Loading [MathJax]/jax/output/HTML-CSS/config.js

0

0
0

文字

分享

0
0
0

常常跟著指標迷路?「尋路」設計原理大解密

活躍星系核_96
・2018/06/19 ・5028字 ・閱讀時間約 10 分鐘 ・SR值 597 ・九年級

  • 文/施登騰 │ 中國科技大學互動娛樂設計系助理教授
「全台最大迷宮」台北車站有無數位旅客指點迷津的指示牌,你有想過它們是如何被設計出來的嗎? 圖/Asacyan [CC-BY SA 3.0] via wikipedia

「尋路」(Wayfinding)是 Kevin Lynch 在 《The Image of the City 》(1960)這本書中所提出的,談的是利用建築的環境元素(Environment Elements)協助訪客在複雜空間中成功導航。此篇直譯Wayfinding為「尋路」,但事實上也能譯為「導視」。也就是說,如果從使用者觀點就是「尋路」功能,若以設計者角度就是「導視」設計。而本文所談的主要是「指示牌 (Signage)」設計的功能檢視。

「尋路」設計有哪些分類?

「尋路」可以說是視覺設計上可以好好用來練功的一個有趣、重要、且又嚴肅的課題,說誇張些,這絕對是使用者導向/中心(User Oriented/Centred Design)的設計手法。「指示牌 Signage」是在許多公共空間中都很常見的視覺設計成品。無論是開車到旅遊景點,或者身處於台北火車站、百貨公司……等公共空間,在行進的途中,都會需要指示。而無論是在高速公路、省道、台北車站大廳,都會看到指標;這些指標通常都是簡潔的視覺化圖文,基本上分為下面幾類,在本文稱為「尋路資訊視覺設計系統」:

  • 資訊標示(Information Signs):提供更細節的圖文資訊,以利使用者閱讀、參考其內容。像是提款機上方或機體上的「功能列表」、百貨公司 Kiosk 導覽機螢幕上各樓層「商家列表」、或者高速公路上標示距離。
  • 方向標示(Direction Signs):提供圖像指示方向(通常是箭頭),以利立即判斷後續的行進方向。像是火車站大廳標示台北捷運站、桃園機捷站方向的「箭頭」,或者是停車場懸掛或地板上地面指示行進路線的「箭頭」。
  • 識別標示(Identification Signs):提供圖像與名稱識別,以利立即辨別確定目標地點。像是百貨公司中的「電梯」、「電扶梯」、「廁所」標示,或者是提款機上方或機體上各家銀行的「企業標誌與名稱」。
  • 警告標示(Warning Signs):提供警告標誌訊息,以作示警用途,通常在設計上會掌握通用、易懂、鮮明等特點。
即使上圖是國外使用的路標,但設計原則都相同,辨識方式亦相通。圖/shutterstuck

這些不同類別的圖文指標,都是協助使用者「取得必要服務」或「到達想去地點」的視覺設計成果(設計簡潔易懂有效益的標示真的不容易)。相信大家都有經驗與體會,那就是這些指標並非總能提供有效的協助。所以說,問題到底在哪裡?這篇分享就是希望透過這部分去探討清楚。

越大的空間越容易迷路:指標如何設計?

基本上「尋路(Wayfinding)」在設計概念與做法上是被視為一種「資訊設計系統(Informative Design System)」是為了創造「環境易讀性(Environment Legibility)」,也就是專注在如何透過視覺設計,提供使用者路線指標(設計端),並強化其空間經驗的理解(使用端)。這系統相當的重要,因為「設計端」與「使用端」必須在摒除認知與資訊落差的情況下,才能讓「資訊設計系統」 成品達到應有的效果。

-----廣告,請繼續往下閱讀-----

因為一旦有了不必要的權傾,出現落差,嚴重者會無法遂行使用目的,像是:無法找到地點、無法取得服務等等;輕者至少會影響到達成/取得的時間,像是:多花了半小時,多走了 500 公尺。這些情況都是「設計端」與「使用端」都不願意看到的。

在概念上,「尋路」既然是種空間經驗的理解與解決能力,所以在空間中的「環境元素」就特別重要。在應用上,必須理出「尋路」應用與設計上的共用元素,才能有效橋接「設計端」的用意與「使用端」的用途。Kevin Lynch 在 「The Image of the City 」(1960)這本書將環境元素分為以下幾項:

