Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

侏羅紀最萌小精靈,沒有之一:阿蒙氏蛙嘴翼龍

江松樺
・2017/10/08 ・2118字 ・閱讀時間約 4 分鐘 ・SR值 512 ・六年級

翼龍(Pterosaur)不是恐龍,他們是恐龍怪異的親戚,同時也是第一種已知能夠飛行的脊椎動物。相較於恐龍,人們對翼龍的研究起步相對的早。

在18世紀,這些動物曾經一度被認為是水生動物。直到 1801 年,法國的比較解剖學家居維葉(Georges Cuvier)重新研究了翼手龍(Pterodactylus)的標本後才理解到牠們原來是一類翱翔在天空的動物。

德裔法籍的自然史學家約翰赫曼(Johann Hermann)早期復原的翼手龍圖像。圖/Johann Hermann.

儘管分類上相較恐龍來說單純的多,但由於化石紀錄上仍有許多的空白,我們至今仍對這類群的動物了解有限。大致上來說翼龍可以簡單的分為:喙嘴翼龍亞目(Rhamphorhynchoidea)和較為先進的翼手龍亞目(Pterodactyloidea)。不過近來的新研究顯示,喙嘴翼龍亞目其實是一個並系群,由於翼手龍亞目僅是喙嘴翼龍亞目當中的一個演化支,而兩者並非具有一個共同祖先,所以這樣的分類方式逐漸在正式的科學研究上被放棄不用。

小巧可愛的阿蒙氏蛙嘴翼龍

翼龍的種類相當多樣化,其中巨大的種類大小可比一架單引擎的賽斯納飛機。然而並不是所有的翼龍都如同一般人印象當中那麼大。事實上,在目前已被辨識出的 120 多個屬的翼龍當中,展翼長達十公尺以上的物種僅僅佔了4%,而展翼長度小於 1.5 公尺的中小型翼龍則高達 37%。普遍來說,半數以上的翼龍都不算太大,甚至不少只有麻雀般的大小。

-----廣告,請繼續往下閱讀-----

今天的主角─阿蒙氏蛙嘴翼龍(Anurognathus ammoni)就是一種小巧可愛的小型翼龍,生存於距今約 1 億 4900 萬年前侏儸紀的提通階(Tithonian),大大的眼睛與毛茸茸的模樣讓人很難不喜歡牠。

萌萌的蛙嘴翼龍的復原圖。圖/Andrey Atuchin.

蛙嘴翼龍發現於索倫霍芬組(Solnhofen Formation),這裡獨特的石灰岩層成為了保存化石的優良條件,使得許多標本得以完好的被保存下來。侏儸紀時期,此處有許多的島鏈,乾燥且植披稀疏,大量的魚類化石、魚龍與海棲鱷魚顯示此地的海洋資源相當豐沛;此外,地表上也不乏小型動物活動,一些蜥蜴、喙頭蜥類與為數眾多的小型恐龍和始祖鳥(Archaeopteryx)也棲息於此。

1922 年,蛙嘴翼龍的模式標本被巴伐利亞當地的地質學家路德維希‧馮‧阿蒙(Ludwig von Ammon)所發現。其後,這件標本轉交到了路德維希杜德萊茵(Ludwig Döderlein)手上,並由他研究、描述。根據杜德萊茵的檢測,這件標本身長約略微 9 公分,展翼全長約 50 公分。除了頭顱骨因岩層擠壓而破裂,缺乏下顎骨;此外全身骨骼保存相當完整。

不同於一些較早期的翼龍,牠的脖子相當短、且幾乎沒有尾巴,相當獨具特色。杜德萊茵根據這些特質將蛙嘴翼龍命名,屬名根據希臘文原意為「缺少尾巴與下顎」,種小名則獻給發現者馮‧阿蒙。杜德萊茵認為,蛙嘴翼龍是一種可以快速飛行捕食昆蟲的小型翼龍,生活型態類似於今日的蝙蝠。

source:Wikimedia

嬌小的蛙嘴翼龍化石保存並不容易

2007 年,另一件新的標本被描述。相較於原本的模式標本,這具化石的保存狀況又更好、也更完整,較小的體型顯示他可能還是隻未成年的翼龍。透過放射線檢驗下科學家甚至可以從化石中辨識出附著在四肢的肌肉組織與翼膜殘留的痕跡。

古生物學家克里斯多夫班奈特(Christopher Bennett)在研究了這具新發現的蛙嘴翼龍的標本後提出了新的想法。

石灰岩板上的蛙嘴翼龍化石標本。圖/S.C.Bennett. 2007.

