0

0
0

文字

分享

0
0
0

勿信網路謠言,C/2010 X1(Elenin)彗星對地球無任何威脅!

臺北天文館_96
・2011/08/21 ・3402字 ・閱讀時間約 7 分鐘 ・SR值 546 ・八年級

-----廣告,請繼續往下閱讀-----

近來國外網路盛傳:艾勒寧彗星(C/2010 X1(Elenin))在2011年10月17日最接近地球時,與太陽恰好連成一線,將會引發大地震而威脅地球安全;雖然這顆彗星的確在此時最接近地球, 但其重力之微弱,就像隻螞蟻拉扯大山一般,對地球根本不會有任何影響。又有謠言說這顆彗星會亮得像太陽一樣;可是這顆彗星與太陽相比,就像是數十億盞強力探照燈旁的螢火蟲一樣,根本沒得比。還有謠言說這顆彗星最接近地球時,會經過太陽和地球之間,使太陽會被遮蔽3天之久;不過這顆彗星其實很小,即使加上它稀薄的彗尾,也遮擋不了太陽耀眼的光芒。另有謠言說到,這個彗星是艘有外星人駕駛的太空船,靠近地球的目的不明;但太陽系中的彗星何其多,三不五時就會有顆彗星進入太陽系內側,這些其實都是自然的現象。所以,面對這些網路謠言,籲請大家理智以對,欣賞美麗的彗星就好,切勿被這些網路謠言誤導而恐慌!

關於艾勒寧彗星(C/2010 X1(Elenin))彗星的一二事

艾勒寧彗星是俄羅斯天文學家Leonid Elenin利用位在新墨西哥州的ISON-NM天文台,以遠距遙控方式觀測,2010年12月10日發現的,C/代表長週期或非週期性彗星,2010代表發現年,X1代表12月上半月發現的第一顆新彗星。發現當時,彗星距離地球約6億4700萬公里;這顆彗星預計將在2011年9月10日通過它的軌道近日點,距離太陽僅有 0.48AU(相當於7200萬公里),距離地球則約0.7305AU(相當於1億1000萬公里));在2011年10月17日最接近地球時,距離地球僅約0.2338AU(相當於3500萬公里)。

根據國外觀測報告,目前(2011.08.18)這顆彗星總亮度約為8等,愈接近太陽愈亮,預計9月10日過近日點前後總亮度約為6等,位在室女座中,離土星僅約3度,離室女座主星角宿一則稍遠,但此時與太陽的離角約20度左右,傍晚時可見於西方10度以下低空,並快速接近太陽,9月下旬達最亮 5.8等,但它幾乎位在太陽與地球之間,與太陽同方向,相當難以觀察。不過,有興趣者,可到SOHO或STEREO等太陽觀測衛星的網站,有機會在接近太陽的影像中看到艾勒寧彗星的身影。

-----廣告,請繼續往下閱讀-----

10月初之後,彗星進入獅子座,並繼續向巨蟹座方向前進,離太陽愈來愈遠,觀察條件漸漸變好,天亮前見於東方天空。10月17日前後最接近地球之時, 總亮度已降至7等左右,位在巨蟹座,離M44星團不遠,午夜後升起,天亮前在天頂附近,觀察條件很好。建議可利用口徑5~8公分以上的望遠鏡,在沒有光害的地方觀察。

10月下旬之後,彗星進入雙子座,經過御夫座向金牛座背部、白羊座前進,整夜可見,然而亮度已經一路從8等續降,11月中旬預估已在10等以下,12月初降至12等以下,一般業餘望遠鏡不是那麼容易觀察了。

這顆彗星的軌道傾角僅約1.8度,幾乎貼近黃道面。而JPL公布的離心率為1.000028,是那種一去不回的雙曲軌道,所以這可能是唯一可見到這顆彗星的機會;而這也代表這顆彗星很可能是第一次進入太陽系內側,或是至少進來太陽系內側的次數有限,對天文學家而言,是個研究鮮少經歷改變的年輕彗星的好機會。但根據Leonid Elenin的計算,這顆彗星因受到木星等巨行星的重力影響,其軌道離心率從2004年開始改變成小於1的狀態,意味著這顆彗星繞太陽公轉的軌道變更為非常扁的橢圓軌道,繞太陽一圈的週期約為12,000年左右。

