1

0
2

文字

分享

1
0
2

地下水也會引發微地震?成功改寫地震理論的馬國鳳——《她們,好厲害》

PanSci_96
・2019/12/31 ・6518字 ・閱讀時間約 13 分鐘 ・SR值 499 ・六年級

  • 文/楊泰興

1999 年 9 月 21 日凌晨 1 時 47 分,全台一陣劇烈搖晃,台灣的胸口在天搖地動中被撕裂;起源於中部車籠埔斷層錯動,芮氏規模 7.3 的地震,造成全台 2415 人死亡、29 人失蹤,上萬人受傷、5 萬多間房屋全倒,這是台灣戰後最嚴重的地震,史稱「九二一大地震」。

民眾憂心忡忡,不禁問:台灣為何會有這樣的巨震?何時還會再發生?這一連串問題,同樣讓世界地震專家高度關注,紛紛搶進研究。

在尋找這些攸關台灣民生、重大急迫答案的研究中,台灣並沒有缺席,而是做出了重大貢獻。其中,領軍的是一位不讓鬚眉的科學家──中央大學地球科學系教授馬國鳳。她是國際知名的地震學家,專門研究地震物理學,探討地震形成、破裂、結束的過程。

放下計算,用斷層鑽探驗證理論

2004 年,馬國鳳參與並主持「台灣車籠埔斷層深井鑽探計畫」,透過台、美、日、德四國學者跨國際合作研究,鑽取斷層帶的岩芯試樣,探究九二一大地震的成因和生成機制,並將研究結果成功發表在《自然》(Nature) 期刊上。

-----廣告,請繼續往下閱讀-----
馬國鳳曾進行國際合作研究,並將結果成功發表在《自然》(Nature) 期刊上。圖/jstor

幸運加上努力,他們取得了傲人的成績,對九二一地震的成因假設,透過取得的斷層岩芯均獲得驗證,詳細描繪出這場災難的全貌。

馬國鳳說:「這些理論以前只能透過數學物理計算來驗證,沒有人真正把那塊石頭拿出來看看是什麼樣子,而這次斷層鑽探,真正檢證了這些理論。」

這就好比愛因斯坦在 1905 年發表相對論後,沒有人可以確認對錯;直到 1919 年,英國愛丁頓爵士率領探險隊,發現在非洲觀測到日蝕光線的偏折角度,是牛頓理論預言偏折角的兩倍,這才證實了相對論,愛因斯坦旋即獲得諾貝爾獎。馬國鳳在地震理論界的學術貢獻,也許就如同當年驗證相對論的愛丁頓爵士。

以肉眼判讀,用微小訊號改寫地震理論

透過鑽取的岩芯內容,團隊發現到:「滑移帶的厚度」是了解地震能量的重要參數,而厚度則影響了能量的釋放。這是世界首次觀測到大型地震的斷層滑移帶的厚度,同時也成功量化出地震時的破碎能及熱能。

另外,「主要滑移帶」也看出了每一層紋路平穩類似,顯示地震的行為不斷重複,驗證了相似性質的地震會重複發生的假說。

-----廣告,請繼續往下閱讀-----

也就是說,九二一地震這樣形式的大地震,在車籠埔斷層地區將會再度發生。不過,令人鬆一口氣的是,雖然 12 公分厚的滑移帶至少滑過 33 次,代表發生過 33 次地震,但推估起來,大概要到四百年後才會有機會再發生。

跨國合作中的在地研究優勢,讓馬國鳳團隊搶占先機;她卓越的整合能力,讓四國團隊發揮最大戰力,迅速繳出亮眼成績。

2012 年,馬國鳳發表在《科學》(Science) 雜誌的文章,更是真功夫的理論突破,更證實她的成功沒有任何僥倖。

這第二篇登上一流期刊的論文,成功改寫了地震的基本理論,馬國鳳訓練出的博士生林彥宇,秉持著她要求的科學信念:「要看別人看不到的東西」,因而捨棄機器判讀訊號,長達一年時間裡,透過肉眼天天研讀放在車籠埔斷層的井下探測儀訊號,發現到長期存在著「只有 P 波(上下動),沒有 S 波(左右動,也可以理解成第二波)」的特殊訊號,訊號雖微小,但十分奇特。

