麻的畫面,不只讓人嚇一跳,也往往讓人感到困惑:為何牠們接連地湧向地表?難道,這真的是動物們在向我們預警天災嗎?動物們看似不尋常的行為,總是能引發人們的好奇與不安情緒。

如此怵目驚心的畫面,也經常成為新聞界的熱門素材,每年幾乎都會看到類似的標題:「蚯蚓大軍又出沒 網友憂:要地震了嗎」,甚至直接將蚯蚓與剛發生的地震連結起來,發布成快訊「昨突竄大量蚯蚓!台東今早地牛翻身…最大震度4級」,讓人留下蚯蚓預言成功的錯覺。

然而,這些蚯蚓大軍,真的與即將來臨的天災有直接關聯嗎?

-----廣告,請繼續往下閱讀-----

蚯蚓與地震有關的傳聞,被學者認為起源於 1999 年的 921 大地震後,在此前,臺灣少有流傳地震與蚯蚓之間的相關報導。

雖然曾有日本學者研究模擬出,與地震相關的電流有機會刺激蚯蚓離開洞穴,但在現實環境中,有太多因素都會影響蚯蚓的行為了,而造成蚯蚓大軍浮現地表的原因,往往都是氣象因素,像是溫度、濕度、日照時間、氣壓等等,都可能促使蚯蚓爬出地表。

大家不妨觀察看看,白日蚯蚓大軍的新聞,比較常出現在天氣剛轉涼的秋季。

因此,下次若再看到蚯蚓大軍湧現地表的現象,請先別慌張呀!

-----廣告,請繼續往下閱讀-----

事實上,除了地震魚和蚯蚓外,鳥類、老鼠、黃鼠狼、蛇、蜈蚣、昆蟲、貓咪到我們最熟悉的小狗,都曾經被流傳為地震預測的動物專家。

但可惜的是,會影響動物行為的因素實在是太多了,科學家仍然沒有找到動物異常行為和地震之間的關聯或機制。

遍地開花的地震預測粉專和社團

這座每天發生超過 100 次地震的小島上,擁有破萬成員的地震討論臉書社團、隨處可見的地震預測粉專或 IG 帳號,似乎並不奇怪。

國內有許多「憂國憂民」的神通大師,這些號稱能夠預測地震的奇妙人士,有些人會用身體感應,有人熱愛分析雲層畫面,有的人甚至號稱自行建製科學儀器,購買到比氣象署更精密的機械,偵測到更準確的地震。

-----廣告,請繼續往下閱讀-----

然而,若認真想一想就會發現,臺灣地震頻率極高,約 2 天多就會發生 1 次規模 4.0 至 5.0 的地震, 2 星期多就可能出現一次規模 5.0 至 6.0 的地震,若是有心想要捏造地震預言,真的不難。 

在學界,一個真正的地震預測必須包含地震三要素:明確的時間、 地點和規模,預測結果也必須來自學界認可的觀測資料。然而這些坊間貼文的預測資訊不僅空泛,也並未交代統計數據或訊號來源。

作為閱聽者,看到如此毫無科學根據的預測言論,請先冷靜下來,不要留言也不要分享,不妨先上網搜尋相關資料和事實查核。切勿輕信,更不要隨意散播,以免造成社會大眾的不安。

此外,大家也千萬不要隨意發表地震預測、觀測的資訊,若號稱有科學根據或使用相關資料,不僅違反氣象法,也有違反社會秩序之相關法令之虞唷!

-----廣告,請繼續往下閱讀-----

​地震預測行不行?還差得遠呢!

由於地底的環境太過複雜未知,即使科學家們已經致力於研究地震前兆和地震之間的關聯,目前地球科學界,仍然無法發展出成熟的地震預測技術。

與其奢望能提前 3 天知道地震的預告,不如日常就做好各種地震災害的防範,購買符合防震規範的家宅、固定好家具,做好防震防災演練。在國家級警報響起來時,熟練地執行避震保命三步驟「趴下、掩護、穩住」,才是身為臺灣人最關鍵的保命之策。

延伸閱讀

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
200 篇文章 ・ 308 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

2

1
0

文字

分享

2
1
0
找回擁有食物的主導權?從零開始「菇類採集」!——《真菌大未來》
積木文化
・2024/02/25 ・4266字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

菇類採集

在新冠肺炎(COVID-19)大流行後,馬斯洛「需求層次理論」裡的食品與安全在眾目睽睽下被抽離出來,變成後疫情時代最重要的兩個元素。對食物的焦慮點燃人們大腦中所有生存意志,於是大家開始恐慌性地購買,讓原本就已經脆弱、易受攻擊的現代糧食系統更岌岌可危。

值得慶幸的是,我們的祖先以前就經歷過這一切,留下來的經驗值得借鏡。菇類採集的興趣在艱難時期達到顛峰,這反映了人類本能上對未來產生的恐懼。1 無論是否有意,我們意識到需要找回擁有食物的主導權,循著古老能力的引導來找尋、準備我們自己的食物,如此才能應付食物短缺所產生的焦慮。

