Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

卡文迪許誕辰|科學史上的今天:10/10

張瑞棋_96
・2015/10/10 ・1204字 ・閱讀時間約 2 分鐘 ・SR值 591 ・九年級

-----廣告,請繼續往下閱讀-----

西元前三世紀,希臘學者埃拉托塞尼斯(Eratosthenes)就已經用兩地太陽投影角度的差異推算出地球的大小,誤差不到2%。然而關於地球的質量,過了兩千年卻始終無人能知。雖然牛頓觀測天體而推導出萬有引力公式,但既不知重力常數的值,也就算不出地球的質量。這個難倒牛頓與無數科學家的難題直到1798年才由英國科學家亨利‧卡文迪許解決。

亨利‧卡文迪許。圖片來源:wikipedia

不過這個重大成就倒比較無關乎科學天才的靈光乍現,真正畢其功的關鍵不如說是亞斯伯格症候群的特質。

是的,若在現代,卡文迪許肯定會被診斷為亞斯伯格症候群患者。「當他不得不忍受與人接觸時,經常撇開眼神望向一旁,一旦受不了還會衝到室外去。有時候他來到門外,一見室內人群擁擠,就會渾身僵硬地站住,完全沒辦法踏入門內。…….散步時,他總是在同一個時間走在同一條路線上,而且會走在路中間,以免偶然碰到別人。」「卡文迪許的生活和工作都是井然有序、一絲不苟。…..就跟規範星辰運動的定律一樣僵化、規律。」*

然而正是這樣的特質讓他得以完成極為敏感易受干擾的精密測定。

-----廣告,請繼續往下閱讀-----

事實上,卡文迪許要測定的是地球密度。因為牛頓指出兩物體間的萬有引力與兩者的密度成比例關係,所以他只要測出兩顆已知密度的鉛球之間的引力,就可以根據鉛球所受地心引力的大小,依比例算出地球的密度。問題是鉛球之間的引力實在太微弱了,所以前人才都測不出來。卡文迪許的朋友米契爾(John Michell)花了十年時間發明出量測裝置,在死前交給他完成大業。他用一根細線懸吊一根六英尺長的橫桿,兩端各掛上一顆直徑兩英寸的鉛球。再用兩顆較大的鉛球慢慢靠近懸掛的小鉛球,兩對鉛球之間的引力就會拉動橫桿旋轉;測量轉動的幅度就能算出引力大小。

說來簡單,但實驗過程卻相當繁複。鉛球太小引力效果不明顯,太大又要加強橫桿與細線,如此一來又不易轉動;同樣地,橫桿與細線也都須不斷調整至適當大小。而橫桿本身也有引力,鉛球又可能受到地球磁場影響,都得納入考慮。更頭痛的是氣流的干擾;身體移動會帶動氣流,光源乃至體溫所造成的溫差也會產生氣流。於是卡文迪許把實驗器材在黑暗密閉的房子,人在屋外操縱大鉛球,同時透過嵌在牆讓的望遠鏡觀測紀錄,光源也是從屋外經由透鏡投射到指針上。
最後卡文迪許算出地球密度是水的5.48倍,與實際的5.52倍相差無幾;難怪在他之後一百年間很多科學家以更好的器材與技術重作實驗,結果卻未見精進。最大的進展反而在於實驗目的本身──從地球密度轉為重力常數G。

卡文迪許的實驗展示了科學的重大突破不一定都是來自天才的頭腦,也可能出自亞斯伯格症候群那般心無旁騖的專注與一絲不苟的堅持。

*摘錄自《如何幫地球量體重?》/貓頭鷹出版社

-----廣告,請繼續往下閱讀-----

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1027 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
2

文字

分享

0
2
2
《非常律師禹英禑》: 你或許知道什麼是「自閉症」,但你了解什麼是「自閉症類群障礙」嗎?
Bonnie_96
・2022/08/03 ・2582字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

「G.I.A.N.T! P.E.N.G.S.O.O!」這是最新韓劇《非常律師禹英禑》女主角禹英禑為了同樣患有自閉症的當事人,大唱 Pengsoo 之歌。就讓我們來一起認識什麼是自閉症? 

「我叫禹英禑,正著唸、倒著唸都一樣,黑吃黑、多倫多、石榴石、文言文、鹽酸鹽、禹英禑。」《非常律師禹英禑》女主角禹英禑的自我介紹,近來讓許多觀眾深受吸引。

「我叫禹英禑,正著唸、倒著唸都一樣,黑吃黑、多倫多、石榴石、文言文、鹽酸鹽、禹英禑。」圖/IMdb

在今年 6 月底《非常律師禹英禑》開播後,已連續兩週穩坐影音串流平台 Netflix 非英語節目的收視冠軍。目前在台灣、韓國、印尼、馬來西亞、新加坡、泰國等國,都獲得蠻高的關注。

《非常律師禹英禑》劇情講述,患有自閉症類群障礙的菜鳥律師禹英禑(朴恩斌 飾演)在大型律師事務所的生存記。她也努力在社會和職場間打破成見,學習與人互動。

什麼是自閉症?自閉症類群障礙又是什麼?