-----廣告,請繼續往下閱讀-----

這種微小到一般學者會忽略、機器會濾去的訊號,在馬國鳳的眼裡卻看出不一樣的風景,成為她改寫地震理論的契機。

有些微小到一般學者會忽略、機器會濾去的訊號,在馬國鳳的眼裡卻看出不一樣的風景。圖/論文圖片

一般說來,地震形成的原因,包括:斷層錯動、火山活動、岩溶塌陷、隕石撞擊、地函物質相變化,以及地下核爆及其他人為因素,其中以斷層錯動為最主要的原因。但是,馬國鳳證實了一個新原因假說:「其實地下水水壓引發爆裂,也會引發微地震。」

這樣的假設,過去理論界也有很多,但都苦無證據。馬國鳳根據一年來的數據發現,這些極微小地震的震源,全都在車籠埔斷層面下方,大部分都位於深度 1300 至 1800 公尺處,那裡含有豐富的地下水,且具有高滲透性的桂竹林層(以砂岩與頁岩為主)。

馬國鳳推論,當年車籠埔斷層錯動時,巨大作用力把斷層面磨成極細的不透水斷層泥,造成地下水無法向上,只能繼續累積在下方,液壓不斷增加,最後將積水區周圍的岩石「瞬間撐裂」出 2 至 5 公分的裂縫(人造地震的特色是單一點引發,P 波遠大於 S 波,岩石爆裂也會造成類似 S 波甚微的效果),才引發了微地震。

-----廣告,請繼續往下閱讀-----
車籠埔斷層說明圖(點圖放大)。圖/經濟部中央地質調查所

這項有理有據的創新結果,成功改變了地震學的根本理論,成果發表在 2012 年 7 月 27 日的《科學》雜誌,該類型地震由馬國鳳命名為「均向地震」(Isotropic Events)。

難以想像的是,做出這些精彩學術研究的馬國鳳,另一個身分是兩個女兒的單親媽媽。不同於其他科學家常廢寢忘食,晚上還常流連實驗室長期抗戰,她的學生透露,老師下班時間一到一定準時回家,因為要做飯給兩個小孩吃。

科學家就是科學家,不分男女

什麼時間該做什麼事情,一切都要有效率、充分利用,這是馬國鳳的長處。儘管這樣拚命工作,也常「把自己逼到牆角,瀕臨崩潰」,反而激盪出驚人的爆發力,成就斐然。

馬國鳳曾於 2011 年榮獲台灣傑出女科學家獎。圖/取自書籍《她們,好厲害:台灣之光.18位女科學家改變世界

跟其他同年齡的女性比起來,五十二年次的馬國鳳,算早婚生子。中央大學地球物理系、台大碩士畢業後,申請到美國加州理工學院地球與行星科學系博士班,與當時先生聯袂出國唸博士時,接連生了兩個女兒,一邊照顧女兒,一邊完成學業。博士資格考時,還抱著女兒去參加口試達三小時,進場時只能把嬰孩交給同學抱著。

-----廣告,請繼續往下閱讀-----

資格考完後三個月,馬國鳳開始帶著女兒跑研討會,小孩才三、 四個月大。幸好主辦單位理解,讓她抱著小孩坐在最後排,小孩一哭,她就抱出去。輪到她報告時,小孩交給老美同學先抱著,每個經過的人都很疑惑,「為什麼一個老美抱一個華人小孩?」

從這裡就可以看出馬國鳳不服輸,打死不退的韌性。

不少留學生夫婦一旦生了小孩,做妻子的常放棄學業,以先生、子女為重。可是馬國鳳認為,好不容易進了這麼好的學校,應該堅持下去。這是頭一次,她把自己逼到牆角,戰鬥力大爆發,不但拿到博士,還是以四年半的驚人速度唸完。

「在職場上,我一直覺得並相信,科學家就是科學家,不分男女。但在家庭裡,世俗的期待還是男女有別的,沒有支援體系支持,女科學家還是相當辛苦,」馬國鳳娓娓道來箇中甘苦,她指出,二十五歲到三十五歲間,孩子小、研究生涯正是奮鬥期,是最艱難的時刻。

2006 年,當馬國鳳準備那篇重要的車籠埔斷層論文時,她同一時間身兼研究、行政(擔任系主任),加上家庭牽絆一併襲來,但她還是咬緊牙一一面對,設定目標,堅持到最後,她再度在置於死地之後,有了突出的學術表現。

