Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

卡文迪許誕辰|科學史上的今天:10/10

張瑞棋_96
・2015/10/10 ・1204字 ・閱讀時間約 2 分鐘 ・SR值 591 ・九年級

西元前三世紀,希臘學者埃拉托塞尼斯(Eratosthenes)就已經用兩地太陽投影角度的差異推算出地球的大小,誤差不到2%。然而關於地球的質量,過了兩千年卻始終無人能知。雖然牛頓觀測天體而推導出萬有引力公式,但既不知重力常數的值,也就算不出地球的質量。這個難倒牛頓與無數科學家的難題直到1798年才由英國科學家亨利‧卡文迪許解決。

亨利‧卡文迪許。圖片來源:wikipedia

不過這個重大成就倒比較無關乎科學天才的靈光乍現,真正畢其功的關鍵不如說是亞斯伯格症候群的特質。

是的,若在現代,卡文迪許肯定會被診斷為亞斯伯格症候群患者。「當他不得不忍受與人接觸時,經常撇開眼神望向一旁,一旦受不了還會衝到室外去。有時候他來到門外,一見室內人群擁擠,就會渾身僵硬地站住,完全沒辦法踏入門內。…….散步時,他總是在同一個時間走在同一條路線上,而且會走在路中間,以免偶然碰到別人。」「卡文迪許的生活和工作都是井然有序、一絲不苟。…..就跟規範星辰運動的定律一樣僵化、規律。」*

然而正是這樣的特質讓他得以完成極為敏感易受干擾的精密測定。

-----廣告,請繼續往下閱讀-----

事實上,卡文迪許要測定的是地球密度。因為牛頓指出兩物體間的萬有引力與兩者的密度成比例關係,所以他只要測出兩顆已知密度的鉛球之間的引力,就可以根據鉛球所受地心引力的大小,依比例算出地球的密度。問題是鉛球之間的引力實在太微弱了,所以前人才都測不出來。卡文迪許的朋友米契爾(John Michell)花了十年時間發明出量測裝置,在死前交給他完成大業。他用一根細線懸吊一根六英尺長的橫桿,兩端各掛上一顆直徑兩英寸的鉛球。再用兩顆較大的鉛球慢慢靠近懸掛的小鉛球,兩對鉛球之間的引力就會拉動橫桿旋轉;測量轉動的幅度就能算出引力大小。

說來簡單,但實驗過程卻相當繁複。鉛球太小引力效果不明顯,太大又要加強橫桿與細線,如此一來又不易轉動;同樣地,橫桿與細線也都須不斷調整至適當大小。而橫桿本身也有引力,鉛球又可能受到地球磁場影響,都得納入考慮。更頭痛的是氣流的干擾;身體移動會帶動氣流,光源乃至體溫所造成的溫差也會產生氣流。於是卡文迪許把實驗器材在黑暗密閉的房子,人在屋外操縱大鉛球,同時透過嵌在牆讓的望遠鏡觀測紀錄,光源也是從屋外經由透鏡投射到指針上。
最後卡文迪許算出地球密度是水的5.48倍,與實際的5.52倍相差無幾;難怪在他之後一百年間很多科學家以更好的器材與技術重作實驗,結果卻未見精進。最大的進展反而在於實驗目的本身──從地球密度轉為重力常數G。

卡文迪許的實驗展示了科學的重大突破不一定都是來自天才的頭腦,也可能出自亞斯伯格症候群那般心無旁騖的專注與一絲不苟的堅持。

*摘錄自《如何幫地球量體重?》/貓頭鷹出版社

-----廣告,請繼續往下閱讀-----

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1031 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
2

文字

分享

0
2
2
《非常律師禹英禑》: 你或許知道什麼是「自閉症」,但你了解什麼是「自閉症類群障礙」嗎?
Bonnie_96
・2022/08/03 ・2582字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

「G.I.A.N.T! P.E.N.G.S.O.O!」這是最新韓劇《非常律師禹英禑》女主角禹英禑為了同樣患有自閉症的當事人,大唱 Pengsoo 之歌。就讓我們來一起認識什麼是自閉症? 

「我叫禹英禑,正著唸、倒著唸都一樣,黑吃黑、多倫多、石榴石、文言文、鹽酸鹽、禹英禑。」《非常律師禹英禑》女主角禹英禑的自我介紹,近來讓許多觀眾深受吸引。

「我叫禹英禑,正著唸、倒著唸都一樣,黑吃黑、多倫多、石榴石、文言文、鹽酸鹽、禹英禑。」圖/IMdb

在今年 6 月底《非常律師禹英禑》開播後,已連續兩週穩坐影音串流平台 Netflix 非英語節目的收視冠軍。目前在台灣、韓國、印尼、馬來西亞、新加坡、泰國等國,都獲得蠻高的關注。

《非常律師禹英禑》劇情講述,患有自閉症類群障礙的菜鳥律師禹英禑(朴恩斌 飾演)在大型律師事務所的生存記。她也努力在社會和職場間打破成見,學習與人互動。

什麼是自閉症?自閉症類群障礙又是什麼?