  • 路徑(Paths):在建築中的走廊、通道、電梯,在環境中的街道、人行道、高速公路等等可以提供通行的元素。。
  • 邊緣(Edges):在建築中的牆壁,在環境中的圍牆、河流等造成阻礙無法通行的元素。
  • 地區(Districts):在建築中規劃的特定區域或樓層,在環境中的特定區域,像是東區、西門町、士林夜市等。
  • 節點(Nodes):在建築中的轉角、大廳,在環境中的交叉路口、集合場所等等行進路徑的暫留處。
  • 地標(Landmarks):明顯可辨識,可在遠處提供定位參考的結構或建築。

相信大家都同意,對於許多大型公共空間、商業空間來說,如何提供適當的引導是真的很重要的。應該沒人會想在不熟悉的空間中迷路,也沒有商家能承受顧客迷途無法來店消費的負面效應。然而「尋路難度」卻恰好與「空間尺寸」、「路線複雜」、「導引地點數量」是成正相關的,也就是空間越大、路線越複雜、導引地點越多,尋路難度就越高,這個邏輯與事實其實不難懂。

辦公大樓樓層常見的識別標示、方向標示、與資訊標示。圖片來源

將尋路應用在互動設計系教學:自助導引設計

此外,若換個角度看這個設計用途,試著從互動系教學設計上去看「尋路」對於教與學的功能。那麼,重點會落在「自助導引設計(Self-Guided Tour Design)」上,無論是用於導覽路徑或者是展示動線,視覺設計的功能必須要有特定的規劃,將尋路作為重要的設計技術觀念,或將此概念導入博物館的展示規劃中。

-----廣告,請繼續往下閱讀-----

之所以會有這樣的概念,主要是基於以下幾個理由:

  • 以「尋路」技術與概念為主體的設計,與許多場域的「導覽動線」的規劃概念是相通的。
  • 「尋路」技術與概念很適合作為設計訓練課程,特別是在「標示視覺設計(Sinage Visual Design)」的教學與測試。

在展覽場域實施「尋路」式視覺設計前,也必須將空間進行拆解,分析並理出其環境元素。Kevin Lynch 的環境元素,應用在展場空間識別與動線規劃中的表現:

  • 路徑(Paths):在展場中的動線、通道等等可以提供通行的元素。
  • 邊緣(Edges):在展場中的牆壁、展品區等阻礙或無法通行的元素。
  • 地區(Districts):在展場中的特定主題展區。
  • 節點(Nodes):在展場中的展品、展櫃、展架等,在展區被設定暫留欣賞展覽之地點。
  • 地標(Landmarks):大型、獨立、明顯可辨識的展間或展櫃,可在遠處提供定位參考。

將「尋路」運用於導覽規劃

而能具體實現「展場動線規劃」與「展覽故事內容」的,無疑就是「導覽」,「導覽」就像是敘事(Narrative/Storytelling)的引導式線性架構,也具有「尋路」的特徵。Othman、Petrie 與 Power (2013)的研究將目前常見的導覽類型分為「隨選型(free tour)」與「引導型(guided tour)」兩類,而且透過實驗,結果顯示「隨選型」較具有互動品質(quality of interaction);而「引導型」則有較佳的學習性與控制性(learnability and control)。

所以在導覽實施上,因為「引導型」架構具起始與結束的故事軸引導效果,所以適合主控路線行進,但在導覽歷程中,則應適時導入「隨選型」形式,由觀者自由嘗試、探索。如此才能兼擅兩種形式的優點。

-----廣告,請繼續往下閱讀-----

其實展覽就像說故事,一個段落,一個情節,就像由幾個別具興味的「節點」,而順著情節發展移動,留下的足跡就串連成「故事線」,這隱隱然的「故事線」其實既是策展單位心中的「展覽動線」。而且從結構分析的角度來看,故事也是可以被結構化的。

ML Ryan (2001)在《Narrative as Virtual Reality: Immersion and Interactive in Literature and Electronic Media》一書中提出九種「具尋路設計之互動敘事結構」,雖然 Ryan 的理論主要是用來架構在故事敘事理論形式上的,但是其中所見的空間與路徑分析,也很適合做為具有「路徑」、「節點」等元素的「展區導覽」去使用。像是 Ryan 所提出的迷宮(The Maze)架構,在他的「時間敘事」與「空間敘事」兩大分類上,是屬於偏向空間類的,而且此結構可自成一個迴路,使用者可雙向來回,且有設定開始與目標機制,是比較具有任務性質的導覽動線結構。而史詩漫遊(Epic Wondering)架構則是開放式的空間體驗,比較不具有起始點限制,可任意地在空間中遊走體驗。