在新冠肺炎大流行後,馬斯洛「需求層次理論」裡的食品與安全在眾目睽睽下被抽離出來,變成後疫情時代最重要的兩個元素。圖/pexels

我們看見越來越多人以城市採集者的身分對野生菇類有了新的品味,進而找到安全感並與大自然建立起連結。這並不是說菇類採集將成為主要的生存方式,而是找回重新獲得自給自足能力的安全感。此外,菇類採集的快感就足以讓任何人不斷回歸嘗試。

在這個數位時代,菇類採集是讓我們能與自然重新連結的獨特活動。我們早已遺忘,身體和本能,就是遺傳自世世代代與自然和諧相處的菇類採集者。走出現代牢籠、進入大自然從而獲得的心理和心靈滋養不容小不容小覷。森林和其他自然空間提醒著我們,這裡還存在另一個宇宙,且和那些由金錢、商業、政治與媒體統治的宇宙同樣重要(或更重要)。

-----廣告,請繼續往下閱讀-----
在這個數位時代,菇類採集是讓我們能與自然重新連結的獨特活動。圖/unsplash

只有願意撥開遮蓋的落葉並專注尋找,才能體認到菇類的多樣性和廣泛分布。一趟森林之旅能讓人與廣大的生態系統重新建立連結,另一方面也提醒我們,自己永遠屬於生命之網的一部分,從未被排除在外。

腐爛的樹幹不再讓人看了難受,而是一個充滿機遇的地方:多孔菌(Bracket Fungi)──這個外觀看起來像貨架的木材分解者,就在腐爛的樹幹上茁壯成長,規模雖小卻很常見。此外,枯葉中、倒下的樹上、草地裡或牛糞上,也都是菇類生長的地方。

菇類採集是一種社會的「反學習」(遺忘先前所學)。你不是被動地吸收資訊,而是主動且專注地在森林的每個角落尋找真菌。不過度採集、只拿自身所需,把剩下的留給別人。你不再感覺遲鈍,而是磨練出注意的技巧,只注意菇類、泥土的香氣,以及醒目的形狀、質地和顏色。

只有願意撥開遮蓋的落葉並專注尋找,才能體認到菇類的多樣性和廣泛分布。圖/unsplash

菇類採集喚醒身體的感官感受,讓心靈與身體重新建立連結。這是一種可以從中瞭解自然世界的感人冥想,每次的發現都振奮人心,運氣好的話還可以帶一些免費、美味又營養的食物回家。祝您採集愉快。

-----廣告,請繼續往下閱讀-----

計畫

菇類採集就像在生活中摸索一樣,很難照既定計畫執行,而且以前的經歷完全派不上用場。最好的方法就是放棄「非採集到什麼不可」的念頭,持開放心態走出戶外執行這項工作。菇類採集不僅是享受找到菇的滿足感,更重要的是體驗走過鬆脆的樹葉、聞著森林潮濕的有機氣味,並與手持手杖和柳條筐的友善採菇人相遇的過程。

菇類採集很難照既定計畫執行,最好的方法就是放棄「非採集到什麼不可」的念頭。採集過程幾乎就像玩捉迷藏,只不過你根本不確定自己在找什麼,甚至根本不知道要找的東西是否存在。圖/unsplash

你很快就會明白為什麼真菌會有「神秘的生物界」的稱號。真菌無所不在但又難以捉摸,採集過程幾乎就像玩捉迷藏,只不過你根本不確定自己在找什麼,甚至根本不知道要找的東西是否存在。但還是要有信心,只要循著樹木走、翻動一下原木、看看有落葉的地方,這個過程就會為你指路。一點點的計畫,將大大增加你獲得健康收益的機會。所以,讓我們開始吧。

去哪裡找?

林地和草原,是你將開始探索的兩個主要所在。林地底層提供真菌所需的有機物質,也為樹木提供菌根關係。橡樹、松樹、山毛櫸和白樺樹都是長期的菌根夥伴,所以循著樹種,就離找到目標菇類更近了。

林地底層提供真菌所需的有機物質,也為樹木提供菌根關係。圖/pexels

草原上也會有大量菇類,但由於這裡的樹木多樣性和環境條件不足,所以菇類種類會比林地少許多。如果這些地點選項對你來說都太遠了,那麼可以試著在自家花園或在地公園綠地當中尋找看看。這些也都是尋菇的好地方。

-----廣告,請繼續往下閱讀-----

澳洲新南威爾斯州奧伯倫

澳洲可以說是真菌天堂。與其他大陸隔絕的歷史、不斷變化的氣候以及營養豐富的森林,讓澳洲真菌擁有廣大的多樣性。澳洲新南威爾斯州(New South Wales)的奧伯倫(Oberon)就有一座超過四萬公頃的松樹林,是採集菇類的最佳地點之一。