過去大眾熟知的自閉症、亞斯伯格症等,目前在 DSM–5(《精神疾病診斷與統計手冊》第五版)中已整合成為「自閉症類群障礙」(Autism Spectrum Disorder,簡稱 ASD,又稱自閉症譜系障礙)的類別中。

-----廣告,請繼續往下閱讀-----

自閉症類群障礙是一種由先天腦部功能受損而引起的發展障礙,多好發於兒童早期。主要臨床特徵有:情緒表達困難、社交互動障礙、語言和非語言的溝通有困難,以及會出現刻板和重複性的動作與行為。

自閉症類群障礙是一種由先天腦部功能受損而引起的發展障礙,多好發於兒童早期。圖/Pixabay

過去在 DSM–IV-TR 中有四個診斷類別,分別為:

  • 自閉症
  • 亞斯伯格症
  • 未分類的廣泛性發展疾患
  • 兒童崩解性疾患

到了 2013 年出版的 DSM–5 中,這四個診斷類別都被整合在「自閉症類群障礙」中。

這裡提到的 DSM 是由美國精神醫學學會(American Psychiatric Association)所出版的《精神疾病診斷與統計手冊》(The Diagnostic and Statistical Manual of Mental Disorders,簡稱 DSM),主要提供心理健康專業人員使用的正式診斷系統。

-----廣告,請繼續往下閱讀-----

經歷了數次分類和修改,最終整合了「自閉症類群障礙」

DSM 最早在 1952 年出版後,中間就歷經五次的修改。從 DSM–IV-TR 到 DSM–5 對於病症、病因的診斷都有大幅度地改動。但為什麼過去在 DSM–IV-TR,將自閉症細分成四個不同診斷類別,到了 DSM–5 卻整合成「自閉症類群障礙」?

這是因為過去自閉症、亞斯伯格症、未分類的廣泛性發展疾患、兒童崩解性疾患,這些障礙症具有類似的臨床特徵和病因,只是在嚴重程度上有差異。因此,到了 DSM–5 以「自閉症類群障礙」一種類別來整合。

自閉症類群障礙會依照外顯行為、能力等嚴重程度進行評估,會有像是《非常律師禹英禑》女主角禹英禑的「亞斯伯格症」,也會有在 3 至 4 歲以前發展正常,後來出現語言、社會功能等發展和行為退化的「兒童崩解性疾患」。這也是為什麼在「自閉症類群障礙」的英文中,有 Spectrum (光譜)一詞,也說明自閉症類群障礙的多樣性

奧地利醫師 Hans Asperger (漢斯.亞斯伯格),亞斯伯格症便是以他的姓氏命名。圖/wikipedia

亞斯伯格症是自閉症的亞型,最早由奧地利醫師 Hans Asperger 在 1944 年提出的。有亞斯伯格症的兒童在語言發展上,並沒有明顯遲緩現,在智商表現上也和常人一樣。他們也會想要主動與他人建立關係、互動,只是在社交技巧上較為笨拙。

-----廣告,請繼續往下閱讀-----

另外,嚴重程度較輕、也時常和亞斯伯格症一起提到的「高功能自閉症」(High-Functioning Autism)。主要具有高功能自閉症的兒童在早期語言發展有遲緩的狀況。在言語表達、人際關係的維持上,會比亞斯伯格症更困難。

自閉症類群障礙會有哪些臨床特徵?

DSM–5 對自閉症類群障礙的診斷標準,包含在社會溝通及社會互動上有缺陷、有侷限且重覆的行為、興趣或活動模式,以及症狀會限制、干擾目前功能。(更多詳細內容,可參閱 DSM–5 )

其中,有三個比較常見的臨床特徵,包含社交與情緒困擾溝通缺損,以及重複的儀式化行為

DSM–5 統整自閉症類群障礙有三個比較常見的臨床特徵,包含社交與情緒困擾、溝通缺損,以及重複的儀式化行為。圖/IMdb

自閉症類群障礙兒童在社會互動、情緒表達上會有困難。像是,不太會主動接近他人或主動和其他小孩一起玩耍、對外界事物不感興趣、對他人的存在或環境的改變都不太容易察覺到,也比較少會分享自己興趣或情緒。

-----廣告,請繼續往下閱讀-----

在語言和非語言的溝通上,自閉症類群障礙兒童在口語溝通表達能力、說話內容、速度等上都會有困難,也比較少出現眼神注視。像是,出現容易重複語句,沒有回答到對方問題的「鸚鵡式仿說」(echolalia),或是出現以第二或第三人稱來稱呼自己的「代名詞反轉」(pronominal reversal)的狀況。