點選此處可下載C/2010 X1(Elenin)彗星的升沒、軌道位置和亮度預測表。關於這顆彗星的相關訊息,也可參考吉田誠一的彗星網

-----廣告,請繼續往下閱讀-----

關於艾勒寧彗星C/2010 X1(Elenin)的謠言與真相

謠言之一:彗星對地球的重力影響,會使地球發生災難

這顆彗星最接近地球時,距離地球約3500萬公里,大概是地球到月球平均約38萬公里的90倍之多,所以絕對不可能比月亮還接近地球,完全沒有撞擊地球的疑慮。除了距離差很多之外,一般彗星的彗核是顆直徑約數百公尺到數十公里、結構鬆散的髒雪球,在3500萬公里外的這顆彗星在所有彗星中又是比較小顆的,和僅約38萬公里遠、直徑約3500公里、由比重很大的岩石所組成的月球相較之下,這顆彗星對地球的重力影響,相當於一隻貼近耳朵的手機對於人體的拉扯力量,根本可以直接忽略;即使它和太陽同方向,對固體地球和海洋都起不了什麼作用。NASA科學家Don Yeomans開玩笑地說:一輛普通房車對地球海洋的潮汐作用力都比這顆彗星大得多!

謠言之二:彗星會遮蔽太陽,使地球處在昏天暗地的狀況達3天之久;且彗尾將掃過地球,為地球帶來有毒氣體

-----廣告,請繼續往下閱讀-----

2011年9月27日,C/2010 X1(Elenin)彗星通過太陽與地球之間的相對位置示意圖。取自JPL Small_Body Database Browser

其一,雖然彗星的軌道面很貼近黃道面,但其實還有1.8度的差異。在2011年9月27日前後,這顆彗星會通過太陽和地球之間,但這三者並未連成一線;換言之,從地球表面觀察,這顆彗星並不會通過太陽表面,而是在黃道面上方,並不會遮蔽太陽。

其二,就算這顆彗星從太陽前方通過好了,可是這顆彗星直徑僅約3-5公里,與太陽直徑1,392,082公里相較之下,怎麼可能遮得住太陽這麼大的天 體?像這麼小的天體若要完全擋住太陽,這顆彗星得在與地球距離約400公里的地方才可能發生;這個距離,相當於目前國際太空站 (International Space Station,ISS)的軌道高度。但別忘了,這顆彗星可是在3500萬公里之外呢!

其三,由於一般彗尾會指向太陽的反方向,即使彗星在9月27日位在太陽和地球之間時,因三者並未在同一直線上,而是在黃道面以北,因此彗尾並不會直接指向地球。又,即使彗尾真的掃過地球,但彗尾的粒子密度其實真的非常稀薄,對有磁場和大氣層保護的地球表面生物危害不大;頂多是可以看見一場美麗的流星雨喔!

謠言之三:艾勒寧彗星像顆棕矮星會對別的天體有拉力,或受到某顆太陽系中不可見的未知棕矮星等天體影響而改變軌道

-----廣告,請繼續往下閱讀-----

其一,彗星和棕矮星是兩種截然不同的天體,前者是太陽系中繞太陽公轉的小天體,後者是質量比木星大許多、但還不夠大到足以點燃核融合反應的天體。

其二,太陽系中若真有顆棕矮星的話,其表面溫度的亮度就足以讓我們看到它,更遑論其重力對其他天體的影響應該會大到得以測量得出來,科學家不可能完全不知道這顆棕矮星的存在。

謠言之四:艾勒寧彗星會亮到跟太陽一樣亮,形成天空中有兩顆太陽的景象

雖然艾勒寧彗星過近日點時,距離太陽僅有0.48AU,但這是顆小彗星,目前各國彗星專家分析近期所有觀測資料後,一致認為這顆彗星於9月下旬最亮時頂多只有5.8等,而且這還是彗核、彗髮加彗尾的總亮度(m1);與-26.7等的太陽相比,亮度相差了32.5個星等,也就是說,太陽比彗星還亮10兆倍以上,相當於50億盞棒球場的探照燈和一顆1瓦的燈泡來比較。所以,講這顆彗星會亮到和太陽一樣,變成兩顆太陽的景象,相當不可能。

-----廣告,請繼續往下閱讀-----

這麼說來,這顆彗星不值得觀賞囉?那也不見得!雖然不到「大彗星」的程度,5.8等的亮度,大約是在沒有空氣污染和光害的地方、天空非常清朗、不使用望遠鏡的狀況下,以肉眼可見到的亮度極限。在10月上旬這段期間,彗星亮度約6-7等,使用雙筒望遠鏡或小望遠鏡就可以觀賞,對不曾看過彗星的人而言,也 是個不錯的選擇。

