0

0
0

文字

分享

0
0
0

動物有意識嗎?該如何知道?——《誰是我?意識的哲學與科學》

時報出版_96
・2017/03/01 ・3594字 ・閱讀時間約 7 分鐘 ・SR值 508 ・六年級

  • 【科科愛看書】我是誰?誰又是我?這兩個看似平常卻難以回答的問題,《誰是我?意識的哲學與科學》想為你提出多元而有趣的思考方向。此書藉由淺顯的文字和生動的譬喻,從哲學、神經科學談到量子力學,用寬容而開放的態度闡釋不同觀點下的「我」與「意識」究竟為何?其中,除了人類本身,作者更從動物、機器人以及各式人格疾患等方向,帶領我們反思自身的意識,使得整個對話更為深刻。

不同複雜度的動物皆展現「似有認知能力」的行為表現。 如何判斷哪些能力可稱為認知能力? 如何論證動物也有心靈?

動物有意識嗎?一招「行為類比」帶你見真章

本章一開始就提到,行為類比是方法之一,如果動物有類似人類的行為或神經生理機制,便可以推論動物也有心靈。科學上也常用哲學上所謂的最佳解釋論證:動物有如此複雜行為的最佳解釋是動物有心靈。動物顯然有很好的記憶、有限的語言溝通、情緒與知覺,能思考、計畫有限的未來、構思行動策略或學習新能力,這些都屬於認知能力。然而有認知能力就有心靈嗎?

動物顯然有很好的記憶、有限的語言溝通、情緒與知覺,能思考、計畫有限的未來、構思行動策略或學習新能力,這些都屬於認知能力。然而有認知能力就有心靈嗎?圖/By Jean-François Chénier @ flickr, CC BY-NC 2.0

當我們問動物有沒有意識時,有兩種不同的意義。第一種是指生物整體是清醒的、抑或處於深沉睡眠、休克或死亡;第二種則指是否有意識自己處在特定心理狀態下,例如覺得痛時、聽到音樂是否有意識。第二種意義下的意識當然預設自己是清醒的;如果在第一個意義下沒有意識,例如植物人,便不可能意識到痛、音樂、氣味或情緒等。

動物有認知能力不代表有意識,因為我們知道人工智慧也可以有認知能力。

今天的人工智慧不只會下棋,事實上已廣泛應用在家電與汽車上,甚至可以自動駕駛汽車、飛機、太空船等,生產線上也大量用機器人取代勞工。在可預見的將來,會計師、律師、醫師等專業工作都可能由人工智慧取代。任何專業工作,只要牽涉大量資料分析、判斷、策略選擇與推論,都是人工智慧的強項。人工智慧似乎還一籌莫展的、人性的最後堡壘,就是感覺知覺經驗。如何創造出有意識的機器人? 機器人可不可能有意識? 這應該是人工智慧領域的最後一個問題。

-----廣告,請繼續往下閱讀-----

動物有沒有意識? 這個問題等同下面的問題:象群聚集在死去的大象附近哀叫守候,在哀悼嗎? 象群會難過嗎? 火烤或針刺時,動物會逃跑,牠們會痛嗎? 彼此打鬧的幼獅在玩耍嗎? 開心嗎? 黑猩猩母親背著幼兒的乾屍,會難過與不捨嗎? 黑猩猩和人類一樣,嬰兒出生時自然流露的「新生兒微笑」非由視覺引起,那是為什麼笑? 會因此感到快樂嗎? 如果答案都是否定的,無異於表示動物沒有感覺和情感,只是精良的自動機器。

意識不簡單:三層次意識內容大不同

第一個層次指現象意識,表示當下經驗的那種感覺(what-it-is-like-ness),也就是感覺的質感、哲學家說的「感質」,這些都是生物的主觀經驗,例如視覺、聽覺、觸覺、嗅覺、痛覺等。

第二個層次是反思性意識,能思考當下及過去的經驗。有解決問題、學習和計畫等行為的動物,應該能思考其當下及過去的經驗。

第三個層次是自我意識,是「我的經驗屬於我自己」的那種感覺,我們的感官經驗都呈現自我擁有的感覺。是不是所有的動物都同時有這三層意識? 或者某種意識只侷限在某些動物? 如何判斷動物有這些意識?

