Loading [MathJax]/jax/output/HTML-CSS/config.js

0

0
0

文字

分享

0
0
0

815大停電所缺少的那份餘裕?「冗餘系統」與電力供應

活躍星系核_96
・2017/10/16 ・4573字 ・閱讀時間約 9 分鐘 ・SR值 540 ・八年級

-----廣告,請繼續往下閱讀-----

文/艾俠

2017年 8月 15日,由於電力供應不穩,發生全台灣各地接連斷電、最後演變成分區輪流限電的事件,讓能源問題再度成為焦點。或許對某多人而言,這次事件的意義似乎在於能夠為核能議題帶來有說服力的啟示,不過這篇文章將不會探討那些和實際發生的事關係不夠明確的問題;相對地,本文要介紹僅僅一個和這次事件直接相關的概念「冗餘」,並且用這個概念,來說清楚僅僅一個具體的問題。

發動機艙。圖/pinterest

多餘的也很重要?「冗餘

在日常用語中,「冗餘」(redundancy)通常是負面的詞彙,用來指一些多餘的、不需要的東西。但在許多學術領域中,我們注意到「多餘」和「不需要」是不同的事;多餘的東西,經常是維持世界正常運轉所不可或缺的。

歸納學術上常見的意義,「冗餘」有一種比較狹義的用法是「在一個系統中,能負擔某一功能的構造有好幾組,並且在其中一組故障時整體能繼續正常運作」。將資料同時存在多個硬碟裡的儲存架構(磁碟陣列 Raid 1)、或者配置有緊急發電機的醫院,都是這個意義下的冗餘系統;這種用法的「冗餘」有時候和「備援」是可以互換的。

-----廣告,請繼續往下閱讀-----

而在另一種用法下,「冗餘」指的是「系統有多餘的性能和複雜度,並且在部分構造故障時能繼續正常運作」。這時,我們不見得能找到特定的被額外設置的備援裝置,但總而言之,當系統一部分故障時,其他部分有能力分擔忽然多出來的工作,並且穩定運轉下去。這種意義下的冗餘在我們的生活中就十分常見。

事實上,「冗餘」還是經常包括一些真的不需要的東西。歸根究柢,廣義的「冗餘」被用來描述一種系統的性質,但並沒有預設它是好是壞。冗餘能增加可靠性,但同時也增加成本;在某些狀況下,它甚至反而會降低可靠性[1]。冗餘的價值,其實要根據個別狀況去判斷。

建築與結構的冗餘

大部分人都知道建築物和各種機械裝置的強度會有餘裕,也有人把這稱為「強度冗餘」。不過比較嚴謹地說,土木工程和結構力學上的「冗餘」或譯「贅餘」,通常指的是「結構贅餘」(structural redundancy)[2],意思是「部分構造受損失去功能之後,其餘構造繼續維持整個結構穩定的能力」。包含了贅餘的設計會比較能抵抗例如在天災中龜裂、建築老化、鄰居在承重牆上挖洞、或者施工品質不如預期之類狀況。像房屋、馬路、橋、或者電梯,這類對安全性需求比較高的東西,在設計時都必須具體地考量贅餘度。

多餘的強度顯然是必須的,但整個構造能隨時代替損壞的零件發揮功能,在結構贅餘中是很重要的因素。

-----廣告,請繼續往下閱讀-----
1967 年美國 Silver Bridge 崩塌的事故。圖/作者提供

1967 年美國 Silver Bridge 崩塌的事故,被認為是一個構造缺乏贅餘引發事故的經典案例。這座橋是以許多單支鋼條連結而成的鋼鏈(eyebar-chain)懸掛起來的,並且僅僅由於關節上有一顆鋼珠大小的累積損傷,在出現損壞徵兆後的一分鐘就崩塌了[3]