在檢視過蛙嘴翼龍的翼膜後,班奈特指出,他們的翅膀應該較為短小,缺乏尾巴反而能增加他們的滯空能力,他們應該是一類飛行速度緩慢的翼龍。他們的翼膜上還覆蓋了一層絲狀的絨毛,這樣的特質可以在各種翼龍上找到,但是蛙嘴翼龍科(Anurognathidae)翼膜上的絨毛更為密集,這有可能是為了減低振翅時所發出的聲響,就如同現生的貓頭鷹一般。

他們的大眼睛位於短而寬廣的面部,眼眶稍微朝前,可能具有某種程度的立體視覺,讓他們得以測量與獵物之間的距離。也就是說,蛙嘴翼龍就好像那些漂浮在風箏上的忍者,能隱身在暗處捕食牠的獵物,優雅的完成任務。

此外,班奈特在蛙嘴翼龍的面部發現了一些細小的突起,他認為這些隆起原本是毛髮的附著處,這裡原本可能長著像類似夜鷹嘴邊的鬍鬚,可以更有效率的在夜間感知獵物的所在。但是這個構造並未能在其他蛙嘴翼龍科的翼龍身上找到,所以並不是所有人都接受這樣的假說。

2008 年時,翼龍專家馬克維頓(Mark Witton)曾經重新檢驗了蛙嘴翼龍的標本,並嘗試推估牠的體重,重新計算後展翼長約為 35 公分、體重經估計後約為 40 公克左右。輕薄短小的蛙嘴翼龍,同時也是目前已知發現過最小型的翼龍之一。

蛙嘴翼龍科的化石相當罕見,也許是因為他們嬌小的身軀不容易為化石保存,幸虧有了索倫霍芬的石灰岩層,我們才有機會找到這些藏身於侏儸紀的小精靈,並見證大自然演化的奧妙。

索倫霍芬的石灰岩,展現了侏羅紀末生物界的豐富性。圖/J.Stiegler@wikimedia commons
  1. Döderlein, L. (1923). “Anurognathus Ammoni, ein neuer Flugsaurier”. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Abteilung der Bayerischen Akademie der Wissenschaften zu München, 1923, 306-307.
  2. Bennett, S. C. (2007). “A second specimen of the pterosaur Anurognathus ammoni”, Paläontologische Zeitschrift, 81: 376-398.
  3. Witton, M.P. (2008) “A new approach to determining pterosaur body mass and its implications for pterosaur flight”. Zitteliania B28: 143-159.

本文轉載自作者部落格:PREHISTORIC BEASTS ,歡迎追蹤作者粉絲頁:遠古巨獸與他們的傳奇

-----廣告,請繼續往下閱讀-----
文章難易度
江松樺
22 篇文章 ・ 4 位粉絲
恐龍愛好者,粉絲團《遠古巨獸與他們的傳奇》作者。致力於將最新的脊椎古生物學與化石生物學新知帶進華文世界,藉此讓大家認識這些遠古巨獸最真實的面貌。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
【Gene思書齋】豬玀紀,失落的世界(二):那裡的恐龍科學嗎?
Gene Ng_96
・2015/07/30 ・3902字 ・閱讀時間約 8 分鐘 ・SR值 512 ・六年級

-----廣告,請繼續往下閱讀-----

➙➙豬玀紀,失落的世界(一):這是不折不扣的黑心商品

其他出包的恐龍狀況

恐龍這支稱霸中生代(Mesozoic)兩億五千一百萬年前至六千六百萬年前的陸生脊椎動物,首次出現於二疊紀(Permian,299─251 百萬年前)晚期,並在三疊紀(Triassic,251─199.6 百萬年前)中期成為優勢陸棲動物群,曾支配全球陸地生態系統超過一億六千萬年之久。如果把地球歷史的五十億年壓縮成一天廿四小時,恐龍大概在舞台上唱了四十六分鐘的戲,而我們智人則才出場不到一分鐘(約五十八秒)而已。