-----廣告,請繼續往下閱讀-----

演化史上從什麼動物開始有現象意識? 什麼樣的神經生理機制才會產生現象意識? 以痛覺為例,具有中樞神經系統的動物有魚類、兩棲類、鳥類和哺乳類,非脊椎動物只有神經節,沒有中樞神經系統,能不能說沒有中樞神經的生物沒有痛覺? 即使沒有痛覺,也可能有其他感覺,甚至有超乎人類想像的感覺。無脊椎動物可能活在一個奇幻的感覺世界中,誰知道呢?

動物也會有痛覺嗎?

如何判定動物是否感覺到痛? 以人類為例,當感覺痛時,在行為上會反射性地抽離導致痛的刺激,身體可能會顫抖、哀號、流淚以及出現異常的身體動作,例如一拐一拐地或單腳走路,以避免再次受刺激。

在神經生理上,外在刺激引發痛覺受器(nociceptors)的反應,由 C─神經纖維和 A-delta 神經纖維傳遞到丘腦,再到體感覺區處理。C─神經纖維速度較慢,負責比較鈍且位置模糊的痛覺, 位置明確的銳痛刺激, 則由速度較快的 A-delta 神經纖維傳送。如下圖所示。如果其他動物也有相似的行為和神經生理機制,是不是就和人類一樣,擁有相同的痛覺?

如果其他動物也有相似的行為和神經生理機制,是不是就和人類一樣,擁有相同的痛覺?圖/《誰是我?意識的哲學與科學》提供

首先來看動物是否有如人類痛覺的行為。所有的脊椎動物在遇到會產生痛覺的外在刺激時,都有類似的行為反應。我小時候住鄉下,常有機會看到殺豬或殺雞—現在的年輕人也許只看過超級市場的豬肉與雞肉—那景象可說是烙印於腦海中,揮之不去。有時看到運豬車呼嘯而過,車上擠滿了待宰的豬,我腦中馬上會浮現豬隻哀號的畫面,可以感受到豬正承受極大的痛苦,這種感覺讓我基於人道理由盡量吃素。

-----廣告,請繼續往下閱讀-----

我相信動物被宰殺時一定很痛苦,牠們的行為揭露了一切。不過這只是行為上的類比,邏輯上並不保證這樣的推論一定有效。至於軟體動物如水蛭、蝸牛和單細胞生物草履蟲,遇到強酸也會逃避。牠們純粹只是生理反應,還是伴隨痛覺?

其次來看動物的神經生理結構和人類的是否類似。丘腦和體感覺區在人類痛覺扮演重要角色,科學家發現魚類、兩棲類、爬蟲類、鳥類、哺乳類和靈長類都有丘腦和體感覺皮質區。這些動物也都有痛覺受器 C—神經纖維和 A-delta 神經纖維。有趣的是,無脊椎動物中,水蛭也有感覺受器和 C—神經纖維,也有對痛覺刺激的逃避反應。水蛭會覺得痛嗎? 如上面說過的,水蛭也有可能活在一個我們無法瞭解、無法想像的感覺世界中,如果行為雷同、加上類似的神經機制,都不足以使人信服動物具有意識,未免就太人類沙文主義了。

猩猩知我心?動物的反思性意識

什麼動物有反思性意識? 也就是說,哪些動物能思考當下或過去的經驗? 什麼樣的行為可以做為反思性意識的證據? 要解決問題、學習和計畫未來,必須能思考當下和過去的經驗,靈長類和哺乳類無庸置疑地都具備這樣的能力,鳥類如烏鴉也如這般聰明;有趣的是章魚雖然是軟體動物,卻有解決問題以取得食物和逃脫的能力,其他軟體動物、魚類、爬蟲類和兩棲類動物,尚未觀察到類似行為。

