Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

尋找第二個地球

活躍星系核_96
・2014/11/25 ・1592字 ・閱讀時間約 3 分鐘 ・SR值 520 ・七年級
相關標籤:

-----廣告,請繼續往下閱讀-----

51_Pegasi_b_v3
credit: CC by Debivort @Wikimedia Commons

文 / 辜品高(中研院天文所)

西元1995年是人類科學史上畫時代的一年,天文學家發現太陽並不是唯一帶有行星的恆星,這個結果掀起一股研究外星生物的風潮。生命如何在地球開始的,或是甚至有機會在太陽系以外的行星上形成,至今仍然是一個謎。在地球上,我們通常說構成生命的三要素是陽光、水、和空氣。陽光供給植物和某些微生物行光合作用所需的永續能量。水則是一種相當好的溶劑:可能在早期的地球,不同的有機分子可以溶解於海洋或湖泊中,透過彼此之間的生化反應,而進化成生命體。可是,溫度和大氣壓力要正確,水才能以液態方式存在於一個行星表面上。

怎麼能成為「第二個地球」的條件?行星不能離開它的母恆星太近,以至於太熱而將水給蒸發離開該行星。當然也不能離它的母恆星太遠,以至於太過寒冷而水都結成了冰。我們知道,恆星有著不同的質量。質量比太陽大的,輻射能量比太陽強;反之,質量比太陽小的,輻射強度就比太陽弱。所以當一個恆星的質量越小,所給予的輻射能量越低,行星就必須越靠近此恆星,以維持水可以在其表面存在的溫度。

此外,行星質量可能需要像地球,才能有足夠適當的大氣,去維持在地表上液態水的存在。譬如說,月球因為質量僅是地球的百分之一,微弱的重力無法抓住大氣,造成氣壓太低使得水無法在表面存在。另一方面像木星或海王星之類的巨大行星,質量超過十個地球。它們的外層或者甚至內部,主要由濃厚的氫氣和氦氣所組成,以至於氣壓過高,液態水也無法形成。綜合以上所說,天文學家給每一個單一的恆星定義一條所謂的「適居帶」(habitable zone):給予足夠合理的大氣,液態水可以在類地行星表面存在的環狀軌道帶。

-----廣告,請繼續往下閱讀-----

尋找太陽系外的類地行星是無比的困難,母恆星的光源倒成為尋找暗淡系外地球的光害。但是我們知道,受到行星重力的影響,會使得母恆星的光譜線因為都卜勒效應而呈現週期性的微小頻率變化,天文學家巧妙地觀測這種現象來間接發現行星。行星凌星是另外一種普遍用來尋找系外行星的方法:試想一個系外行星的軌道面恰巧和觀測者的視線幾乎平行,每當行星運行到母恆星和觀測者之間,也就是在所謂凌星發生的時候,母恆星的光度會因微小行星的遮掩而稍微變暗。

最近上檔的電影「星際效應」,描述因為地球氣候變遷而缺糧,人類被迫去尋找第二個適居的地球。因為劇中候選行星都在黑洞附近,強大的重力導致幾年的光陰減慢到幾個小時。這種行星真得會存在嗎?根據廣義相對論,如此巨大的時間變化只能在黑洞的事件穹界(event horizon)附近才會發生,結果是候選行星不但因為黑洞強大的重力失去它的母恆星,也因為強大的潮汐作用而被無情地扯裂(tidal disruption)。當然我們無需對科幻電影的劇情挑三撿四。有趣的科學聯想是,在電影裡呈現黑洞的重力可以讓光線彎曲而成像,事實上行星的重力也可以像透鏡讓背景星光彎曲而聚焦。這種現象稱作重力微透鏡(microlensing)。天文學家已利用這種方式發現大約30個系外行星,期盼未來利用重力微透鏡可以發現在「適居帶」的類地行星。

利用都卜勒效應和行星凌星,天文學家已發現十幾個類地行星在「適居帶」內。希望下一代的哈伯望遠鏡,也就是詹姆士韋伯太空望遠鏡(James Webb Space Telescope),將有機會透過凌星的過程,觀測到系外地球的大氣環流和光譜。如果光譜顯現氧氣、臭氧、水汽、二氧化碳等分子的存在,這將強烈暗示「第二個地球」的存在,或許進一步能幫助人類了解生命的起源!