過去大眾熟知的自閉症、亞斯伯格症等,目前在 DSM–5(《精神疾病診斷與統計手冊》第五版)中已整合成為「自閉症類群障礙」(Autism Spectrum Disorder,簡稱 ASD,又稱自閉症譜系障礙)的類別中。

-----廣告,請繼續往下閱讀-----

自閉症類群障礙是一種由先天腦部功能受損而引起的發展障礙,多好發於兒童早期。主要臨床特徵有:情緒表達困難、社交互動障礙、語言和非語言的溝通有困難,以及會出現刻板和重複性的動作與行為。

自閉症類群障礙是一種由先天腦部功能受損而引起的發展障礙,多好發於兒童早期。圖/Pixabay

過去在 DSM–IV-TR 中有四個診斷類別,分別為:

  • 自閉症
  • 亞斯伯格症
  • 未分類的廣泛性發展疾患
  • 兒童崩解性疾患

到了 2013 年出版的 DSM–5 中,這四個診斷類別都被整合在「自閉症類群障礙」中。

這裡提到的 DSM 是由美國精神醫學學會(American Psychiatric Association)所出版的《精神疾病診斷與統計手冊》(The Diagnostic and Statistical Manual of Mental Disorders,簡稱 DSM),主要提供心理健康專業人員使用的正式診斷系統。

-----廣告,請繼續往下閱讀-----

經歷了數次分類和修改,最終整合了「自閉症類群障礙」

DSM 最早在 1952 年出版後,中間就歷經五次的修改。從 DSM–IV-TR 到 DSM–5 對於病症、病因的診斷都有大幅度地改動。但為什麼過去在 DSM–IV-TR,將自閉症細分成四個不同診斷類別,到了 DSM–5 卻整合成「自閉症類群障礙」?

這是因為過去自閉症、亞斯伯格症、未分類的廣泛性發展疾患、兒童崩解性疾患,這些障礙症具有類似的臨床特徵和病因,只是在嚴重程度上有差異。因此,到了 DSM–5 以「自閉症類群障礙」一種類別來整合。

自閉症類群障礙會依照外顯行為、能力等嚴重程度進行評估,會有像是《非常律師禹英禑》女主角禹英禑的「亞斯伯格症」,也會有在 3 至 4 歲以前發展正常,後來出現語言、社會功能等發展和行為退化的「兒童崩解性疾患」。這也是為什麼在「自閉症類群障礙」的英文中,有 Spectrum (光譜)一詞,也說明自閉症類群障礙的多樣性

奧地利醫師 Hans Asperger (漢斯.亞斯伯格),亞斯伯格症便是以他的姓氏命名。圖/wikipedia

亞斯伯格症是自閉症的亞型,最早由奧地利醫師 Hans Asperger 在 1944 年提出的。有亞斯伯格症的兒童在語言發展上,並沒有明顯遲緩現,在智商表現上也和常人一樣。他們也會想要主動與他人建立關係、互動,只是在社交技巧上較為笨拙。

-----廣告,請繼續往下閱讀-----

另外,嚴重程度較輕、也時常和亞斯伯格症一起提到的「高功能自閉症」(High-Functioning Autism)。主要具有高功能自閉症的兒童在早期語言發展有遲緩的狀況。在言語表達、人際關係的維持上,會比亞斯伯格症更困難。

自閉症類群障礙會有哪些臨床特徵?

DSM–5 對自閉症類群障礙的診斷標準,包含在社會溝通及社會互動上有缺陷、有侷限且重覆的行為、興趣或活動模式,以及症狀會限制、干擾目前功能。(更多詳細內容,可參閱 DSM–5 )

其中,有三個比較常見的臨床特徵,包含社交與情緒困擾溝通缺損,以及重複的儀式化行為

DSM–5 統整自閉症類群障礙有三個比較常見的臨床特徵,包含社交與情緒困擾、溝通缺損,以及重複的儀式化行為。圖/IMdb

自閉症類群障礙兒童在社會互動、情緒表達上會有困難。像是,不太會主動接近他人或主動和其他小孩一起玩耍、對外界事物不感興趣、對他人的存在或環境的改變都不太容易察覺到,也比較少會分享自己興趣或情緒。

-----廣告,請繼續往下閱讀-----

在語言和非語言的溝通上,自閉症類群障礙兒童在口語溝通表達能力、說話內容、速度等上都會有困難,也比較少出現眼神注視。像是,出現容易重複語句,沒有回答到對方問題的「鸚鵡式仿說」(echolalia),或是出現以第二或第三人稱來稱呼自己的「代名詞反轉」(pronominal reversal)的狀況。

