0

0
0

文字

分享

0
0
0

如何利用電磁波看穿建築物、橋樑等「混凝土結構物」的結構?

活躍星系核_96
・2018/02/14 ・3281字 ・閱讀時間約 6 分鐘 ・SR值 572 ・九年級

  • 文/游子揚 │ 美國麻州大學洛爾分校(University of Massachusetts Lowell)土木與環境工程學系副教授/副系主任
水泥結構物已經充滿我們的都市生活。 圖/MikeCleggPhoto @Pixabay

自從赫茲(Heinrich Hertz)在十九世紀末以實驗證明馬克士威(James Clerk Maxwell)電磁波動方程式之後,電磁波在科學與工程方面的各種廣泛應用,已經完全改變了我們理解世界的方式、日常生活的方式以及社會文明的演進。從天體物理學、手機通訊到家用微波爐,我們的生活已經幾乎不能沒有電磁波的存在。在還沒有更精確的研究證明過度使用電磁波對人體有害之前,可預期我們的生活中將會有更多與電磁波有關的相關應用。

而在土木工程領域裡,也有許多與電磁波有關的應用,例如:早期的工程材料檢測與地質探測,還有現今的遙感量測(remote sensing)、結構健康監測(structural health monitoring, 簡稱SHM)與非破壞性檢測(nondestructive testing/evaluation, 簡稱NDT/E)等等。電磁波之所以能夠適用於土木工程結構的原因在於,大部分的土木工程材料屬於介電材料(dielectric material),例如波特蘭水泥混凝土(Portland cement concrete)、瀝青材料(bituminous material)以及岩石土壤,電磁波能夠在這些材料中傳導、穿透以及散射,這樣的特性提供了土木工程師與研究人員瞭解土木工程材料與結構的不同視角。

什麼是混凝土結構物?

在深入了解電磁波應用在土木材料之前,我們先來認識什麼是「混凝土結構物」?

顧名思義,混凝土結構物就是指利用混凝土所建造的工程結構物,例如:房屋、橋樑、隧道、機場、管線、水壩等等。這裡所謂的「混凝土」指的不是歷史上的埃及混凝土(約公元前 2700 年)、中國混凝土(約公元前 1600 年)、亞述混凝土(約公元前 1100 年)、希臘混凝土(約公元前 600 年)、巴比倫混凝土(約公元前 400 年)或是羅馬混凝土(約公元前 230 年)。而是指由約翰 ‧ 斯密頓(John Smeaton,1724~1792)、詹姆斯 ‧ 弗洛斯特(James Frost,1780~1840)、勘維斯 ‧ 懷特(Canvass White,1790~1834)、約瑟 ‧ 艾斯普丁(Joseph Aspdin,1778~1855)、艾薩克 ‧ 查爾斯(Isaac Charles Johnson,1811~1911)、大衛 ‧ 賽勒(David Saylor,1827~1884)等人所研發的「波特蘭水泥」所形成的「波特蘭混凝土」。其名稱「波特蘭」的由來,是英國人 Joseph Aspdin 所定,源自於這種人造石與英國南部波特蘭島上的石灰石顏色十分相近的緣故。

-----廣告,請繼續往下閱讀-----
幾位對波特蘭混凝土的發明與製造有貢獻的土木工程師。由左至右分別為:詹姆斯 ‧ 弗洛斯特(James Frost,1780~1840)、勘維斯 ‧ 懷特(Canvass White,1790~1834)、約瑟 ‧ 艾斯普丁(Joseph Aspdin,1778~1855)、艾薩克 ‧ 查爾斯(Isaac Charles Johnson,1811~1911)、大衛 ‧ 賽勒(David Saylor,1827~1884)。 圖/作者提供

波特蘭混凝土的組成包括波特蘭水泥、拌合水(或可飲用的水)、細骨材(砂子)、粗骨材(礫石)、天然或是人工的添加物。當把自來水加入波特蘭水泥並開始攪拌之後,會產生水泥的水化反應(cement hydration);水化反應所形成的水泥漿(cement paste)在黏結粗細骨材之後,就形成了混凝土。而添加物的作用在於改善混凝土的各種性質,從施工、養護、強化、防蝕、到抗凍等等。波特蘭混凝土是世界上使用最多的工程材料,不過它的製程也會產生大量的二氧化碳;根據美國環保署(EPA)的估計,製造一公噸的混凝土會產生大約一公噸的二氧化碳。