雖然名為《侏羅紀公園》或《侏羅紀世界》,但後者出場的霸王龍、迅猛龍、滄龍、重爪龍、似鱷龍、甲龍、三角龍、似雞龍、微角龍、厚頭龍、副櫛龍、愛德蒙托龍,主要出現在白堊紀(Cretaceous Period)的 145.5─65.5 百萬年前,長達八千萬年間,而非更早的侏羅紀。

只有翼龍、中棘龍、雙型齒龍、雷龍、劍龍才是出現在界於三疊紀和白堊紀之間的侏羅紀(Jurassic),約一億九千九百六十萬年前到一億四千五百五十萬年前。因此,《侏羅紀世界》應該改稱《白堊紀世界》(Cretaceous World)才比較確實,只是感覺就整個遜掉了。

-----廣告,請繼續往下閱讀-----

《侏羅紀世界》的一大賣點是超大、超猛的滄龍。不過滄龍實際上是海洋爬行動物,並非恐龍,屬於鱗龍類,是身上覆蓋者重疊鱗片的爬行動物。《侏羅紀世界》裡的滄龍看來比一隻成年鯊魚大許多,一口吞下整條鯊魚只是塞牙縫。可是實際上滄龍只比一條鯊魚稍大,大概可達十四至十五公尺長,很少超過十八公尺長,滄龍科的成員也並非全都身軀龐大,有些小型滄龍大約才兩公尺長,和一隻鱷魚差不多。可是《侏羅紀公園》的滄龍估計長達兩百公尺!比所有已知的滄龍都還大。滄龍的泳速也不太可能像電影中那樣迅速到能躍出水面像鯨豚那樣表演,電影裡頭那隻也是人造怪物無誤。

迅猛龍一向是恐龍電影的大賣點,可是《侏羅紀世界》中的迅猛龍不僅沒羽毛,有幾處和實際的古生物學發現有出入,就像鳥一樣,迅猛龍缺少能做出電影中的那些表情的面部肌肉,尾巴也不會像電影中那麼靈活。同時,電影中的迅猛龍體型都太大了,真實的迅猛龍的大小和一隻火雞差不多而已。迅猛龍是否像《侏羅紀世界》裡那樣集體獵食呢?有可能的,不過證據僅來自美國蒙大拿州的一處化石,幾隻迅猛龍圍在食物周圍。

《侏羅紀世界》中的翼龍看來很耍寶,可是實際上翼龍無法像電影中那樣把遊客捉起來在空中拋來拋去,牠們的體力無法辦到。翼龍是飛行爬行動物,並非恐龍。雙翼的翼膜由皮膚、肌肉、其他軟組織構成,從身體兩側延展到極長的第四手指上。翼龍沒有牙齒,可能吃魚為生,過去許多電影都把翼龍搞成有牙齒的怪物,雖然翼龍沒有強到把人叼上天,可是《侏羅紀世界》裡的翼龍沒有牙齒,算是比較精確些的。

在電影中,肉食恐龍如暴龍和迅猛龍都被描繪得異常兇殘,而草食恐龍如三角龍和雷龍等則溫馴可親近。如果真的到了「侏羅紀世界」,這種刻版印象恐怕會要命。大型草食動物,如河馬和大象,在非洲每年都造成許多人死亡,像看來頗無害的河馬,大嘴的咬合力之強,連鱷魚都不見得是對手。河馬性格暴躁且攻擊性極強,是世界上最危險的動物之一,更是非洲每年殺死最多人的動物,勝過看似凶猛的獅子、鱷魚、毒蛇等猛獸,每年約有三千多人喪命其大嘴下。另外,每年也有好幾百人喪命大象、野牛腳下。所以還是敬那些大型草食恐龍而遠之,以策安全吧。

-----廣告,請繼續往下閱讀-----

恐龍的基因工程

科學家真的能夠從琥珀的蚊子體內得到恐龍血、萃取到 DNA 嗎?