生物機制的冗餘

在生命科學領域,「冗餘」比較沒有一致的用法和研究方法。這裡將延續這篇文章的脈絡,介紹一些對生命個體有價值的冗餘生物機制。

  • 許多生物體內的生理和化學機制,包括代謝、血壓、血糖、血液酸鹼度等,都有不只一組調控路徑,能在其他部分失常時繼續運作[4][5, para. 5]。舉例來說,人體的血壓主要是由心血管系統和兩個腎臟(本身就是有名的冗餘器官,只要有一個就能發揮正常的泌尿功能)所共同控制的,而且在其中一部分不健康時仍然可能相當準確地控制血壓。這是功能重複所產生的冗餘。
  • 許多動物能用不同的肌肉組合做出相同的關節動作、並且能用不同的關節組合做出相同的行動。要控制這樣複雜的運動機制,無論是對神經系統、或者學習運動方式的生物個體來說,都是相當複雜的工作。但今天,幾乎所有人都已經同意這樣冗餘的自由度(degree of freedom)以及它造成的額外負擔,總的來說對我們是有幫助的[6]
  • 大腦有相當複雜的容錯與備份能力,讓它在充滿雜訊的環境中能夠還算可靠地思考與記憶,或者避免因為受到損傷而失去資訊[7][8];近期有以小鼠為實驗對象的研究指出,左右腦可能還有明確的相互備份機制,某些資訊會在左右兩個半腦中各儲存一份,當其中一邊的資訊受到破壞時,能夠從另一邊複製回來[9]

這類對生存有幫助的冗餘機制——其實就是一種潛能——讓我們能夠適應各種環境,在許多不同的飲食方式下維持健康,而且不會輕易死於衰竭。

資訊冗餘與語言冗餘

近幾十年,我們在討論大腦處理資訊的方式時,經常會參考資訊理論這門研究資訊本質的嶄新學科。

-----廣告,請繼續往下閱讀-----

在資訊理論中,資訊密度的極限能夠明確地用數學表達,而「冗餘」指的是實際上的資訊密度和這極限的差距[10]。在這種用法下,冗餘是不可避免的常態,而且它的正面意義和負面意義同樣受到重視。如果要在有限資源下傳遞或保存最多的資訊,就需要盡可能消除冗餘,檔案壓縮就是在做這件事。

然而,缺乏冗餘的資訊會難以直接利用,這代表它的可讀性比較差,你要耗費比較多時間、精神力、或者計算機資源去解讀它的內容[11][12, p. 351];缺乏冗餘的資訊也會是脆弱的,只要遺失很小一部分就會無法還原,比較糟的情況下你連確認資訊有沒有遺失都沒辦法。

勞依茲咖啡屋(Edward Lloyd’s Coffee house)。圖/作者提供

語言冗餘可以說是一種特殊的資訊冗餘。雖然資訊科學家通常並不處理在語言中承載資訊的語義,以至於資訊理論的基本定理要應用來解決語言學問題有許多困難,但在這兩個領域中,冗餘所造成的影響幾乎是相同的。

我們可以用一個日常英語的例子來說明語言冗餘。在「This man is a solder」這個句子裡,每個字都對應到敘述對象的單數型態,意味著和單複數有關的資訊在這個句子中的每個字裡重複地出現了。我們平常使用的語言中存在許多像這樣重複的資訊,代表我們用了更長的句子或創造了更多的語言規則來表達一樣多的東西,但這也是我們有辦法從一個部分音節遺失了、模糊了的句子猜出它原本意思的原因。

-----廣告,請繼續往下閱讀-----

引用科普著作 Grammatical Man 裡的一段話,為這個段落作結:

「冗餘能夠讓某些字母或字母組合出現的機率變高、讓句子更容易被預測,而這能夠減少錯誤發生。」[13, p. 3]

低可靠性的電力系統

2017 年 8 月 15 日下午,由於中油在施工過程中,錯誤地關閉了大潭火力發電廠的天然氣供應,導致該廠的六部發電機組全部跳機(trip),台灣的電網中瞬間少了 4157 MW 的電力。電力供需失衡造成的衝擊馬上引發電力系統保護設備自動切斷部分用戶的電力供應,開始了我們所知的斷電事件。另一方面,當日全台灣的最大供電能力為 37610 MW(在用電尖峰時有 3.17% 的備用發電能力[14],即「備轉容量率」,percent operating reserve),而事件發生前的實際用電量為 34809 MW,中間僅有約 2801 MW 的緩衝。[15]

沒有足以填補缺口的電力,使得電網無法穩定下來 ,隨後又誘發了台中火力發電廠 5 號機的跳機。最後,在晚間 6 點開始了長達 3 個小時 40 分鐘的分區限電。[15]

8月15日 事故電力供需時序說明。圖/引用自 815 停電事故行政調查專案報告。

大潭火力發電廠的天然氣供應在中油端的管理不良,一般認為是這次事故最直接的原因。但為什麼僅僅這樣一件意外,就能夠造成全國性的限電?最後,我們要回到撰寫這篇文章的契機,了解電力冗餘(電力領域更常用的中文詞彙是「裕度」)的問題。