波特蘭混凝土以及其主要組成材料。 圖/Concrete Education

由於混凝土的抗張強度(tensile strength)僅有其抗壓強度(compressive strength)的百分之七到百分之十一左右,通常土木工程師會在混凝土當中加入鋼筋,以提升混凝土的承載能力。這種複合結構(composite structure),也就是所謂的鋼筋混凝土(reinforced concrete 或 RC)結構。在橋梁工程上,土木工程師會另外使用高強度鋼纜或鋼索,變成所謂的預力混凝土(prestressed concrete 或 PC)結構。大部分的混凝土結構物都有使用鋼筋或鋼纜,僅有少數的混凝土結構不使用鋼筋或鋼纜。

鋼筋混凝土樑結構與預力混凝土樑結構示意圖。 圖/左:by Håvard Vasshaug。右:by Eriksson Software

如何看穿混凝土結構物?透地雷達 v.s. 成像雷達

由於土木工程結構物大多都是為社會大眾服務的公共工程,一旦突然損壞很可能會造成人員傷亡、財產損失以及昂貴的社會成本,因此定期維修保養是非常重要的;如果能看穿混凝土結構物的話,便能讓土木工程師掌握結構物的狀態,以便進行及時、有效的維護,避免結構物的突然損壞。

目前大部分的土木工程檢測科技仍停留在表面方法(例如目測)、局部性的內部探測(例如埋入式的單點感測器)或是超音波探傷檢測,而利用電磁波的方法主要是透地雷達(ground penetrating radar 或 GPR)與成像雷達(imaging radar)。在成像雷達的領域中,有一個相對較新的技術稱為「人工透鏡雷達(synthetic aperture radar 或 SAR)」。與透地雷達相比,成像雷達的優點在於體積較為輕巧,解析度可透過數值方式加強,以及非常適合遠距離的遙感測量。

-----廣告,請繼續往下閱讀-----
透地雷達(左)與人工透鏡雷達(右)在鋼筋混凝土橋版上的應用範例。 圖/作者提供

人工透鏡雷達看穿混凝土結構物的原理,是利用從不同位置上採集到的反射雷達訊號,進行影像疊加的處理。如此一來,可以提升雷達影像的音噪率(signal to noise ratio 或 SNR),增加探測底層損傷的成功率。與傳統的透地雷達比較,人工透鏡雷達的解析度可透過增加雷達的移動距離(增加不同位置的收取到的訊號)、增加頻寬(bandwidth)以及提高頻率(減低波長)來達成。這些彈性讓人工透鏡雷達比傳統透地雷達,在土木工程領域中的各式各樣的探測問題應用上,顯得更有競爭力。

不過也不是事事盡如人意:成像雷達的成功必須建立於在對於混凝土結構的充分瞭解(例如材料性質、內部組成)之上,以及半經驗式的訊號處理技術。透地雷達雖然比較直覺化,但是在對於深層的混凝土結構探測上,訊號分析幾乎完全是經驗式的判別,而且需要體積龐大的設備,有時也會造成檢測上極大的不便,甚至根本無法進行檢測。遠距電磁成像是目前土木工程結構檢測當中,一個非常前衛的技術。

電磁學在混凝土結構物上的挑戰與未來應用

混凝土結構物是一種多孔多相的土木工程複合結構,而電磁波與多孔多相介質的互動也是電磁學內較新的領域。要進行遠距電磁成像在混凝土結構物上的研究,基本上就是一項跨學科研究,需要下列學科的訓練:混凝土材料學、結構設計、電磁學與電磁散射理論、遙感測量、 成像理論以及介電理論等等。

能夠看穿混凝土的技術,不僅可以讓檢測大量大型土木工程結構物的工作變得更有效,如果與其他機械化的自動裝置(例如無人機)結合,更能夠提升工作效率。一旦效率提升,對於土木工程結構物的資產管理能夠減少不必要的緊急重建,也讓使用土木工程結構物的社會大眾之人身安全更有保障。此外,同樣的技術也可以應用在材料檢測,工程鑑定,地層探測,甚至考古學等領域。

-----廣告,請繼續往下閱讀-----

在未來科學研究方向上,像混凝土這樣一個擁有數千年文化的工程材料,我們目前對於它的長期行為還是沒有足夠的瞭解。我們並不完全清楚它的微觀結構在不同環境狀態(力學、溫度、濕度、化學以及輻射等)的共同改變下,會有怎樣的變化。還有,混凝土材料的微觀結構改變,又會造成怎樣的結構物行為變化。