謠言之五:從NASA-JPL的彗星互動軌道網頁看到艾勒寧彗星的軌道有許多拐角,所以一定是外星人太空船不斷修正軌道以便朝地球飛來的結果。而Elenin並非真有其人,而是「Extinction Level Event Nibiru In November(11月Nibiru行星毀滅地球事件)」的縮寫,這是外星人給地球的警告。

NASA特別聲明:這個彗星互動軌道網頁只是個簡單的Java示意程式,僅供大眾了解天體大概的軌道趨勢,並沒有做太多的軌道美化工作。如果僅是依據這個就說這它是個外星人太空船,未免太牽強附會;更何況,如果真是外星人太空船,NASA天文學家又如何得知這艘太空船什麼時候要修正軌道,事先畫了出來給大家知道後,再極力否認外星人有傳即將來訪的訊息給他們?

此外,能將發現者Leonid Elenin的姓氏拆解成「Extinction Level Event Nibiru In November」,小編在此謹對這些人的豐富想像力與優良文字能力致上最崇高的敬意!但是關於Nibiru行星,是顆根本不存在的天體,全球各正式天文機構與業餘天文學家都從未公布這顆天體的資訊,並非刻意隱瞞,而是一切都是末日論者的幻想。

-----廣告,請繼續往下閱讀-----

天文學家估計:我們太陽系中有數以萬計的彗星,絕大部分處於太陽系外側、距離地球約50,000AU的歐特雲區;當受到某些外來擾動,例如有其他恆星遠遠地與太陽系擦身而過而造成的重力擾動等,使得部分彗星軌道改變,朝太陽系內側而來。每年會通過近日點的彗星有數十顆,其中約有1/3是類似艾勒寧彗星這樣的非週期彗星,這其中又有數顆的近日點距離在地球軌道以內。所以艾勒寧彗星並不是什麼很特殊的彗星。

延伸參考網站:

  1. http://www.2012hoax.org/elenin
  2. http://www.jpl.nasa.gov/news/news.cfm?release=2011-255

引用自臺北天文館之網路天文館網站

文章難易度
臺北天文館_96
482 篇文章 ・ 38 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

4
4

文字

分享

0
4
4
除了蚯蚓、地震魚和民間達人,那些常見的臺灣地震預測謠言
鳥苷三磷酸 (PanSci Promo)_96
・2024/02/29 ・2747字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

災害性大地震在臺灣留下無數淚水和難以抹滅的傷痕,921 大地震甚至直接奪走了 2,400 人的生命。既有這等末日級的災難記憶,又位處於板塊交界處的地震帶,「大地震!」三個字,總是能挑動臺灣人最脆弱又敏感的神經。

因此,當我們發現臺灣被各式各樣的地震傳說壟罩,像是地震魚、地震雲、蚯蚓警兆、下雨地震說,甚至民間地震預測達人,似乎也是合情合理的現象?

今日,我們就要來破解這些常見的地震預測謠言。

-----廣告,請繼續往下閱讀-----

漁民捕獲罕見的深海皇帶魚,恐有大地震?

說到在坊間訛傳的地震謠言,許多人第一個想到的,可能是盛行於日本、臺灣的「地震魚」傳說。

在亞熱帶海域中,漁民將「皇帶魚」暱稱為地震魚,由於皇帶魚身型較為扁平,生活於深海中,魚形特殊且捕獲量稀少,因此流傳著,是因為海底的地形改變,才驚擾了棲息在深海的皇帶魚,並因此游上淺水讓人們得以看見。

皇帶魚。圖/wikimedia

因此,民間盛傳,若漁民捕撈到這種極為稀罕的深海魚類,就是大型地震即將發生的警兆。

然而,日本科學家認真蒐集了目擊深海魚類的相關新聞和學術報告,他們想知道,這種看似異常的動物行為,究竟有沒有機會拿來當作災前的預警,抑或只是無稽之談?

-----廣告,請繼續往下閱讀-----

可惜的是,科學家認為,地震魚與地震並沒有明顯的關聯。當日本媒體報導捕撈深海魚的 10 天內,均沒有發生規模大於 6 的地震,規模 7 的地震前後,甚至完全沒有深海魚出現的紀錄!