重複的儀式化行為是自閉症類群障礙兒童明顯的臨床特徵之一。對周遭環境的擺設或特定事物,堅持照自己的一套順序排列、擺放,保持同一性。像是,用特定顏色的馬克杯喝牛奶等。如果改變物品的陳列位置有變動,他們會感到苦惱。

一名患有自閉症的孩子將他的鴨子玩具依序排列成一排。圖/Wikipedia

另外,也會有儀式化的手部動作、其他節奏性動作,像是不停搖擺身體、拍手等動作。這部分在《非常律師禹英禑》中,也可以看見。依據自閉症類群障礙兒童的嚴重程度不同,而會有不同的臨床特徵。

不論是《非常律師禹英禑》,或是其他以「自閉症類群障礙」為題材的戲劇,都讓大眾更進一步認識自閉症類群障礙的多樣性、理解他們正為生活做出的努力。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
Bonnie_96
21 篇文章 ・ 33 位粉絲
喜歡以科普的方式,帶大家認識心理學,原來醬子可愛。歡迎來信✉️ lin.bonny@gmail.com

0

0
0

文字

分享

0
0
0
卡文迪許誕辰|科學史上的今天:10/10
張瑞棋_96
・2015/10/10 ・1204字 ・閱讀時間約 2 分鐘 ・SR值 591 ・九年級

西元前三世紀,希臘學者埃拉托塞尼斯(Eratosthenes)就已經用兩地太陽投影角度的差異推算出地球的大小,誤差不到2%。然而關於地球的質量,過了兩千年卻始終無人能知。雖然牛頓觀測天體而推導出萬有引力公式,但既不知重力常數的值,也就算不出地球的質量。這個難倒牛頓與無數科學家的難題直到1798年才由英國科學家亨利‧卡文迪許解決。

亨利‧卡文迪許。圖片來源:wikipedia

不過這個重大成就倒比較無關乎科學天才的靈光乍現,真正畢其功的關鍵不如說是亞斯伯格症候群的特質。

是的,若在現代,卡文迪許肯定會被診斷為亞斯伯格症候群患者。「當他不得不忍受與人接觸時,經常撇開眼神望向一旁,一旦受不了還會衝到室外去。有時候他來到門外,一見室內人群擁擠,就會渾身僵硬地站住,完全沒辦法踏入門內。…….散步時,他總是在同一個時間走在同一條路線上,而且會走在路中間,以免偶然碰到別人。」「卡文迪許的生活和工作都是井然有序、一絲不苟。…..就跟規範星辰運動的定律一樣僵化、規律。」*

-----廣告,請繼續往下閱讀-----

然而正是這樣的特質讓他得以完成極為敏感易受干擾的精密測定。

事實上,卡文迪許要測定的是地球密度。因為牛頓指出兩物體間的萬有引力與兩者的密度成比例關係,所以他只要測出兩顆已知密度的鉛球之間的引力,就可以根據鉛球所受地心引力的大小,依比例算出地球的密度。問題是鉛球之間的引力實在太微弱了,所以前人才都測不出來。卡文迪許的朋友米契爾(John Michell)花了十年時間發明出量測裝置,在死前交給他完成大業。他用一根細線懸吊一根六英尺長的橫桿,兩端各掛上一顆直徑兩英寸的鉛球。再用兩顆較大的鉛球慢慢靠近懸掛的小鉛球,兩對鉛球之間的引力就會拉動橫桿旋轉;測量轉動的幅度就能算出引力大小。

說來簡單,但實驗過程卻相當繁複。鉛球太小引力效果不明顯,太大又要加強橫桿與細線,如此一來又不易轉動;同樣地,橫桿與細線也都須不斷調整至適當大小。而橫桿本身也有引力,鉛球又可能受到地球磁場影響,都得納入考慮。更頭痛的是氣流的干擾;身體移動會帶動氣流,光源乃至體溫所造成的溫差也會產生氣流。於是卡文迪許把實驗器材在黑暗密閉的房子,人在屋外操縱大鉛球,同時透過嵌在牆讓的望遠鏡觀測紀錄,光源也是從屋外經由透鏡投射到指針上。
最後卡文迪許算出地球密度是水的5.48倍,與實際的5.52倍相差無幾;難怪在他之後一百年間很多科學家以更好的器材與技術重作實驗,結果卻未見精進。最大的進展反而在於實驗目的本身──從地球密度轉為重力常數G。

卡文迪許的實驗展示了科學的重大突破不一定都是來自天才的頭腦,也可能出自亞斯伯格症候群那般心無旁騖的專注與一絲不苟的堅持。

-----廣告,請繼續往下閱讀-----

*摘錄自《如何幫地球量體重?》/貓頭鷹出版社

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1031 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

0
0

文字

分享

0
0
0
嗶——超速了!什麼?聲音竟然有「速限」
linjunJR_96
・2020/11/11 ・1866字 ・閱讀時間約 3 分鐘 ・SR值 565 ・九年級

-----廣告,請繼續往下閱讀-----

光速是宇宙的終極速限,任何的物質運動和資訊傳遞都不准超速。不過最近有人做出了最新預測,除了一般物質外,聲音的傳遞速度竟然也有最大上限?