然而,動物能思考過去和當下的經驗,可不可能是對這些動物行為的過度解釋? 會不會犯了擬人化的錯誤? 這個問題沒有確定的答案,因為動物的行為再複雜、再具巧思,都有可能只是無意識的規則依循,像電腦跑程式一樣—即使複雜到可以自動駕駛一架波音七七七,我們也不會說飛機上的電腦有反思性意識。

-----廣告,請繼續往下閱讀-----
我是一隻猴子?還是一隻大象?或者我其實是泰山? 圖/ Pixabay, CC0 Public Domain

自我意識預設擁有「我」的概念,有些人認為動物得具有自然語言能力,才可能擁有「我」的概念,這倒不必然。概念是一種心智能力,表示能夠區別或分類。當我們說「豬頭皮有『香蕉』概念」,意思是說歌手豬頭皮有能力區別香蕉與非香蕉;同理,具有「我」的概念意謂有能力區別自我與他人,因此沒有語言能力的動物仍然有可能擁有「我」的概念。

演化史上從什麼動物開始有自我意識? 科學家常用的測驗是「鏡子測驗」(mirror test)。一開始先在動物臉部做個標記,例如一個紅點,接著讓動物看鏡子中的自己。如果受試動物沒有反應,則未通過測驗。如果透過觀看鏡中影像而試圖移除紅點,則通過測驗。這個測驗是由心理學家蓋洛普(Gordon Gallup)於 1970 年設計。不過也有人質疑鏡子測驗的可信度。能通過測驗的動物不多,除了人類之外,大猿、海豚、大象和逆戟鯨(orcas)也通過測驗。質疑的人認為是否有可能通過測驗、但不具自我意識? 動物可能只是受到鏡中的影像引導,企圖抹掉紅點,而不知道鏡中的是「我」。完全確定具有自我意識的只有人類。

科學家常用的測驗是「鏡子測驗」。一開始先在動物臉部做個標記,例如一個紅點,接著讓動物看鏡子中的自己。如果受試動物沒有反應,則未通過測驗。如果透過觀看鏡中影像而試圖移除紅點,則通過測驗。圖/CC BY 2.0, wikimedia commons

 

 

本文摘自《誰是我?意識的哲學與科學》,時報出版

-----廣告,請繼續往下閱讀-----
文章難易度
時報出版_96
174 篇文章 ・ 38 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

7
1

文字

分享

0
7
1
你聽過「量子意識」嗎?電子雙狹縫實驗讓人猜測意識會影響物質世界,真的假的?
PanSci_96
・2024/03/06 ・3805字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

在市面上,我們常會看到號稱運用量子力學原理的商品或課程,像是量子內褲、量子能量貼片、量子首飾、量子寵物溝通、量子速讀、量子算命、量子身心靈成長課程等等。有人說,量子力學代表了意識具有能量,藉由調整心靈的共振頻率,就能保持身心健康,只要你利用量子力學原理進行療癒或冥想,就能提昇自己的能量,人能長高、身體變壯、每次考試都考一百分;又像是,量子力學就代表一種信息場,讓你跟別人有心電感應,只要轉念,讓宇宙能量幫助你,你就能發大財還能避免塞車。也有人說,別人吃一個下午茶,你也馬上吃一個下午茶,別人喝一杯咖啡,你也馬上喝一杯咖啡,別人跟家人吵架,你也馬上找一件事跟家人吵架,這就是量子糾纏。

然而,量子到底是什麼?跟身心靈、宗教和玄學真的扯得上關係嗎?是否真能幫助你維持健康又賺大錢呢?

在這一系列影片裡,我們就要來討論,量子力學的原理為何?背後又是基於哪些科學的研究成果。等你看完之後,相信對於量子力學跟上述五花八門商品究竟有沒有關係,心裡自然會有所答案。

量子力學和意識有關?