-----廣告,請繼續往下閱讀-----

和前面表達當日供電能力冗餘的「備轉容量率」不同,「備用容量率」(percent reserve margin)指的是以年度為單位的、所有現役發電設備的冗餘發電能力[16]。這是一個長期發展的指標,簡單地說就是電網能應付各種大修、小修、故障、意外事件的餘裕。備用容量率越高電費就越貴,但相對地也更不容易受意外影響。

2016 年,台電的備用容量率根據標準計算方式為 10.4%,但扣掉政治性長期停機的、以及算進未取得執照但參與了發電的機組,實際上的冗餘發電能力為 8.1%。多高的備用容量率足夠可能並不是一件容易分析的事:電費增加會連鎖性地影響物價,電力供應不穩定則會造成經濟衰退;但行政院其實一直對這個指標有建議標準,目前是 15%[17][18]。如果我們的電力建設維持在這個標準上,8 月 15 日的斷電應能在短時間內復原。可以說台灣電網的可靠性比起原先所規劃的要低了許多,而這導致了發生在大潭發電廠的事故,最終演變成為必須以全國性的限電來處理的事件。

  • 2017.11.14 編按:本段有稍飾修改,原因為台電的「備轉容量率」並非採用維基百科以及某些電網使用的即時統計與 10 分鐘升載定義,而是以當日可調度的發電容量與尖峰計算出當日唯一的數值。並將新增的參考資料補充在下方。
分區限電中,燈光全無的臺北市松山區新東街9巷公寓。
source:Wikipedia

在能源議題的論辯中,「台灣的電是否夠用」一直是爭論的焦點之一,但這個問法其實並沒有呈現出真正的問題。如果我們能夠接受比較頻繁的斷限電的話,很可能 5% 的備用容量率都是「夠用」的;而在某些更嚴重的天災或事故之下,15% 的備用容量率也不能讓我們免於限電。多餘的電力關係到的與其說是夠不夠用,更像是可靠程度高低的問題;是如同我們所居住的房子和賴以溝通的語言那樣,我們希望電力系統足以應付多大的錯誤的問題。

  • 2017.10.24 編按:最末段的文章原先寫道關於 8 月 15 日的事件在有足夠的備轉容量下很可能將不會發生斷電,不過由於預備的發電容量需要最大十分鐘升載,因此實際上較可能是仍會發生隨機斷電但於短時間內恢復正常運作。本段經由讀者提出後原作者於內文中進行修改,於此告知、也謝謝讀者的不吝指正。
  1. Scott D. Sagan (2004). Learning from Normal Accidents.
  2. Fabio Biondini, Dan M. Frangopol, & Stefano Restelli (2008). On Structural Robustness, Redundancy and Static Indeterminacy (PDF).
  3. Silver Bridge. In Wikipedia.
  4. Jason A. Papin, Nathan D. Price, Jeremy S. Edwards & Bernhard Ø. Palsson (2002). The Genome-Scale Metabolic Extreme Pathway Structure in Haemophilus influenzae Shows Significant Network Redundancy.
  5. Michael J. Joyner (2013). Physiology and Redundancy.
  6. Degrees of freedom problem. In Wikipedia.
  7. C. Robert Almli, Stanley Finger, T.E. LeVere & Donald Stein, eds. (2012). Brain Injury and Recovery: Theoretical and Controversial Issues.
  8. Sophie Denève, Alireza Alemi, & Ralph Bourdoukan (2017). The Brain as an Efficient and Robust Adaptive Learner.
  9. Nuo Li, Kayvon Daie, Karel Svoboda & Shaul Druckmann (2016). Robust neuronal dynamics in premotor cortex during motor planning.
  10. Redundancy (information theory). In Wikipedia.
  11. Victor Kuperman, Mark Pluymaekers, Mirjam Ernestus & Harald Baayen (2007). Morphological predictability and acoustic duration of interfixes in Dutch compounds (PDF).
  12. Denis McQuail (2010). McQuail’s Mass Communication Theory.
  13. Ernst-Jan C. Wit & Marie Gillette (1999). What is Linguistic Redundancy? (PDF).
  14.  過去電力供需資訊。台灣電力股份有限公司。
  15. 815 停電事故行政調查專案報告 (PDF)。
  16. 備用容量之說明。台灣電力股份有限公司。
  17. 訂定「能源開發及使用評估準則」。行政院公報資訊網。
  18. 經濟部能源局_長期負載預測與電源開發規劃。政府資料開放平臺。

本文原發表於中立之丘

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。