根據古 DNA 研究專家長年的經驗分析發現,DNA 很難存在超過一百五十萬年仍保持足夠的完整度,更何況要萃取六千五百萬年到上億年的 DNA,就算有超低溫保存又防宇宙射線,也不見得能夠辦到。古 DNA 研究的開山祖師,瑞典裔德國科學家帕波(Svante Pääbo)在他的好書《尼安德塔人:尋找失落的基因組》(Neanderthal Man: In Search of Lost Genomes)中有詳細闡明(請參閱〈尋覓尼安德塔人的失落基因體〉))。

搞笑的是,《侏羅紀世界》裡頭的的蚊子 Toxorhynchites 體內是抽不到任何一丁點恐龍 DNA的,因為牠們其實不吸血,而是吸食果汁、蜜汁和樹汁等等,吃素的。即使是吸血的蚊子,也會有個問題──抽到的 DNA 絕大部分是蚊子的 DNA,要怎麼海底撈針找到恐龍專屬的 DNA 呢?這恐怕是天大的挑戰。因此,利用取得真正的恐龍 DNA 來複製出恐龍,恐怕會是個胎死腹中的夢想。

為了製造《侏羅紀世界》的最大賣點之一帝王暴龍,遺傳學家使用暴龍、南方巨獸龍、迅猛龍、瑪君龍、食肉牛龍、皺褶龍屬、阿貝力龍、樹蛙、烏賊的基因,其聲可達一百四十分貝,前進的時速可達五十英哩。樹蛙讓牠躲過熱感應追蹤器的偵測、烏賊基因讓牠能在環境中變色、隱藏及快速成長,迅猛龍基因能讓牠和迅猛龍溝通。

-----廣告,請繼續往下閱讀-----

在電影中,要混合多少種動物的基因當然是隨他們自己說,可是現實中基因不是一個獨立的運作單位,從鳥類的基因體來推估,恐龍很可能有約兩萬個基因,和人類差不多。基因之間有互相複雜的交互作用來製造出一個完整健康的個體,並不是塞進樹蛙的基因,恐龍就會有樹蛙的能力,也要其他基因能夠完美配合才行。我們現在對基因運作所知還有限,未來廿、卅年都不見得能夠隨心所欲地調配基因定製動物。

除了那隻異常聰穎兇殘的帝王暴龍,《侏羅紀世界》的吳博士也很明確地告訴他那位還在狀況外的老闆:園區裡頭所有恐龍全都是基因工程的產物。因為他們的理論假設,即使拿到恐龍的 DNA,也不太會是完好無缺的,他們勢必要用其他動物的基因體來填補空缺。這在學理上反倒是可行的,因為儘管許多動物看起來差異甚大,可是大部分基因的功能都是相當保守的,尤其是親緣關係愈近的物種,擁有相似基因的比例就愈高,例如人和黑猩猩可能只有不到 2% 的基因是有顯著差異的。

如果我們勉強接受《侏羅紀公園》能取得部分恐龍 DNA 而用其他動物 DNA 來填補空缺的想法,那就如吳博士說的,他們其實並沒有純種恐龍,園區裡所有恐龍都是基因工程的產物,所以沒有任何一隻恐龍的遺傳組成和侏羅紀或白堊紀時期的恐龍一模一樣。

如此一來,帝王暴龍就不是首隻基因混合的恐龍。在回應生物學家和恐龍迷的抨擊時,導演其實大可用此設定回應,說《侏羅紀世界》的遺傳學家只是製造出「看似」恐龍的基因混合動物,不需要負責任地吐槽說那不是紀錄片,可見他們根本不關心科學,而只是想賺錢而已。