這樣的敘事架構形式對於「展區動線規劃」與「尋路視覺設計」都有幫助的。前面所談的「標示 Signage」設計與應用其實都是重要的輔助工具。

Ryan 所提出的「史詩漫遊」架構。圖/WeiXuan_Zhao
Ryan 所提出的「史詩漫遊」架構。圖/WeiXuan_Zhao

此外,就像前面提到的「迷宮」互動敘事架構,在密室脫逃的設計上,也有學者做過結構分析,就像下面的圖。共分為「開發式(Open)」、「序列式(Sequential)」、「路徑式(Path-Based)」,其共通的重點就是指向式的單一終點/出口,透過密室脫逃玩家一一突破各種設計過的謎題、機關去找到最後出口或破解所有謎團。

密室脫逃的路線設計架構分析圖。圖/Huonepakopelin projektinhallinta

如果套用 Kevin Lynch 所提出的環境元素,並且從「尋路」為目的之「資訊設計系統 Informative Design System」檢視下面所見到的密室脫逃架構。就會發現密室脫逃架構其實是在「路徑」的每個「節點」設計上,試圖把「節點」變成「牆壁」,反向的阻礙「尋路」目的的遂行,這是相當有趣的差異。

-----廣告,請繼續往下閱讀-----

將「尋路」觀念導入展場設計細節

「資訊標示」、「方向標示」、「識別標示」、「警告標示」等等「尋路資訊視覺設計系統」是「尋路」用以協助使用者去強化空間理解的視覺標示類別,這些不同類別的標示透過視覺設計手段完成,也肩負不同的資訊指示功能。但是目前在使用上,卻往往因為少了空間環境元素的思考,所以常無法達到協助使用者去理解空間、找到路線的設計目地。

本文以前面所列出的「Kevin Lynch環境元素對於展場空間識別與動線規劃的應用」去分析展區中的「環境元素」(「路徑」、「邊緣」、「地區」、「節點」、「地標」),並且確認「展覽動線/故事線/互動敘事結構」等等所架構出的「線型路線結構」,再將「資訊標示」、「方向標示」、「識別標示」、「警告標示」這幾類視覺圖文標示的製作成果去使用在遂行「尋路」目的上。

「展場視覺設計」項目條列:

  • 資訊標示(Information Signs):在展場提供更細節的圖文資訊,以利使用閱讀與參考其內容。像是展品說明、展覽概述、作者介紹等等。
  • 方向標示(Direction Signs):提供圖像指示方向(通常是箭頭),或是不同展區空間的位置與方向指引。一般展場通常比較少提供方向標示,但適度的「節點(展品)」與「節點(展品)」的引導是有必要的。
  • 識別標示(Identification Signs):提供圖像與名稱識別,以利立即辨別確定展品、展區、主題等內容。
  • 警告標示(Warning Signs):提供警告標誌訊息,以作示警用途。像是展區中的「請勿碰觸」、「請勿越線」、「請勿照相」等標示。

以「尋路」讓參觀導覽者跟隨故事路徑前進

在本文沒有特別碰觸的,是「尋路」的一項重要功能與目的,那就是追求「最短路徑抵達」,要找出需時最短、路線最近的最佳路線。各位點開 Google Map 應用程式,輸入兩個地點,就會得到「需時短、路線近」的幾個路徑選擇。

-----廣告,請繼續往下閱讀-----

而未特別提出的原因,就是因為「參觀展覽」在乎的是「歷時式空間體驗」,也就是說,展覽動線雖然也同樣具有「空間性」與「時間性」,但前面所提的隱隱然的「展覽動線/故事線/互動敘事結構」並非只是追求「空間移動最近」、「時間歷時最短」的優勝路線。因此「尋路」概念與原則施作展區的動線與路徑規劃上,更像是自我在展區地圖中移動,透過與展品間對話足跡,去串聯出一個專屬路線,有自己設定的「起點」與「終點」。

而在「展場設計」上導入「尋路機制」,目的也就在於讓參觀者的「參觀行進路線」可以更接近策展者的「展覽動線/故事線/互動敘事結構」。就像如下的等式:

參觀者的「參觀行進路線」=策展者的「展覽動線/故事線/互動敘事結構」

個人以為具體來說,兼善「引導型導覽」與「隨選型導覽」兩者優點的「展覽動線/故事線/互動敘事結構」,在導覽上效果較佳。就如前面所說:

「『隨選型』較具有互動品質(quality of interaction);而『引導型』則有較佳的學習性與控制性(learnability & control)。所以在導覽實施上,因為『引導型』架構具起始與結束的故事軸引導效果,所以適合主控路線行進,但在導覽歷程中,則應適時導入『隨選型』形式,由觀者自由嘗試、探索。如此才能兼擅兩種形式的優點。」





-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。