參考資料

-----廣告,請繼續往下閱讀-----
  1. 辜品高 “太陽系與系外行星的探索” 2011/夏 台北星空
  2. The Habitable Exoplanets Catalog
  3. Habitable Zone Gallery
  4. Universetoday: Event Horizon of a Black Hole
  5. Gezari, Suvi “The tidal disruption of stars by supermassive black holes”, Physics Today, 67, 37, 2014
  6. WFIRST Mission: exoplanets – microlesning
  7. James Webb Space Telescope: starlight filters through planetary atmosphere
  8. 蔡尚閔, Dobbs-Dixson, Ian., 辜品高 “Super-rotating circulation in the atmosphere of a tidally locked exoplanet”, Astrophysical Journal, 793, 141, 2014
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
別讓 X-ray 檢測成為元件早衰的隱形殺手!寄生輻射風險一次破解
宜特科技_96
・2025/06/29 ・3926字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

為了精確找出 IC 內部缺陷,非破壞性的 3D X-ray 驗證已成為半導體業界的關鍵手段。然而,經過高劑量輻射處理的 IC,在後續可靠度測試中卻可能提前失效!隨著半導體逐漸應用於 AI、車用、航太與醫療設備等需要超高可靠度的領域,如何有效量測並控制這些寄生輻射對 IC 的影響,已是工程師不得不面對的重大挑戰。

本文轉載自宜特小學堂〈別讓 X-ray 檢測成為元件早衰的隱形殺手!寄生輻射風險一次破解〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

圖 / 宜特科技

X-ray 屬於物理性非破壞檢測,是一項即時且便利的分析實驗,可在故障分析(FA)或產品製程改善過程中快速找出問題;僅在極少數特定製程或產品條件下,才可能影響元件的電氣特性。

如同人體若長期暴露在輻射環境中,可能導致細胞突變、DNA 受損,甚至增加癌症風險。對於 IC 而言,情況其實類似——當元件在 X-ray 等非破壞性驗證分析中持續累積過高的輻射劑量(TID, Total Ionizing Dose),其內部電晶體特性可能發生變化,造成閘極漏電流上升、閘極氧化層劣化,最終導致IC提前失效。 

隨著 AI 人工智慧、車規與航太電子標準趨嚴,IC 的長期可靠性要求日益提升,這項過往經常被忽略的潛在風險,如今已不得不正視。因此,JEDEC 於 2023 年 11 月發布 JESD22-B121 標準,明確定義如何評估 IC 在製造、驗證和表面黏著技術 (Surface Mount Technology,簡稱SMT) 等製程中,暴露於輻射照射後的電性變化,並確立其 TID 限制值 (可稱為故障極限值或供應商極限值),以降低潛在失效風險。

-----廣告,請繼續往下閱讀-----

本篇宜特小學堂文章將探討X-ray對電子元件造成的電氣故障模式、關鍵測試變數,以及X-ray輻射總電離劑量(TID)測試最終報告內容,跟各位分享如何透過宜特的「寄生輻射劑量沉積驗證平台」,有效預防潛在故障風險。

輻射劑量對 IC 的電氣影響與故障模式

為了評估關鍵參數的變化,必須充分理解電子元件在電離輻射環境下,因介電電荷積聚(Trapped Charge)所產生的故障機制。當元件暴露於累積效應明顯的 X-ray 時,其內部的關鍵電性參數可能發生變化,導致潛在的失效風險。因此,輻射評估是確保半導體元件可靠性的重要環節,能幫助工程師判斷其抗輻射能力與安全範圍。

不同材料的輻射吸收速率不同,因此對電子元件的影響程度也會有所差異。當 IC 暴露在 X-ray 環境下,吸收的能量會沉積形成寄生輻射劑量(TID),而這種累積效應可能會導致不可逆的電氣故障(表1)。

表一:主要 IC 元器件/單元類型其大部分預期的故障模式。圖表來源 / JESD22-B121

X-ray 系統設定和變數

X-ray 成像技術廣泛應用於 IC 和元件的封裝驗證,特別適用於內部結構缺陷的發現,與可觀察表面缺陷的光學驗證技術相輔相成。X-ray 成像技術可在 IC 運輸過程的影像掃描、焊點檢測、材料分析等應用中發揮關鍵作用。然而,這些驗測過程亦會讓 IC 曝露於 X-ray 輻射,累積一定的總電離劑量 (TID),可能影響其電性特性。圖 1 顯示了 X-ray 系統的基本架構。

-----廣告,請繼續往下閱讀-----
圖一:X-ray 系統簡化示意圖。圖 / JESD22-B121

當高速電子束或離子束撞擊金屬靶材 (如鎢) 時,會產生 X-ray 光子。這些光子來自於:

  1. 軔致輻射 (Bremsstrahlung Radiation):入射電子因受原子核電場影響而減速,發射出連續光譜的 X-ray。
  2. 特徵輻射 (Characteristic Radiation):入射電子與靶材內層電子(殼)層發生碰撞,產生離散特徵能量的X- ray。