-----廣告,請繼續往下閱讀-----

像「車籠埔鑽探計畫」這樣的大型跨國計畫,必須協調多國學者,沒有過人的溝通整合能力難以推動,而當年竟交給了資歷最淺的馬國鳳主導,當時她才四十歲。

切菜也切得很科學,受哥哥啟發的研究路

馬國鳳一方面慶幸前輩的愛護,給她機會,但她不好意思地說:「就拍板分配這麼做、那麼做,大概我是女生,大家都讓著我,事情就這麼成了,哈哈!」或許這就是所謂有領袖魅力 (charisma) 的特質吧。

沒錯,多跟馬國鳳相處一會兒,會發現她時不時有著陽光般的燦爛笑聲,她自稱是無可救藥的樂觀主義者,是那種巴不得把所有事情掏心掏肺說給人聽的老師,她的學生形容:「老師在一樓說話,二樓都聽得到。」馬國鳳就是這樣一個人,說起話來手舞足蹈,頭也跟著擺動,說到興奮處,自己先哈哈大笑;說到低微處,眼中也淚光閃閃,讓聽者完全被她感染。

馬國鳳是怎麼走入這個冷門卻又重要的領域呢?「大概受我哥哥的影響很大吧!」她的大哥好思敏學,是個學者型人物,她回憶:「哥哥唸中學時,在課堂上學到什麼東西,就會告訴我。比如他切菜,切著切著就問:國鳳,你知道為什麼這麼切會比較好切?有什麼物理現象,連倒杯水也會跟我解釋表面張力。」

-----廣告,請繼續往下閱讀-----
切菜也可以討論物理,生活處處是科學。圖/Giphy

大哥上國中時學到英文,也會教還在唸小學的馬國鳳,因此她提早接觸英文,也愛上英文;高中時,她猶豫要唸文組還是理組,大哥告訴她,理組轉文組相對容易,一槌定音,影響了她的一生。

受唸物理系的大哥影響,妹妹自此愛上數學與自然科學。想唸物理系,考大學選填志願,傻呼呼看到中央地球物理系有物理兩個字就填了,而且就考上了。完全沒有想到地球物理跟一般物理差距甚大。

「那個年代誰知道地球科學是什麼啊?」馬國鳳大咧咧地坦白,唸什麼也是緣分。大學聯考時,還沒考完最後一科物理,就自己鬆懈了,開起了慶功宴,「當時覺得好興奮,終於快考完了,只想著要把書全都燒了。」

「囂張」的結果,是最熱愛的物理考得最差,僅略高於低標。考完後,馬國鳳跟老師對答案,物理老師當場臉色鐵青,無比樂觀的她還安慰老師:「老師,考過就算了。」

既來之,則安之。在中央大學時,馬國鳳按部就班,該唸什麼就唸什麼,盡本分不蹺課,仍在班上維持前幾名。

直到大四修習地震學,一向喜歡數學、物理的馬國鳳,看到滿黑板的方程式,有些同學很吃力,她卻好像蜂兒看到花,開心得不得了,當老師在講台上說:「不好意思,寫了很多數學。」她還納悶:「教授幹嘛道歉?」

這門需要學習「波動方程式」、「破裂物理的力學」,結合了數學、物理還有地科知識的學問,讓馬國鳳完全入迷,從此決志要當一個地震學家。

為科學發現狂喜,為人生短暫執著

拿到博士後,馬國鳳已經成為一個對地震研究狂熱的科學家,九二一地震後回校召開地震研究成果記者會,馬國鳳當時只想著:這是重大的科學發現,跟我的研究符合。她陳述成果時喜形於色,下台後學生狐疑地問她:「老師,妳好像太興奮了?」

這時馬國鳳才驚覺,「對科學發現的狂喜」,讓自己忘記了這是場大災難,她也深自反省「地震學」這門災難科學的特殊性。做為「災難的獲利者」,她必須從地震成因的研究中,積極提出防災與減災的建言。

而這場地震,也讓馬國鳳首度震懾於造物者的巨大力量。在霧峰斷層的現場,她有著一次近乎「天啟」的奇特經驗。那天她看著大甲溪裡因地震板塊運動形成的大瀑布時,心中的驚詫讓她不停喃喃自語:「我相信板塊運動,我相信恐龍是會滅絕的!」