重複的儀式化行為是自閉症類群障礙兒童明顯的臨床特徵之一。對周遭環境的擺設或特定事物,堅持照自己的一套順序排列、擺放,保持同一性。像是,用特定顏色的馬克杯喝牛奶等。如果改變物品的陳列位置有變動,他們會感到苦惱。

一名患有自閉症的孩子將他的鴨子玩具依序排列成一排。圖/Wikipedia

另外,也會有儀式化的手部動作、其他節奏性動作,像是不停搖擺身體、拍手等動作。這部分在《非常律師禹英禑》中,也可以看見。依據自閉症類群障礙兒童的嚴重程度不同,而會有不同的臨床特徵。

不論是《非常律師禹英禑》,或是其他以「自閉症類群障礙」為題材的戲劇,都讓大眾更進一步認識自閉症類群障礙的多樣性、理解他們正為生活做出的努力。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
Bonnie_96
21 篇文章 ・ 33 位粉絲
喜歡以科普的方式,帶大家認識心理學,原來醬子可愛。歡迎來信✉️ lin.bonny@gmail.com

0

0
0

文字

分享

0
0
0
卡文迪許誕辰|科學史上的今天:10/10
張瑞棋_96
・2015/10/10 ・1204字 ・閱讀時間約 2 分鐘 ・SR值 591 ・九年級

-----廣告,請繼續往下閱讀-----

西元前三世紀,希臘學者埃拉托塞尼斯(Eratosthenes)就已經用兩地太陽投影角度的差異推算出地球的大小,誤差不到2%。然而關於地球的質量,過了兩千年卻始終無人能知。雖然牛頓觀測天體而推導出萬有引力公式,但既不知重力常數的值,也就算不出地球的質量。這個難倒牛頓與無數科學家的難題直到1798年才由英國科學家亨利‧卡文迪許解決。

亨利‧卡文迪許。圖片來源:wikipedia

不過這個重大成就倒比較無關乎科學天才的靈光乍現,真正畢其功的關鍵不如說是亞斯伯格症候群的特質。

是的,若在現代,卡文迪許肯定會被診斷為亞斯伯格症候群患者。「當他不得不忍受與人接觸時,經常撇開眼神望向一旁,一旦受不了還會衝到室外去。有時候他來到門外,一見室內人群擁擠,就會渾身僵硬地站住,完全沒辦法踏入門內。…….散步時,他總是在同一個時間走在同一條路線上,而且會走在路中間,以免偶然碰到別人。」「卡文迪許的生活和工作都是井然有序、一絲不苟。…..就跟規範星辰運動的定律一樣僵化、規律。」*

-----廣告,請繼續往下閱讀-----

然而正是這樣的特質讓他得以完成極為敏感易受干擾的精密測定。

事實上,卡文迪許要測定的是地球密度。因為牛頓指出兩物體間的萬有引力與兩者的密度成比例關係,所以他只要測出兩顆已知密度的鉛球之間的引力,就可以根據鉛球所受地心引力的大小,依比例算出地球的密度。問題是鉛球之間的引力實在太微弱了,所以前人才都測不出來。卡文迪許的朋友米契爾(John Michell)花了十年時間發明出量測裝置,在死前交給他完成大業。他用一根細線懸吊一根六英尺長的橫桿,兩端各掛上一顆直徑兩英寸的鉛球。再用兩顆較大的鉛球慢慢靠近懸掛的小鉛球,兩對鉛球之間的引力就會拉動橫桿旋轉;測量轉動的幅度就能算出引力大小。

說來簡單,但實驗過程卻相當繁複。鉛球太小引力效果不明顯,太大又要加強橫桿與細線,如此一來又不易轉動;同樣地,橫桿與細線也都須不斷調整至適當大小。而橫桿本身也有引力,鉛球又可能受到地球磁場影響,都得納入考慮。更頭痛的是氣流的干擾;身體移動會帶動氣流,光源乃至體溫所造成的溫差也會產生氣流。於是卡文迪許把實驗器材在黑暗密閉的房子,人在屋外操縱大鉛球,同時透過嵌在牆讓的望遠鏡觀測紀錄,光源也是從屋外經由透鏡投射到指針上。
最後卡文迪許算出地球密度是水的5.48倍,與實際的5.52倍相差無幾;難怪在他之後一百年間很多科學家以更好的器材與技術重作實驗,結果卻未見精進。最大的進展反而在於實驗目的本身──從地球密度轉為重力常數G。

卡文迪許的實驗展示了科學的重大突破不一定都是來自天才的頭腦,也可能出自亞斯伯格症候群那般心無旁騖的專注與一絲不苟的堅持。

-----廣告,請繼續往下閱讀-----

*摘錄自《如何幫地球量體重?》/貓頭鷹出版社

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1027 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

0
0

文字

分享

0
0
0
嗶——超速了!什麼?聲音竟然有「速限」
linjunJR_96
・2020/11/11 ・1866字 ・閱讀時間約 3 分鐘 ・SR值 565 ・九年級

-----廣告,請繼續往下閱讀-----

光速是宇宙的終極速限,任何的物質運動和資訊傳遞都不准超速。不過最近有人做出了最新預測,除了一般物質外,聲音的傳遞速度竟然也有最大上限?