在那裡,有廣受歡迎的可食用菌松乳菇(又稱紅松菌),據說這種真菌的菌絲體附著在一棵歐洲進口樹的根部,而意外被引進澳洲。 1821 年,英國真菌學家塞繆爾・弗里德里克・格雷(Samuel Frederick Gray)將這種胡蘿蔔色的菇命名為美味乳菇(Lactarius deliciosus),這的確名符其實,因為「Deliciosus」在拉丁語中意為「美味」。如果想要在奧伯倫找到這些菇類,秋天時就要開始計劃,在隔年二月下旬至五月的產季到訪。

位於澳洲新南威爾斯州的奧伯倫就有一座超過四萬公頃的松樹林,是採集菇類的絕佳地點。圖/unsplash

英國漢普郡新森林國家公園

在英國,漢普郡的新森林國家公園(Hampshire’s New Forest)距離倫敦有九十分鐘的火車車程。它由林地和草原組成,當中有種類繁多的植物群、動物群和真菌可供遊客觀賞,甚至還有野生馬匹在園區裡四處遊蕩。

這片森林擁有兩千五百多種真菌,其中包括會散發惡臭的臭角菌(Phallus impudicus),它的外觀和結構就如圖鑑中描述般,與男性生殖器相似且不常見。還有喜好生長於橡樹上,外觀像架子一樣層層堆疊的硫色絢孔菌(Laetiporus sulphureus ,又稱林中雞)。該國家公園不允許遊客採收這裡的菇,所以請把時間花在搜尋、鑑別與欣賞真菌上。如果幸運的話,該地區可能會有採集團體可以加入,但能做的也僅限於採集圖像鑑別菇類,而非採集食用。

-----廣告,請繼續往下閱讀-----
在英國,漢普郡的新森林國家公園由林地和草原組成,當中有種類繁多的植物群、動物群和真菌可供遊客觀賞。該國家公園不允許遊客採收這裡的菇,所以請把時間花在搜尋、鑑別與欣賞真菌上。圖/unsplash

美國紐約市中央公園

甚至紐約市的中央公園也有採集菇類的可能性。雖然在 1850 年代公園建造之時並未刻意引進菇類物種,但這個占地八百四十英畝的公園現已登錄了四百多種菇類,足以證明真菌孢子的影響之深遠。

加里・林科夫(Gary Lincoff)是一位自學成才、被稱作「菇類吹笛人」2 的真菌學家,他住在中央公園附近,並以紐約真菌學會的名義會定期舉辦菇類採集活動。林科夫是該學會的早期成員之一,該學會於 1962 年由前衛作曲家約翰・凱吉(John Cage)重新恢復運作。凱吉也是一位自學成才的業餘真菌學家,並靠自己的能力成為專家。

甚至紐約市的中央公園也有採集菇類的可能性。雖然在 1850 年代公園建造之時並未刻意引進菇類物種,但這個占地八百四十英畝的公園現已登錄了四百多種菇類。圖/wikipedia

進行菇類採集時,找瞭解特定物種及其棲息地的在地專家結伴同行,總是有幫助的。如果你需要一個採集嚮導,求助於所在地的真菌學會會是一個正確方向。

何時去找?

在適當的環境條件下(例如溫度、光照、濕度和二氧化碳濃度),菌絲體全年皆可生長。某些物種對環境條件較敏感,但平均理想溫度介於 15~24 ℃ 之間,通常是正要進入冬季或冬季剛過期間,因此秋季和春季會是為採集菇類作計畫的好季節。

-----廣告,請繼續往下閱讀-----
秋季和春季是為採集菇類作計畫的好季節,但因為菇類受溫度變化模式和降雨量的影響很大,所以每年採菇的旺季時間會略有不同。圖/unsplash

當菌絲體從周圍吸收水分時,會產生一股破裂性的力量,讓細胞充滿水分並開始出菇。這就是菇類通常會出現在雨後和一年中最潮濕月份的原因。牢記這些條件,就可以引導你找到寶藏。但也要記得,因為菇類受溫度變化模式和降雨量的影響很大,所以每年採菇的旺季時間會略有不同。

註解

  1. Sonya Sachdeva, Marla R Emery and Patrick T Hurley, ‘Depiction of wild food foraging practices in the media: Impact of the great recession’, Society & Natural Resources, vol. 31, issue 8, 2018, <doi.org/10.1080/08941920.2 018.1450914>. ↩︎
  2. 譯注:民間傳說人物。吹笛人消除了哈梅林鎮的所有老鼠,但鎮上官員拒絕給予承諾的報酬,於是他就吹奏著美麗的音樂,把所有孩子帶出哈梅林鎮。 ↩︎

——本文摘自《真菌大未來:不斷改變世界樣貌的全能生物,從食品、醫藥、建築、環保到迷幻》,2023 年 12 月,積木文化出版,未經同意請勿轉載。

所有討論 2