土木工程從古羅馬時代發展至今,隨著人類文明愈趨複雜,面臨越來越嚴峻的挑戰。 圖/martieda @Pixabay

土木工程雖然是歷史最悠久的工程學科之一(源自羅馬帝國時期,與軍事工程同壽),但是土木工程師們所面臨的挑戰卻越來越艱鉅。社會上需要更高的建築物、更長的橋梁、更深的隧道與管道、更乾淨的空氣與水、更堅固耐久的工程材料、更環保(省能源,低碳排放量)的工程材料、更經濟的工程材料、更有效率的施工管理以及更安全的施工方式。在土木工程的領域當中,還有很多有意思,有挑戰性的研究問題,對於每個時代的人類文明都有重要價值,等待這一代與下一代的頂尖頭腦來解決。

延伸閱讀、參考資料:

  • Debye, P. (1929), Polar Molecules, The Chemical Catalog Company, New York, NY.
  • Kong, J. A. (2000). Electromagnetic Wave Theory, EMW Publishing, Cambridge, MA.
  • Bungey, J. H. (2004). “Sub-surface radar testing of concrete: A review.” Constr. Build. Mater., 18(1), 1–8.
  • Mehta, P.K., and P.J.M. Monteiro (2014), Concrete — Microstructure, Properties, and Materials, 4th  ed., McGraw-Hill, New York, NY.
  • Yu, T, J Owusu Twumasi, V Le, Q Tang, N D’Amico (2017), Surface and Subsurface Remote Sensing of Concrete Structures using Synthetic Aperture Radar Imaging, Journal of Structural Engineering, ASCE, 143(10); 1-11, doi: 10.1061/(ASCE)ST.1943-541X.0001730
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 127 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

2
0

文字

分享

0
2
0
地震之島的生存法則!921地震教育園區揭開台灣的防災祕密
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/20 ・4553字 ・閱讀時間約 9 分鐘

為什麼台灣會像坐在搖搖椅上,總是時不時地晃動?這個問題或許有些令人不安,但卻是我們生活在這片土地上的現實。根據氣象署統計,台灣每年有 40,000 次以上的地震,其中有感地震超過 1,000 次。2024年4月3日,花蓮的大地震發生後,台灣就經歷了超過 1,000 次餘震,這些數據被視覺化後形成的圖像,宛如台北101大樓般高聳穿雲,再次引發了全球對台灣地震頻繁性的關注。

地震發生後,許多外國媒體擔心半導體產業會受影響,但更讓他們稱奇的是,台灣竟然能在這麼大的地震之下,將傷害降到這麼低,並迅速恢復。不禁讓人想問,自從 25 年前的 921大地震以來,台灣經歷了哪些改變?哪些地方可能再發生大地震?如果只是遲早,我們該如何做好更萬全的準備?

要找到這些問題的答案,最合適的地點就在一座從地震遺跡中冒出的主題博物館:國立自然科學博物館的 921地震教育園區。

圖:跑道捕捉了地震的瞬間 / 圖片來源:劉志恆/青玥攝影

下一個大地震在哪、何時?先聽斷層說了什麼

1999年9月21日凌晨1點47分,台灣發生了一場規模7.3的大地震,震央在南投縣集集鎮,全台 5 萬棟房子遭震垮,罹難人數超過 2,400 人。其中,台中霧峰光復國中校區因車籠埔斷層通過,地面隆起2.6公尺,多棟校舍損毀。政府決定在此設立921地震教育園區,保留這段震撼人心的歷史,並作為防災教育的重要基地。園區內兩處地震遺跡依特性設置為「車籠埔斷層保存館」和「地震工程教育館」。

-----廣告,請繼續往下閱讀-----

車籠埔斷層保存館建於原操場位置,為了保存地表破裂及巨大抬升,所以整體設計不採用樑柱結構,而是由82根長12公尺、寬2.4公尺、重約10噸的預鑄預力混凝板組成,外觀為曲線造型,技術難度極高,屬國內外首見,並榮獲多項建築獎。而地震工程教育館保留了原光復國中受損校舍,讓民眾親眼見證地震的驚人破壞力,進一步強調建築結構與安全的重要性。毀損教室旁設有由園區與「國家地震工程研究中心」共同策劃的展示館,透過互動展示,讓參觀者親手操作,學習地震工程相關知識。