弔詭的是,對地震學家而言,「板塊運動」應該是近乎信仰、寫過 N 次的專有名詞。馬國鳳這時才體悟到,「知道跟相信,竟有如此的不同,」這時她才真的感覺到,地球是這麼動盪,人們覺得「不動」,是因為生命短暫。當時馬國鳳暗自下決心,人生短暫,必須做一些特別的東西。

體認到生命短暫,馬國鳳暗自下決心,人生短暫,必須做一些特別的東西。圖/取自書籍《她們,好厲害:台灣之光.18位女科學家改變世界

遇見科學界大師,學習「為科學而科學」

在學術這條路上,馬國鳳屢逢貴人。唸碩士時,她跟著中央研究院王錦華教授做研究,自此,有了第一個學術典範。她記得,王教授常對她說,做科學要想著:「我們可以為人類做什麼?」

申請博士班時,馬國鳳竟然申請到非常難申請的加州理工學院,當時台灣已經有十年沒有人進這所學校。馬國鳳說,收到入學許可時的情形,至今還歷歷在目。她形容:「當我知道要收我了,就從那個走廊頭一路跑到走廊尾,一直『啊──』這樣尖叫,衝到王老師辦公室報喜,說加州理工接受我了,探頭出來看的老師們也直呼不可置信!」

馬國鳳成為該系多年後第一個台灣學生。之後,台灣開始與世界頂尖的加州理工學院,在地震與地體構造研究上密切相連。

王錦華曾給馬國鳳許多第一流的文章閱讀,她從中認識了兩個大師的名字──加州理工學院的金森博雄 (Hiroo Kanamori) 與麻省理工學院 (MIT : Massachusetts Institute of Technology) 的安藝敬一 (Keiiti Aki),這兩位日裔學者,後來也成為她學術路上的貴人。

兩位大有來頭的教授,提攜馬國鳳不餘遺力;九二一大地震後,安藝曾訪台,晚餐時勉勵她:「國鳳,妳現在應該做的,就是把九二一地震所有的訊息整合,寫出妳非常重要的文章。」

「當時我說我會做,但到他過世的時候,我還沒有做完。我就覺得,他交代我的事情我還沒做完,他怎麼可以就過世了,」說到這,一直情緒高昂的馬國鳳突然靜默好一會兒。

在加州理工求學時,馬國鳳拜入另一位大師金森博雄門下,他學術成就斐然,現今地震學界通用測量地震大小的量度,就是他在 1977 年提出的;金森也是世界地震預警制度的重要推動者,日本為世界所稱道的預警制度,就由他奠基。

2005 年發生蘇門答臘大地震,引發大海嘯,讓金森十分懊悔,認為延誤了警告,是地震學家的失誤。因此,他開始研究如何在數分鐘內預警出規模九級的海嘯。這樣的努力讓後來日本三一一海嘯發生時,民眾儘快知道地震及海嘯的可能性而提前疏散。

2004 年蘇門答臘大地震直接影響的全部國家。圖/Wikimedia Commons

馬國鳳曾跟金森說,雖然三一一海嘯不幸造成一萬五千人死亡,但這要是發生在其他地方,死亡人數絕對超過。金森只遺憾地說:「我不喜歡聽到這種話,我們可以做更多。(We can do more.)」就是這種關懷社會的精神,深深影響著馬國鳳。「金森老師是我的人生導師 (mentor),我崇拜他!」她說。

金森曾建議馬國鳳,如果要對社會有更實質的貢獻,應該結合地震學與工程,對社群做出影響,這也成為馬國鳳現在努力的方向。

為了參與社會,少有學術第一線上的學者,像馬國鳳這麼勤於科普演講;用 Google 搜尋,你會發現她在全台包括北、中、南各地做地震教育演講的影片,遍及各高中、大學、活動中心。影片裡,她熱情洋溢地介紹豐富材料,每次到快結束時都焦慮地跟聽眾說:「我還有好多沒講完!」學生私下透露:「其實有的演講,車錢開支都比車馬費高。」

馬國鳳總結兩位大師對自己的影響:「他們不為功名、也不求名利,你會發現他們就是科學家,為科學而科學,就是這麼單純。」她說,他們不但科學研究非常先進,更與「應用」達到平衡,這也成為她追求的典範。

別停下腳步,下一步來研究地震的「稗官野史」吧!