不管是光(電磁波)還是聲音,都是以波動的形式傳播。值得注意的是,波速只會跟系統本身性質(例如:介質不同)有關,一般的繩波或是水面波同樣也是如此,不論震動得多用力或多快,都不會讓波跑的更快或更慢。

我們可以把聲波的傳遞想像成下圖中的彈簧。既然彈簧波的速度可以用彈性係數和彈簧質量來表示,同樣的,聲速應該也可以用某些性質來描述。

可以把聲波的傳遞想像成圖中的彈簧。圖/Shyam Srinivasan

先從聲音的性質說起

聲音在不同材料中傳遞的差異,可以用體積模數(Bulk Modulus,簡寫 B )來表示。體積模數代表物體在面對外部壓力時,會做出多少體積上的改變。數學上可以寫成:

-----廣告,請繼續往下閱讀-----

等號左邊是施加的壓力,右邊是體積模數 B 乘上體積變化量占總體積的比率,負號只是習慣,這代表相同壓力下,B 值越大物體越不容易壓縮,和彈簧的 F=-kx 類似。我們知道越「硬」的彈簧反應越快,可以更快地傳遞波動;同樣地,比起在空氣中傳遞,聲速在較難壓縮的液體和固體中會比較快。因此不難看出,B 會與聲速扯上關係,而且 B 值越大聲速越快。

聲波在固體傳播的速度比在空氣中快。圖/giphy

一般來說,聲速可以寫成:

分子就是上面提到的體積模數 B,而分母的材料密度則表示介質越稀疏,聲速越快。國中學過的聲速與溫度成正比便是這個道理,當溫度變高時,空氣體積膨脹,密度變小,因此聲速傳遞更快。

為什麼聲速有上下限?

不過公式中的 B 和材料密度都是需要透過實驗獲得的材料參數,因此很難看出聲速會有什麼上下限。如果要再往前一步,就必須進入微觀的原子尺度。想像兩個同極相斥的磁鐵,彼此互相靠近時,斥力會逐漸變大;這是因為隨著兩個相斥磁鐵逐漸靠近,抵抗靠近的磁力位能會逐漸增加。

-----廣告,請繼續往下閱讀-----
當兩個同極磁鐵互相靠近,因抵抗靠近的磁力位能增加,斥力會逐漸變大。圖/giphy

同樣地,當原子間的鍵結能量增加,將兩顆原子拉伸或壓縮的難度會隨之上升,物體也就越不容易被壓縮。也就是說,體積模數 B 正比於單位體積內原子間的鍵結能量,巧合的是,材料密度也能寫成單位體積內的原子質量,於是我們可以將聲速寫成:

一般固態物質中,鍵結能量可由古早的波耳氫原子模型導出,大約是 α2c2me / 2(原子質量),α 是一大串常用的物理常數,c 是光速,me 是電子質量。於是我們在原子尺度的物理圖像中,得到了聲速的新公式:

公式中的英文字母都是常數,唯一重要的是原子質量,原子質量越小的聲速便越快。依照理論,聲速最快的會是原子量=1 的固態氫原子,聲速為 36100m/s 。

聽起來很厲害,實際上真的是如此嗎?

針對一系列不同原子量的固態元素,我們可以看看他們的聲速是否的確符合預期。不過因為 B 的實際值和鍵結種類,晶格結構等複雜因素有關,因此並不會完全落在理論線上,不過整體的趨勢十分吻合。

-----廣告,請繼續往下閱讀-----
固態元素中聲速對原子量的對數圖。斜直線為斜率 -0.5 的理論預測,虛線為擬合直線。紅點為原子量=1時的聲速上限。圖/Science advance

有趣的是,如果我們將新的聲速公式移項一下,會發現聲速上限對光速的比率,可以用簡單的物理常數來表示,這點是前人使料未及的。這結果或許不像光速這麼絕對,不過仍然是一次很漂亮的科學推理,也為固態物理的理論與實驗提供了嶄新的發展題材。

  1. Trachenko, K., Monserrat, B., Pickard, C. J., & Brazhkin, V. V. (2020). Speed of sound from fundamental physical constants. arXiv preprint arXiv:2004.04818.
-----廣告,請繼續往下閱讀-----
linjunJR_96
33 篇文章 ・ 917 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。