國立自然科學博物館地質學組研究員蔣正興博士表示,面積上,台灣是一個狹長的小島,卻擁有高達近4000公尺的山脈,彰顯了板塊激烈擠壓、地質活動極為活躍的背景。回顧過去一百年的地震歷史,從1906年的梅山地震、1935年的新竹-台中地震,到1999年的921大地震,都發生在台灣西部,與西部的活動斷層有密切關聯,震源位於淺層,加上人口密度較高,因此對台灣西部造成了嚴重的災情。

而台灣東部是板塊劇烈擠壓的區域,地震震源分佈更廣。與西部相比,雖然東部地震更頻繁,但由於人口密度相對較低,災情相對較少。此外,台灣東北部和外海也是地震多發區,尤其是菲律賓海板塊往北隱沒至歐亞板塊的隱沒地震帶,至沖繩海槽向北延伸,甚至可能影響到台北下方,發生直下型地震,這種地震因震源位於城市正下方,危害特別大,加上台北市房屋非常老舊,若發生直下型地震,災情將非常嚴重。

除了台北市,蔣正興博士指出在台灣西部,我們特別需要關注的就是彰化斷層的影響,該斷層曾於1848年發生巨大錯動。此外,我們也需要留意西南部的地震風險,如 1906 年的梅山地震。此兩條活動斷層距今皆已超過 100 年沒活動了。至於東部,因為存在眾多活動斷層,當然也需要持續注意。

-----廣告,請繼續往下閱讀-----

我們之所以擔心某些斷層,是因為這些區域可能已經累積了相當多的能量,一旦達到臨界點,就會釋放,進而引發地震。地質學家通常會沿著斷層挖掘,尋找過去地震的證據,如受構造擾動沉積物的變化,然後透過定年技術來確定地震發生的時間點,估算出斷層的地震週期,然而,這些數字的計算過程非常複雜,需要綜合大量數據。

挑戰在於,有些斷層的活動時間非常久遠,要找到活動證據並不容易。例如,1906年的梅山地震,即使不算久遠,但挖掘出相關斷層的具體位置仍然困難,更不用說那些數百年才活動一次的斷層,如台北的山腳斷層,因為上頭覆蓋了大量沉積物,要找到並研究這些斷層更加困難。

儘管我們很難預測哪個斷層會再次活動,我們仍然可以預先對這些構造做風險評估,從過往地震事件中找到應變之道。而 921 地震教育園區,就是那個可以發現應變之道的地方。

圖:北棟教室毀損區 / 圖片來源:劉志恆/青玥攝影

921 後的 25 年

在園區服務已 11 年的黃英哲擔任志工輔導員,常代表園區到各地進行地震防災宣導。他細數 921 之後,台灣進行的六大改革。制定災害防救法,取代了總統緊急命令。修訂了建築法規,推動斷層帶禁限建與傳統校舍建築改建。組建災難搜救隊伍,在面對未來災害時能更加自主應對。為保存文化資產,增設了歷史建築類別,確保具有保存價值的建築物得到妥善照料。

-----廣告,請繼續往下閱讀-----

最後,則是推行防災教育。黃英哲表示,除了在學校定期進行防災演練,提升防災意識外,更建立了921地震教育園區,不僅作為教育場所,也是跨部門合作的平台,例如與交通部氣象署、災害防救辦公室、教育部等單位合作,進行全面的防災教育。園區內保留了斷層線的舊址,讓遊客能夠直觀地了解地震的破壞力,最具可看性;然而除此之外,園區也是 921 地震相關文物和資料的重要儲存地,為未來的地震研究提供了寶貴的資源。

堪稱園區元老,在園區服務將近 19 年,主要負責日語解說工作的陳婉茹認為,園區最大的特色是保存了斷層造成的地景變化,如抬升的操場和毀壞的教室場景,讓造訪的每個人直觀地感受地震的威力,尤其是對於年輕的小朋友,即使他們沒有親身經歷過,也能透過這些真實的展示認識到地震帶來的危險與影響。

陳婉茹回憶,之前有爸媽帶著小學低年級的小朋友來參觀,原本小朋友並不認真聽講,到處跑來跑去,但當他看到隆起的操場,立刻大聲說這他在課本看過,後來便聚精會神地聽完 40 分鐘的解說。