有兩篇論文名列第一流的期刊《自然》與《科學》,馬國鳳自認對學術已有交代;現在手頭上最燙手的任務,是推動台灣地震模型計畫 (Taiwan Earthquake Model),目前已加入全球地震模型組織 (Global Earthquake Model) 這個聯合國世界地震組織的會員。推動這個計畫,需要國家科學委員會跟許多學者支持,處理很多行政事務,相當繁重。

「回到家時我常想,自己沒事找事做!孩子也大了,可以悠閒過生活了,幹嘛去提地震模型計畫啊?」馬國鳳苦笑。

但話鋒一轉,樂觀主義者馬國鳳又彷彿看到陽光,希望台灣走出去的使命感,深深影響了她,「台灣這方面的經驗,是值得全世界學習的。再者,我希望透過模型計畫,整合台灣地質、地震、工程設計;這些領域過去各自為政,但是現在能建立共識,這讓我很感動。」

說著說著,馬國鳳又拋出一個夢想:「我也希望可以做個有關地震的『稗官野史』。例如:1906 年的梅山地震,女性死亡比男性多,就是因為女性裹小腳,相關資料如果整理得齊全,也許能出書,哈哈!」講到高興處,笑容燦爛的馬國鳳又手舞足蹈起來。

看來,馬國鳳即便有一天沒在科研最前線,恐怕也沒有閒下來的時候。

台灣傑出女科學家獎設立於2008年,是台灣第一個專為表彰傑出女科學家、並鼓勵女性參與科學而成立的獎項,由台灣萊雅及吳健雄學術基金會共同主辦。



本文摘自《她們,好厲害:台灣之光.18位女科學家改變世界》,2013 年 12 月,遠見出版。

文章難易度
所有討論 1
PanSci_96
1226 篇文章 ・ 2337 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

5
3

文字

分享

0
5
3
除了蚯蚓、地震魚和民間達人,那些常見的臺灣地震預測謠言
鳥苷三磷酸 (PanSci Promo)_96
・2024/02/29 ・2747字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

災害性大地震在臺灣留下無數淚水和難以抹滅的傷痕,921 大地震甚至直接奪走了 2,400 人的生命。既有這等末日級的災難記憶,又位處於板塊交界處的地震帶,「大地震!」三個字,總是能挑動臺灣人最脆弱又敏感的神經。

因此,當我們發現臺灣被各式各樣的地震傳說壟罩,像是地震魚、地震雲、蚯蚓警兆、下雨地震說,甚至民間地震預測達人,似乎也是合情合理的現象?

今日,我們就要來破解這些常見的地震預測謠言。

-----廣告,請繼續往下閱讀-----

漁民捕獲罕見的深海皇帶魚,恐有大地震?

說到在坊間訛傳的地震謠言,許多人第一個想到的,可能是盛行於日本、臺灣的「地震魚」傳說。

在亞熱帶海域中,漁民將「皇帶魚」暱稱為地震魚,由於皇帶魚身型較為扁平,生活於深海中,魚形特殊且捕獲量稀少,因此流傳著,是因為海底的地形改變,才驚擾了棲息在深海的皇帶魚,並因此游上淺水讓人們得以看見。

皇帶魚。圖/wikimedia

因此,民間盛傳,若漁民捕撈到這種極為稀罕的深海魚類,就是大型地震即將發生的警兆。

然而,日本科學家認真蒐集了目擊深海魚類的相關新聞和學術報告,他們想知道,這種看似異常的動物行為,究竟有沒有機會拿來當作災前的預警,抑或只是無稽之談?

-----廣告,請繼續往下閱讀-----

可惜的是,科學家認為,地震魚與地震並沒有明顯的關聯。當日本媒體報導捕撈深海魚的 10 天內,均沒有發生規模大於 6 的地震,規模 7 的地震前後,甚至完全沒有深海魚出現的紀錄!

所以,在科學家眼中,地震魚僅僅是一種流傳於民間的「迷信」(superstition)。

透過動物來推斷地震消息的風俗並不新穎,美國地質調查局(USGS)指出,早在西元前 373 年的古希臘,就有透過動物異常行為來猜測地震的紀錄!

人們普遍認為,比起遲鈍的人類,敏感的動物可以偵測到更多來自大自然的訊號,因此在大地震來臨前,會「舉家遷徙」逃離原本的棲息地。

-----廣告,請繼續往下閱讀-----

當臺灣 1999 年發生集集大地震前後,由於部分地區出現了大量蚯蚓,因此,臺灣也盛傳著「蚯蚓」是地震警訊的說法。

20101023 聯合報 B2 版 南投竹山竄出蚯蚓群爬滿路上。

新聞年年報的「蚯蚓」上街,真的是地震警訊嗎?