-----廣告,請繼續往下閱讀-----

《侏羅紀公園》提到用蛙的基因體來填補恐龍基因體的空缺,在當時有一定的道理,因為當時基因體研究還才剛剛興起,鳥的基因體研究還完全未開始,在脊椎動物中,蛙的遺傳研究及基因體大小都比較可用。這個設定現在看來頗不實際,因為蛙是兩棲動物,而恐龍是羊膜動物,現生羊膜動物包括鳥類、爬行動物和哺乳動物。羊膜動物比兩棲動物更適應陸地生活,不需要像兩棲動物那樣需要生活在潮濕的環境,因為羊膜動物會生下包括堅固的透氣皮質或堅硬的蛋,裡頭還有促進呼吸與提供廢物處理的尿膜,腎臟與大腸適合保持水分,大部分哺乳類更演化出胎盤等結構。用蛙來填補恐龍 DNA 的空缺,那些恐龍恐怕要天天泡在水裡頭才能生存吧?

因此還是用鳥吧!如上所述,鳥類是由獸腳類恐龍演化而來的,基因體和恐龍最相像。最近哈佛大學的演化生物學家利用藥物改造 FGF 和 WNT 的訊號傳遞,成功地讓雞的嘴巴長得更像迅猛龍一些[1];科學家也知道鳥類共同祖先中至少有六個和牙齒相關的基因當時被「關閉」了[2];透過基因表現的分析,科學家也瞭解鳥類的指骨和恐龍的指骨之間的關係[3]。藉著演化基因體學的研究,我們愈來愈清楚鳥類和恐龍的差異可能源自何處。

而且何必想要從琥珀的蚊子中抽取到恐龍的 DNA 呢?不如用演化基因體學的方法來推估恐龍和鳥類基因體究竟可能差異在哪,這個方法比電影中的方法實際。有朝一日,科學家不是不可能利用鳥類來打造恐龍模樣的生物,複製「侏羅紀公園」就不會是空想了,我們要做的,就是研究非鳥類恐龍到鳥類恐龍之間,在基因體的層次上發生了啥有意義的變化,然後用逆向工程為之,不信的話請看以下影片:

延伸閱讀:

-----廣告,請繼續往下閱讀-----

豬玀紀,失落的世界(一):這是不折不扣的黑心商品

豬玀紀,失落的世界(三):只為了娛樂,其實把劇情搞得更糟

引用文獻:

1. Bhullar BA, et al. A molecular mechanism for the origin of a key evolutionary innovation, the bird beak and palate, revealed by an integrative approach to major transitions in vertebrate history. Evolution. 2015 May 12. doi: 10.1111/evo.12684. [Epub ahead of print]↩
2. Meredith RW, et al. Evidence for a single loss of mineralized teeth in the common avian ancestor. Science. 2014 Dec 12;346(6215):1254390. doi: 10.1126/science.1254390. Epub 2014 Dec 11.↩
3. Wang Z, et al. Transcriptomic analysis of avian digits reveals conserved and derived digit identities in birds. Nature. 2011 Sep 4;477(7366):583-6. doi: 10.1038/nature10391.↩

-----廣告,請繼續往下閱讀-----

參考資料:

Danielle Andrew. 5 Science Facts Jurrassic World Totally Ignored. IFL Science. June 25, 2015.
Laura Geggel and LiveScience. Awesome Dinos, Iffy Science Inhabit Jurassic World. Scientific American. June 18, 2015.
Linda Qiu and Dan Vergan. ‘Jurassic World’ Dinosaurs Stuck in the 1980s, Experts Grumble. National Geographic. NOVEMBER 27, 2014
NICHOLAS ST. FLEUR. A Paleontologist Deconstructs ‘Jurassic World’. The New York Times. JUNE 12, 2015.
MANOHLA DARGIS. Review: In ‘Jurassic World,’ the Franchise Feeds the Beast. The New York Times. JUNE 11, 2015.
Mark Mancini. 6 Amazing Mosasaur Facts to Prepare You For ‘Jurassic World’. Mental Floss. June 9, 2015.
Joshua A. Krisch. Here’s The Real Science Behind Jurassic World. VOCATIV. 06/12/15.

本文原刊登於閱讀‧最前線【GENE思書軒】,並同步刊登於The Sky of Gene

-----廣告,請繼續往下閱讀-----
Gene Ng_96
295 篇文章 ・ 32 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