圖:陳婉茹在第一線負責解說工作 / 圖片來源:921地震教育園區

除了每看必震撼的地景,園區也透過持續更新策展,邀請大家深入地震跟防災的各個面向。策展人黃惠瑛負責展示設計、活動規劃、教具設計等工作。她提到,去年推出的搜救犬特展和今年的「921震災啓示展」與她的個人經歷息息相關。921 大地震時的她還是一名台中女中的住宿生,當時她儘管驚恐,依舊背著腿軟的學姊下樓,讓她在策劃這些展覽時充滿了反思。

-----廣告,請繼續往下閱讀-----

在地震體驗平臺的設計中,黃惠瑛強調不僅要讓觀眾了解災害的破壞力,更希望觀眾能從中學到防災知識。她與設計師合作,一樓展示區採用了時光機的概念,運用輕鬆、童趣的風格,希望遊客保持積極心態。二樓的地震體驗平臺結合六軸震動臺和影片,讓遊客真實感受921地震的情境。她強調,這次展覽的目標是全民,設計上避免了血腥和悲傷的元素,旨在讓觀眾帶著正向的感受離開,並重視防災意識。

圖:地震體驗劇場 / 圖片來源:921地震教育園區

籌備今年展覽的最大挑戰是緊迫的時間。從五月開始,九月完成,為了迅速而有效地與設計師溝通,黃惠瑛使用了AI工具如ChatGPT與生成圖像工具,來加快與設計師溝通的過程。

圖:黃惠瑛與設計師於文件中討論設計/ 圖片來源:921地震教育園區

蔣正興博士說,當初學界建議在此設立地震教育園區,其中一位重要推手是法國地質學家安朔葉。他曾在台灣指導十位台灣博士生,這些博士後來成為地質研究的中堅力量。1999年921大地震後,安朔葉教授立刻趕到台灣,認為光復國中是全球研究斷層和地震的最佳觀察點,建議必須保存。為紀念園區今年成立20週年,在斷層館的展示更新中,便特別強調安朔葉的貢獻與當時的操場圖。

此外,作為 20 週年的相關活動,今年九月也將與日本野島斷層保存館簽署合作備忘錄(MOU),強化合作並展示台日合作歷史。另一重頭戲則是向日本兵庫縣人與自然博物館主任研究員加藤茂弘致贈感謝狀,感謝他不遺餘力,長期協助園區斷層保存館的剖面展品保存工作。

-----廣告,請繼續往下閱讀-----
右圖:法國巴黎居禮大學安朔葉教授。左圖:兵庫縣立人與自然博物館主任研究員加藤茂弘
/ 圖片來源:921地震教育園區

前事不忘,後事之師

盡力保存斷層跟受創校舍,只因不想再重蹈覆徹。蔣正興博士表示,921地震發生在車籠埔斷層,其錯動形式成為全球地質研究的典範,尤其是在研究斷層帶災害方面。統計數據顯示,距離車籠埔斷層約100公尺內,住在上盤的罹難率約為1%,而下盤則約為0.6%。這說明住在斷層附近,特別是上盤,是非常危險的。由於台灣主要是逆斷層活動,這一數據清楚告訴我們,在上盤區域建設居住區應特別小心。

2018年花蓮米崙斷層地震就是一個例證。

在921地震後,政府在斷層帶兩側劃設了「地質敏感區」。因為斷層活動週期較長,全球大部分地區難以測試劃設敏感區的有效性,但台灣不同,斷層活動十分頻繁。例如 1951 年,米崙斷層造成縱谷地震,規模達 7.3,僅隔 67 年後,在 2018 年再次發生花蓮地震,這在全球是罕見的,也因此 2016 年劃設的地質敏感區,在 2018 年的地震中便發現,的確更容易發生地表破裂與建築受損,驗證了地質敏感區劃設的有效性。

圖:黃英哲表示曾來園區參訪的兒童寄來的問候信,是他認真工作的動力 / 圖片來源:921地震教育園區

在過去的20年裡,921地震教育園區不僅見證了台灣在防災教育上的進步,也承載著無數來訪者的情感與記憶。每一處地震遺跡,每一項展示,都在默默提醒我們,那段傷痛歷史並未走遠。然而,我們對抗自然的力量,並非源自恐懼,而是源自對生命的尊重與守護。當你走進這座園區,感受那因地震而隆起的操場,或是走過曾經遭受重創的教室,你會發現,這不僅僅是歷史的展示,更是我們每一個人的責任與使命。