​當街道上出現一大群蚯蚓時,密密麻麻的畫面,不只讓人嚇一跳,也往往讓人感到困惑:為何牠們接連地湧向地表?難道,這真的是動物們在向我們預警天災嗎?動物們看似不尋常的行為,總是能引發人們的好奇與不安情緒。

如此怵目驚心的畫面,也經常成為新聞界的熱門素材,每年幾乎都會看到類似的標題:「蚯蚓大軍又出沒 網友憂:要地震了嗎」,甚至直接將蚯蚓與剛發生的地震連結起來,發布成快訊「昨突竄大量蚯蚓!台東今早地牛翻身…最大震度4級」,讓人留下蚯蚓預言成功的錯覺。

然而,這些蚯蚓大軍,真的與即將來臨的天災有直接關聯嗎?

-----廣告,請繼續往下閱讀-----

蚯蚓與地震有關的傳聞,被學者認為起源於 1999 年的 921 大地震後,在此前,臺灣少有流傳地震與蚯蚓之間的相關報導。

雖然曾有日本學者研究模擬出,與地震相關的電流有機會刺激蚯蚓離開洞穴,但在現實環境中,有太多因素都會影響蚯蚓的行為了,而造成蚯蚓大軍浮現地表的原因,往往都是氣象因素,像是溫度、濕度、日照時間、氣壓等等,都可能促使蚯蚓爬出地表。

大家不妨觀察看看,白日蚯蚓大軍的新聞,比較常出現在天氣剛轉涼的秋季。

因此,下次若再看到蚯蚓大軍湧現地表的現象,請先別慌張呀!

-----廣告,請繼續往下閱讀-----

事實上,除了地震魚和蚯蚓外,鳥類、老鼠、黃鼠狼、蛇、蜈蚣、昆蟲、貓咪到我們最熟悉的小狗,都曾經被流傳為地震預測的動物專家。

但可惜的是,會影響動物行為的因素實在是太多了,科學家仍然沒有找到動物異常行為和地震之間的關聯或機制。

遍地開花的地震預測粉專和社團

這座每天發生超過 100 次地震的小島上,擁有破萬成員的地震討論臉書社團、隨處可見的地震預測粉專或 IG 帳號,似乎並不奇怪。

國內有許多「憂國憂民」的神通大師,這些號稱能夠預測地震的奇妙人士,有些人會用身體感應,有人熱愛分析雲層畫面,有的人甚至號稱自行建製科學儀器,購買到比氣象署更精密的機械,偵測到更準確的地震。

-----廣告,請繼續往下閱讀-----

然而,若認真想一想就會發現,臺灣地震頻率極高,約 2 天多就會發生 1 次規模 4.0 至 5.0 的地震, 2 星期多就可能出現一次規模 5.0 至 6.0 的地震,若是有心想要捏造地震預言,真的不難。 

在學界,一個真正的地震預測必須包含地震三要素:明確的時間、 地點和規模,預測結果也必須來自學界認可的觀測資料。然而這些坊間貼文的預測資訊不僅空泛,也並未交代統計數據或訊號來源。

作為閱聽者,看到如此毫無科學根據的預測言論,請先冷靜下來,不要留言也不要分享,不妨先上網搜尋相關資料和事實查核。切勿輕信,更不要隨意散播,以免造成社會大眾的不安。

此外,大家也千萬不要隨意發表地震預測、觀測的資訊,若號稱有科學根據或使用相關資料,不僅違反氣象法,也有違反社會秩序之相關法令之虞唷!

-----廣告,請繼續往下閱讀-----

​地震預測行不行?還差得遠呢!

由於地底的環境太過複雜未知,即使科學家們已經致力於研究地震前兆和地震之間的關聯,目前地球科學界,仍然無法發展出成熟的地震預測技術。

與其奢望能提前 3 天知道地震的預告,不如日常就做好各種地震災害的防範,購買符合防震規範的家宅、固定好家具,做好防震防災演練。在國家級警報響起來時,熟練地執行避震保命三步驟「趴下、掩護、穩住」,才是身為臺灣人最關鍵的保命之策。

延伸閱讀

討論功能關閉中。

0

9
3

文字

分享

0
9
3
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

討論功能關閉中。