坊間常會聽到量子力學跟意識有關的說法;或許也是因為這樣,量子力學被許多身心靈成長課程甚至玄學拿來作為背書。但,量子力學真的是這樣子嗎?

說到量子力學跟意識的關係,我們就必須來看看,量子力學最著名的實驗之一,20 世紀的物理學大師費曼(Feynman)甚至曾經說過,這個實驗「包含了量子力學的核心思想。事實上,它包含了量子力學唯一的奧秘。」它,就是雙狹縫干涉實驗。

-----廣告,請繼續往下閱讀-----

雙狹縫干涉實驗

現在我拿的器材,上面有兩道狹縫,中間間隔了非常短的距離。等一下,我們會讓雷射光通過這兩道狹縫,看看會發生什麼事。

我們看到,雷射光在打向雙狹縫之後,於後面的牆上呈現有亮有暗的條紋分布,這跟我們在國、高中學過的波的性質有關。

在兩道光波的波峰相會之處,會產生建設性干涉,即亮紋的位置;而暗紋的部分,則是來自破壞性干涉,是兩道光的波峰和波谷交會之處,亦即,光的效應被抵銷了。

在歷史上,雙狹縫干涉實驗占有非常重要的地位。19 世紀初,英國科學家、也是被譽為「世界上最後一個什麼都知道的人」的湯瑪士.楊(Thomas Young),利用雙狹縫實驗,證明了光是一種波。

-----廣告,請繼續往下閱讀-----

那麼,如果我們拿不是波的東西,來進行雙狹縫實驗,會看到什麼結果呢?讓我們試驗一下。

現在我手邊有一堆的彈珠,前面是用紙板做成的兩道狹縫,後面則是統計彈珠落點的紙板。我們讓這些彈珠朝狹縫的地方滾過去,並在彈珠最後的落點劃下記號;若在同樣位置的記號越多,就代表有越多彈珠打中該位置。

在丟了一百顆彈珠之後,我們可以看到,扣除掉一部份因為路徑被擋住、通不過狹縫的彈珠之外,彈珠最終抵達的位置,大致分別以兩道狹縫的正後方為最多,呈現兩個區塊的分布,不像先前光的雙狹縫干涉實驗中,出現明暗相間的變化。

所以,我們得到結論:若是拿具有物理實體的東西進行雙狹縫實驗,因為其一次只能選一邊通過,所以落點最終只會聚集在兩個狹縫後方的位置;而且要是行進的路徑不對,還可能會被擋住。

-----廣告,請繼續往下閱讀-----

至於波的情形,那就不同了,只要狹縫的大小適當,波可以同時通過兩個狹縫,並互相干涉,產生明暗相間的條紋。

換言之,是波,還是物質,兩者在雙狹縫實驗的表現是截然不同的。

只不過,以上的實驗似乎並沒有什麼太令人感到意外的地方,我們也看不出來,它跟量子,還有意識,到底有什麼關係?事實上,若要真正顯示出它的獨特之處,就要來看電子的雙狹縫干涉實驗。

電子的雙狹縫干涉實驗

我們知道,電子是組成原子的基本粒子之一,而原子又組成了世間萬物。可以說,電子是屬於物質的一種極微小粒子。

-----廣告,請繼續往下閱讀-----

在電子的雙狹縫干涉實驗,科學家朝雙狹縫每次發射一顆電子,並在發射了很多顆電子之後,觀察電子的最終落點分布會怎麼呈現。

既然電子是物質的微小粒子,那麼在想像中,應該會跟我們前面使用彈珠得到的結果差不多,電子會分別聚集在兩道狹縫後方的區域。

從實驗的記錄影片中可以看到,在一開始、電子數量還很少的時候,其落點比較難看得出有明顯規律,但隨著電子的數目越來越多,我們慢慢能夠看出畫面上具有明暗分布,跟使用光進行雙狹縫實驗時得到的干涉條紋,有著類似的結構。