-----廣告,請繼續往下閱讀-----

來吧,今年九月,走進921地震教育園區,一起在這裡找尋對未來的啓示,為台灣的下一代共同築起一個更堅固、更安全的家園。

圖:今年九月,走進921地震教育園區 / 圖片來源:劉志恆/青玥攝影

延伸閱讀:
高風險? 家踩「斷層帶、地質敏感區」買房留意
「我摸到台灣的心臟!」法國地質學家安朔葉讓「池上斷層」揚名國際
百年驚奇-霧峰九二一地震教育園區|天下雜誌

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
用 LED 燈傳資料?探秘可見光通訊的前世今生
數感實驗室_96
・2024/06/22 ・768字 ・閱讀時間約 1 分鐘

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

今天我們來聊聊一種超酷的通信技術——用 LED 燈來傳遞訊息。

你可能會疑惑,LED 燈怎麼能傳數據?其實,這背後的原理並不難理解。無線電波是電磁波的一種,而 LED 發出的「可見光」也是電磁波的一部分,只是頻率更高。既然都是電磁波,那用光來通信似乎也很合理。

光通信並不是新鮮事。早在周朝,人們就用烽火台來傳遞戰情;我們熟悉的發明家貝爾也發明過光電話(Photophone),且 1880 年 4 月 1 日,貝爾還成功地用光電話在 200 多公尺的距離上實現了通信。

-----廣告,請繼續往下閱讀-----

然後?就沒有然後了,光通信技術沉寂了一百多年,直到太空通信中找到了新的用途。

可見光通訊帶來了通信技術的全新篇章。當然,我們也要提到,像遙控器和一些太空通信其實用的是紅外線,但這些都和可見光屬於同一大類——電磁波通信。所以,嚴格來說,可見光通訊也是電磁波通信的一部分。

未來的世界,燈光不僅僅是照明工具,更是我們連接信息世界的橋樑。

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

參考資料

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 50 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

4
2

文字

分享

0
4
2
一卡在手便利無窮,悠遊卡的設計原理——《我們的生活比你想的還物理》
商周出版_96
・2022/12/05 ・2482字 ・閱讀時間約 5 分鐘

時事話題

NEWS|在課堂介紹電磁波概念時,有位同學佳琦舉手提問筆者:「老師,用悠遊卡刷進捷運站非常方便,那個背後的原理和電磁波有關嗎?」另一位同學婕妤回答:「應該是悠遊卡會發出電磁波,傳遞訊息到門閘的感應器吧?」

悠遊卡如今早已融入臺灣大都會的生活中,不論是捷運、超商、購物或搭乘公車,悠遊卡在手,便利許多。然而,悠遊卡內並無電池,也不需要插入讀卡機,為何能夠溝通而傳遞資訊呢?

刷悠遊卡進出捷運站,其背後原理和電磁波有關嗎?圖/Pixabay

為何沒裝電池的悠遊卡可以產生電流?

悠遊卡系統主要是應用法拉第電磁感應定律來辨識與傳遞資訊,此與無接觸感應技術有關,該技術稱為「無線射頻辨識系統」(radio frequency identification,RFID)。完整的一套無線射頻辨識系統,是由讀卡機(reader)、電子標籤(tag)和應用程式資料庫電腦系統部分所組成。

運作過程先由讀卡機發射一特定頻率的無線電波能量給電子標籤,藉此驅動標籤內建電路,輸送內部的身分代碼,以開啟溝通之路。

-----廣告,請繼續往下閱讀-----

若以法拉第電磁感應的物理概念解釋,讀卡機產生變動磁場, 同步提供電子標籤變動磁場,驅動電子標籤產生感應電流,也就是讓悠遊卡內部迴路產生感應電流,並讓電子標籤發送身分代碼訊息給讀卡機,也即驅動內部晶片能夠發送訊號,讀卡機依序接收資訊、解讀此身分代碼,再透過應用程式資料庫系統讀取悠遊卡內的晶片資料,完整達成溝通與解讀任務。