不管是光(電磁波)還是聲音,都是以波動的形式傳播。值得注意的是,波速只會跟系統本身性質(例如:介質不同)有關,一般的繩波或是水面波同樣也是如此,不論震動得多用力或多快,都不會讓波跑的更快或更慢。

我們可以把聲波的傳遞想像成下圖中的彈簧。既然彈簧波的速度可以用彈性係數和彈簧質量來表示,同樣的,聲速應該也可以用某些性質來描述。

可以把聲波的傳遞想像成圖中的彈簧。圖/Shyam Srinivasan

先從聲音的性質說起

聲音在不同材料中傳遞的差異,可以用體積模數(Bulk Modulus,簡寫 B )來表示。體積模數代表物體在面對外部壓力時,會做出多少體積上的改變。數學上可以寫成:

-----廣告,請繼續往下閱讀-----

等號左邊是施加的壓力,右邊是體積模數 B 乘上體積變化量占總體積的比率,負號只是習慣,這代表相同壓力下,B 值越大物體越不容易壓縮,和彈簧的 F=-kx 類似。我們知道越「硬」的彈簧反應越快,可以更快地傳遞波動;同樣地,比起在空氣中傳遞,聲速在較難壓縮的液體和固體中會比較快。因此不難看出,B 會與聲速扯上關係,而且 B 值越大聲速越快。

聲波在固體傳播的速度比在空氣中快。圖/giphy

一般來說,聲速可以寫成:

分子就是上面提到的體積模數 B,而分母的材料密度則表示介質越稀疏,聲速越快。國中學過的聲速與溫度成正比便是這個道理,當溫度變高時,空氣體積膨脹,密度變小,因此聲速傳遞更快。

為什麼聲速有上下限?

不過公式中的 B 和材料密度都是需要透過實驗獲得的材料參數,因此很難看出聲速會有什麼上下限。如果要再往前一步,就必須進入微觀的原子尺度。想像兩個同極相斥的磁鐵,彼此互相靠近時,斥力會逐漸變大;這是因為隨著兩個相斥磁鐵逐漸靠近,抵抗靠近的磁力位能會逐漸增加。

-----廣告,請繼續往下閱讀-----
當兩個同極磁鐵互相靠近,因抵抗靠近的磁力位能增加,斥力會逐漸變大。圖/giphy

同樣地,當原子間的鍵結能量增加,將兩顆原子拉伸或壓縮的難度會隨之上升,物體也就越不容易被壓縮。也就是說,體積模數 B 正比於單位體積內原子間的鍵結能量,巧合的是,材料密度也能寫成單位體積內的原子質量,於是我們可以將聲速寫成:

一般固態物質中,鍵結能量可由古早的波耳氫原子模型導出,大約是 α2c2me / 2(原子質量),α 是一大串常用的物理常數,c 是光速,me 是電子質量。於是我們在原子尺度的物理圖像中,得到了聲速的新公式:

公式中的英文字母都是常數,唯一重要的是原子質量,原子質量越小的聲速便越快。依照理論,聲速最快的會是原子量=1 的固態氫原子,聲速為 36100m/s 。

聽起來很厲害,實際上真的是如此嗎?

針對一系列不同原子量的固態元素,我們可以看看他們的聲速是否的確符合預期。不過因為 B 的實際值和鍵結種類,晶格結構等複雜因素有關,因此並不會完全落在理論線上,不過整體的趨勢十分吻合。

-----廣告,請繼續往下閱讀-----
固態元素中聲速對原子量的對數圖。斜直線為斜率 -0.5 的理論預測,虛線為擬合直線。紅點為原子量=1時的聲速上限。圖/Science advance

有趣的是,如果我們將新的聲速公式移項一下,會發現聲速上限對光速的比率,可以用簡單的物理常數來表示,這點是前人使料未及的。這結果或許不像光速這麼絕對,不過仍然是一次很漂亮的科學推理,也為固態物理的理論與實驗提供了嶄新的發展題材。

  1. Trachenko, K., Monserrat, B., Pickard, C. J., & Brazhkin, V. V. (2020). Speed of sound from fundamental physical constants. arXiv preprint arXiv:2004.04818.
-----廣告,請繼續往下閱讀-----
linjunJR_96
33 篇文章 ・ 914 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。