這樣的結果,著實令人困惑。直覺來想,既然電子是一顆一顆發射的,它勢必不可能像光波一樣,同時通過兩個狹縫,並且兩邊互相干涉,產生明暗相間的條紋。

-----廣告,請繼續往下閱讀-----

但無可否認,當我們用電子進行雙狹縫實驗時,最後得到的結果,看起來就跟干涉條紋沒什麼兩樣。

對這出人意表的觀測結果,為了搞清楚發生什麼事,科學家又做了更進一步的實驗:

在狹縫旁放置偵測器,以一一確認這些電子到底是通過哪一個狹縫、又如何可能在通過狹縫後發生干涉。

這下子,謎底就能被解開了――正當大家這麼想的時候,大自然彷彿就像在嘲笑人類的智慧一樣,反將一軍。

科學家發現,如果我們去觀測電子的移動路徑,只會看到電子一顆一顆地通過兩個狹縫其中之一,並最終分別聚集在兩個狹縫的後面――換言之,干涉條紋消失了!

-----廣告,請繼續往下閱讀-----

在那之後,科學家做過無數類似的實驗,都得到一樣的結果:只要你測量了電子的路徑或確切位置,那麼干涉條紋就會消失;反過來說,只要你不去測量電子的路徑或位置,那麼電子的雙狹縫實驗就會產生干涉條紋。

在整個過程中,簡直就像是電子知道有人在看一樣,並因此調整了行為表現。

在日常生活中,若有人要做壞事,往往會挑沒人看得到的地方;反過來說,當有其他人在看,我們就會讓自己的言行舉止符合公共空間的規範。

量子系統也有點像這樣,觀測者的存在與否,會直接影響到量子系統呈現的狀態。

-----廣告,請繼續往下閱讀-----

只不過,這就帶出了一個問題:到底怎麼樣才算是觀測?如果我們在雙狹縫旁邊只放偵測器不去看結果算嗎?我們不放偵測器只用肉眼在旁邊看算嗎?或是,整個偵測過程沒有人在場算嗎?

這就是量子力學裡著名的觀測問題(measurement problem)。

結語

在量子力學剛開始發展的數十年,有許多地方都還不是那麼清楚,觀測問題就是其一。在歷史上,不乏一些物理學家,曾經認真思考,是否要有「人的意識」參與其中,才能代表「觀測」。

如果真是這樣的話,那麼「意識」就存在非常特別的意義,而且似乎暗示人的意識能夠改變物質世界的運作。

有一些物理學家曾認真思考,是否要有「人的意識」參與其中,才能代表「觀測」。圖/envato

可以想見地,上述出自量子力學觀測問題的猜測,後來受到部分所謂靈性導師跟身心靈作家的注意,於是,形形色色宣揚心靈力量或利用量子力學原理進行療癒、冥想或身心靈成長的偽科學紛紛出籠,直到近年都還非常流行。

另一方面,可能因為量子兩個字帶給人一種尖端科學的想像,坊間琳瑯滿目的商品即使跟量子力學一點關係都沒有,也都被冠上量子兩字;除此之外,商品宣傳裡也常出現一堆量子能量、量子共振等不知所謂的概念,不然就是濫用量子力學的專有名詞如量子糾纏、量子穿隧等,來幫自己的商品背書。只要有量子兩字,彷彿就是品質保證,讓你靈性提升、身體健康、心想事成。

對此,我就給三個字:敢按呢(Kám án-ne)?

事實上,量子力學至今仍是持續演進的學問,我們對量子力學的理解也隨時間變得越來越豐富。現代的物理學家,基本上不認為我們可以用意識改變物質世界,也不認為「意識」在「觀測」上佔據一席之地,甚至可以說正好相反,人的意識在觀測上根本無關緊要。

不過,我們不會那麼快就直接進入觀測問題的現代觀點。在之後接下來的幾集,我們會先從基本知識開始說起,循序漸進,讓你掌握量子力學的部分概念。而在本系列影片的最後一集,我們才會重新回到觀測問題,並介紹量子力學領域近幾十年來在此問題上獲得的進展。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----