電子標籤發送身分代碼訊息給讀卡機,即驅動內部晶片發送訊號。圖/維基百科

每一張悠遊卡都有獨立的電子標籤,當卡片靠近悠遊卡標誌的磁場感應範圍內,即可透過電磁感應的原理,驅使電子標籤內的線圈產生感應電流,此電流供應電子標籤傳送資訊至讀卡機,以解讀晶片資料。

或許讀者會好奇,沒有電池的悠遊卡怎麼產生電流呢?這個問題也需要以法拉第電磁感應定律說明。

依法拉第電磁感應定律,悠遊卡的線圈迴路會因為磁場強弱的變化,以及通過的面積區域角度變化而產生類似電池驅動電流功能的「感應電動勢」,或稱為感應電壓。此感應電壓大小與線圈匝數及每匝線圈中磁場隨時間的變化率有關。匝數愈多,磁場變化率愈大,悠遊卡迴路中的感應電壓愈大,產生的感應電流就愈大。

-----廣告,請繼續往下閱讀-----
當卡片靠近標誌的磁場感應範圍內,即透過電磁感應產生感應電流。圖/《我們的生活比你想的還物理

因此,悠遊卡雖然沒有內建電池,但可以透過電磁波的應用,採用無線射頻辨識系統,在運作時,讀卡機持續發出電磁波,當卡片接近時,其內部線圈產生感應電動勢,再進一步驅動感應電流。此感應電流讓卡片內的晶片發出電磁波,回傳必要的資訊給讀卡機,完成感應過閘的流程。

以臺北、臺中和高雄的悠遊卡來說,採用的是無線射頻辨識系統模式,屬於比較低頻率的電磁波,卡片必須距離讀卡機約 14 公分內,才能讀取卡片的晶片資料。因此若將悠遊卡裝在比較厚的皮夾或兩張磁卡疊在一起,可能無法第一時間完成讀卡,而形成「卡片無法讀取」的「卡卡」現象,建議單純使用悠遊卡過閘,較能順暢通過閘門。

其他如進出家門的感應磁扣、停車場的票卡、信用卡感應支付、國道收費系統 ETC 等,皆是應用無線射頻辨識系統 RFID 的技術,只不過國道收費系統 ETC 的感應器的感應距離約需 60 公尺內,才能順利讀取通過車輛的相關資訊。

台灣高速公路的電子道路收費系統(electronic toll collection, ETC)。圖/維基百科

物理小教室

  • 手機行動支付的物理學原理

手機支付的運作原理也是基於 RFID 發展而出的近場通訊(near-field communication,NFC) 技術。目前近場通訊技術採用頻率為 13.56 MHz 的電磁波,以 106 kbit/s、212 kbit/s 或 424 kbit/s 這 3 種速率傳輸資料,bit 翻譯為位元,是電腦資料的最小單位。

-----廣告,請繼續往下閱讀-----

利用手機支付時,須靠近刷卡機約 4 公分距離內,此時可藉由電磁波傳遞相關資訊,完成付款手續。近場通訊技術不只有用在手機支付, 也可運用傳輸文字、照片、音樂檔案,是目前手機常見的內建功能。

  • 電磁感應的進階說明

電動勢(electromotive force, emf)可以驅動導體內的電荷移動, 產生電流。電池因為內部材料的屬性,會在正負極產生固定的電位差或電壓。電動勢是電池正負極間的電位差,也常稱為電壓,其國際單位制(SI)單位為伏特(V)。

導體內的電流與電壓成正比,假設導線的電阻及電池的內電阻都可略去不計,電路中流動的電流是電壓與電阻相除後的數值。可知電池的電動勢,可以驅動迴路上的電流,讓燈泡發光發熱。

然而,一個未接電源的迴路導線圈,可不可能產生電流?可以。若是通過迴路導線圈的磁場變化或磁通量改變,也會產生感應電流,這是發電機的原理,也是物理學家法拉第和冷次的電磁感應概念。

-----廣告,請繼續往下閱讀-----

電磁爐和捷運列車的磁煞車也是運用電磁感應的概念。電磁爐內部的主要構造是由絕緣體包覆的導線環繞的線圈,當交流電通過線圈時, 電磁爐表面就會產生隨時間改變的磁場,這個磁場的變化會同時在鍋子底面產生應電流,再透過電流熱效應加熱鍋子,也加熱食物。

——本文摘自《我們的生活比你想的還物理》,2022 年 11 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
商周出版_96
119 篇文章 ・ 362 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。