當 X-ray 穿透並圍繞樣品時,偵測器會接收來自不同材料的吸收與散射訊號,形成陰影影像 (Radiographic Image)。影像的明暗對比取決於材料的 X-ray 吸收率,吸收率低的區域顯示較亮,吸收率高的區域則較暗。不同的 X-ray系統參數亦會影響影像品質與 IC 所承受的輻射劑量,以 2D X-ray3D X-ray 兩種分析為例,前者為單一角度成像,劑量較低,但可能受多層結構遮蔽影響;後者透過多角度掃描重建 3D 影像,可減少結構遮蔽效應,提高驗證準確性,但也因此增加輻射劑量。

針對功能性 IC 的輻射影響分析,表 2 定義了不同設定下的臨界最大劑量 (Critical Maximum Dose)。為確保 IC 在 X-ray 檢測過程中不會超過 TID 極限值,透過適當調整 X-ray 系統參數 (如降低電壓、縮短曝光時間、選擇合適的掃描方式),皆可有效降低輻射劑量,並減少 IC 因驗證而導致的電性劣化風險。

表二:X-ray 的關鍵參數與其對輻射劑量的影響 。圖表來源 / JESD22-B121

X-ray 輻射劑量的測量

X-ray 劑量儀這麼多種,我們該如何選擇呢?為達成精準測量 X-ray 劑量的目的,需要 X-ray 檢測系統來產生穩定的輻射,以及X-ray劑量儀來精確測量劑量率。應選擇符合關鍵參數的 X-ray 系統來模擬典型的 X-ray 檢測條件。表 3 顯示劑量儀的類型。

-----廣告,請繼續往下閱讀-----

表三:劑量儀的類型。圖表來源 / JESD22-B121

游離腔和基於半導體的劑量儀為主動設備,可測量輻射引起的電流,因此能即時讀取劑量。而基於發光的劑量儀則是被動設備,會將劑量儲存於設備中,需要經過溫度或光的後處理才能測量劑量,且照射後無法立即讀取資料。因此,使用以發光為基礎的劑量儀時,建議在常溫和正常自然條件下儲存,保護其免受高溫和紫外線影響,並減少儲存與運輸時間,因為這些因素皆會影響劑量的準確度。若已知環境條件會影響劑量儀反應,則應對測量結果進行校正。額外的參考劑量計可用來監測由於不必要或雜散效應所產生的劑量,並將其從 X-ray 校準所用劑量計的讀數中扣除。同時,應考慮能量範圍內的讀取器校準。ISO/ASTM 51956 標準,例如:《練習輻射加工使用熱釋光劑量測定系統 (TLD系統)》,可作為指導方針。

總電離劑量 (TID) 特徵測試程序

圖 4 為 X-ray 總電離劑量 (TID) 測試流程示意圖。可以執行兩種特徵分析模式,並記錄在摘要報告中。第一個是超出供應商極限值的特徵,第二個是故障極限值的特徵。

  1. 供應商極限值:

這是供應商設立的一個輻射劑量的最大限度,指的是元件在接受 X-ray 輻射的過程中能夠承受的最大劑量。在這一過程中,測試會根據預期的最嚴重輻射情況來設定測試參數。如果在測試中需要返工或進行進一步檢查,這段時間的曝露時間也必須計算在內,不能超過設定的供應商極限。

  1. 故障極限值:

這是指在經受輻射後,元件可能會出現故障的最大輻射劑量。透過對元件的測試,根據「第一個故障參數」來判定,這有助於確定元件在最大輻射劑量下是否仍能正常運作。

-----廣告,請繼續往下閱讀-----
圖二:總電離劑量特徵流程圖 圖 / JESD22-B121

X-ray 輻射總電離劑量 (TID) 測試最終報告有哪些內容呢?

X-ray 輻射總電離劑量 (TID) 測試的最終報告必須從典型批次的樣品中隨機選擇若干樣品,並包含未遭受輻射的對照樣品。最終報告應包含以下內容:

  1. X-ray 系統描述,包括:
    • 設備、供應商、型號、X-ray靶材類型
    • X-ray的設定和劑量率
    • 如果使用濾光片,濾光片的材料與厚度
    • X-ray燈管與測試元器件之間的距離
    • 相對於X-ray源的方向
  2. X-ray劑量儀的描述:包括供應商、型號、劑量率測量範圍,以及精度範圍的對應公差。
  3. 元器件的描述:包括製程節點 (電子元器件之特徵)、產品名稱、批號、日期代碼等。
  4. 封裝類型和熱界面材料類型 (如果有):如果為非封裝單元(裸晶片或晶圓級)或無蓋/封裝已開蓋(解封裝),則應註明。
  5. 已測試的元器件總數:包括對照 (未遭受輻射) 的元器件數量。
  6. 電氣測試所使用的環境溫度。
  7. 在描述時間效應的影響的情況下,曝露與讀出之間的時間間隔與退火條件。
  8. 每個測試元器件遭受輻射的X-ray總劑量:
    • 空氣中的劑量。
    • 材料中的劑量 (如適用)。
    • 從空氣到材料的劑量轉換因子 (如適用)。
    • 特徵模式:故障極限值或供應商極限值。
  9. 電氣測試的結果。

小結

針對金屬氧化物半導體(MOS)、雙極性元件(Bipolar)、非揮發性記憶體(NVM)、快閃記憶體(Flash Memory)/電子抹除式可複寫唯讀記憶體(EEPROM),以及動態隨機存取記憶體(DRAM)等元件,若您擔心在進行 2D/3D X-ray 檢測時可能因寄生輻射導致提早失效,可透過「寄生輻射劑量沉積驗證平台」進行事前驗證。宜特作為 JESD22-B121 標準的 JC 14.1 技術委員會成員,採用高靈敏度 TID 劑量量測技術,依據標準流程精確量化 X-ray 特定條件下的輻射影響,並協助工程師判斷是否超出 IC 設計容許範圍,作為是否進行後續檢測與分析的重要參考。

本文出自 www.istgroup.com

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

宜特科技_96
15 篇文章 ・ 4 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

0

0
0

文字

分享

0
0
0
【成語科學】老馬識途:馬的記憶力好嗎?
張之傑_96
・2025/06/28 ・1305字 ・閱讀時間約 2 分鐘

一段來自春秋戰國的故事

介紹這個成語,先要簡單談談周朝的歷史。

周武王建立的周朝,傳到周幽王,已是第 12 代。周幽王寵愛褒姒,做了不少糊塗事,弄得國家亡了,自己被殺。繼位的周平王,把國都從鎬京(今西安)遷到雒邑(今洛陽),史稱東周。遷都以前,史稱西周。

東周分為兩個階段,前期稱為「春秋」,後期稱為「戰國」。春秋時,周王仍有天下共主的名義,但已不能號令各諸侯國,於是北方邊疆民族開始騷擾中原。齊桓公在大政治家管仲的輔佐下,提出「尊王攘夷」(尊崇周王,排除夷狄)的口號,藉以號令其他諸侯國,成為春秋時期的第一位霸主。齊桓公之後,還有四位霸主,史稱春秋五霸。

成語「老馬識途」,出自於齊桓公與管仲的故事。圖 / wikimedia

齊桓公提出的尊王攘夷,不只是個口號,還付諸行動。西元前 663 年,北方的孤竹國入侵燕國。燕國向齊國求援,齊桓公親自率軍出征。去的時候是春季,打敗孤竹國時已是冬季,從春暖花開到地上積雪,由於景物變化太大,以致找不到去時的道路。

-----廣告,請繼續往下閱讀-----

大家正在不知所措的時候,管仲對齊桓公說:「主公不要憂慮,據說老馬認識走過的路,讓我們試試吧。」於是挑選了幾匹老馬,讓牠們在前面行走,軍隊跟在後面,果然找到去時的道路。這個故事就是成語老馬識途的出典,記載在《韓非子》這本書上。

 因此,老馬識途的含意,比喻有經驗的人對事情較為熟悉。說到這裡,循例造兩個句吧。

 要不是他老馬識途,我們進入這片森林,肯定迷路。

你老馬識途,這次前往小琉球旅行,就由你帶隊吧。

短期記憶差,長期記憶卻超強

談到這裡,該談談老馬識途的科學意涵了。馬的短期記憶很差,只能維持十幾秒,因此馴馬時,馬犯了錯懲罰牠,可能早已忘記剛才做了什麼。然而,馬的長期記憶卻好得出奇,甚至比人類還要好。馬一旦學會某件事,就會永遠記得。實驗證明,馬可以在十幾年後,仍記得和牠相處過的人呢。

馬的短期記憶力雖然很差,但長期記憶力卻十分驚人。圖 / pixabay

因此馬曾經經常走某一條路,牠是會牢記不忘的。不過由於馬的短期記憶不佳,所以先決條件是:要走過許多次才行。以管仲讓老馬帶路的例子來說,那些老馬肯定曾經在這一帶來來往往。章老師猜想,管仲挑選的幾匹老馬,或許是當地的老馬,而不是從齊國帶去的老馬。

-----廣告,請繼續往下閱讀-----

馬的長期記憶力好,還有個故事可以證明。唐代宮廷訓練馬匹跳舞,稱為「舞馬」。西元 755 年,爆發「安史之亂」,叛軍攻陷長安,叛軍首領安祿山看過舞馬表演,擄去數十匹。安史之亂結束後,這批舞馬被唐軍接收,把牠們當成一般戰馬飼養。有一天軍中宴會,鼓樂聲響起,舞馬習慣性地隨著節拍跳舞,指揮官以為是馬怪,命令士兵鞭打,牠們仍然跳個不停,最後竟然被打死了。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

張之傑_96
106 篇文章 ・ 224 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。