所以,在科學家眼中,地震魚僅僅是一種流傳於民間的「迷信」(superstition)。

透過動物來推斷地震消息的風俗並不新穎,美國地質調查局(USGS)指出,早在西元前 373 年的古希臘,就有透過動物異常行為來猜測地震的紀錄!

人們普遍認為,比起遲鈍的人類,敏感的動物可以偵測到更多來自大自然的訊號,因此在大地震來臨前,會「舉家遷徙」逃離原本的棲息地。

-----廣告,請繼續往下閱讀-----

當臺灣 1999 年發生集集大地震前後,由於部分地區出現了大量蚯蚓,因此,臺灣也盛傳著「蚯蚓」是地震警訊的說法。

20101023 聯合報 B2 版 南投竹山竄出蚯蚓群爬滿路上。

新聞年年報的「蚯蚓」上街,真的是地震警訊嗎?

​當街道上出現一大群蚯蚓時,密密麻麻的畫面,不只讓人嚇一跳,也往往讓人感到困惑:為何牠們接連地湧向地表?難道,這真的是動物們在向我們預警天災嗎?動物們看似不尋常的行為,總是能引發人們的好奇與不安情緒。

如此怵目驚心的畫面,也經常成為新聞界的熱門素材,每年幾乎都會看到類似的標題:「蚯蚓大軍又出沒 網友憂:要地震了嗎」,甚至直接將蚯蚓與剛發生的地震連結起來,發布成快訊「昨突竄大量蚯蚓!台東今早地牛翻身…最大震度4級」,讓人留下蚯蚓預言成功的錯覺。

然而,這些蚯蚓大軍,真的與即將來臨的天災有直接關聯嗎?

-----廣告,請繼續往下閱讀-----

蚯蚓與地震有關的傳聞,被學者認為起源於 1999 年的 921 大地震後,在此前,臺灣少有流傳地震與蚯蚓之間的相關報導。

雖然曾有日本學者研究模擬出,與地震相關的電流有機會刺激蚯蚓離開洞穴,但在現實環境中,有太多因素都會影響蚯蚓的行為了,而造成蚯蚓大軍浮現地表的原因,往往都是氣象因素,像是溫度、濕度、日照時間、氣壓等等,都可能促使蚯蚓爬出地表。

大家不妨觀察看看,白日蚯蚓大軍的新聞,比較常出現在天氣剛轉涼的秋季。

因此,下次若再看到蚯蚓大軍湧現地表的現象,請先別慌張呀!

-----廣告,請繼續往下閱讀-----

事實上,除了地震魚和蚯蚓外,鳥類、老鼠、黃鼠狼、蛇、蜈蚣、昆蟲、貓咪到我們最熟悉的小狗,都曾經被流傳為地震預測的動物專家。

但可惜的是,會影響動物行為的因素實在是太多了,科學家仍然沒有找到動物異常行為和地震之間的關聯或機制。

遍地開花的地震預測粉專和社團

這座每天發生超過 100 次地震的小島上,擁有破萬成員的地震討論臉書社團、隨處可見的地震預測粉專或 IG 帳號,似乎並不奇怪。

國內有許多「憂國憂民」的神通大師,這些號稱能夠預測地震的奇妙人士,有些人會用身體感應,有人熱愛分析雲層畫面,有的人甚至號稱自行建製科學儀器,購買到比氣象署更精密的機械,偵測到更準確的地震。

-----廣告,請繼續往下閱讀-----

然而,若認真想一想就會發現,臺灣地震頻率極高,約 2 天多就會發生 1 次規模 4.0 至 5.0 的地震, 2 星期多就可能出現一次規模 5.0 至 6.0 的地震,若是有心想要捏造地震預言,真的不難。 

在學界,一個真正的地震預測必須包含地震三要素:明確的時間、 地點和規模,預測結果也必須來自學界認可的觀測資料。然而這些坊間貼文的預測資訊不僅空泛,也並未交代統計數據或訊號來源。

作為閱聽者,看到如此毫無科學根據的預測言論,請先冷靜下來,不要留言也不要分享,不妨先上網搜尋相關資料和事實查核。切勿輕信,更不要隨意散播,以免造成社會大眾的不安。

此外,大家也千萬不要隨意發表地震預測、觀測的資訊,若號稱有科學根據或使用相關資料,不僅違反氣象法,也有違反社會秩序之相關法令之虞唷!

-----廣告,請繼續往下閱讀-----

​地震預測行不行?還差得遠呢!

由於地底的環境太過複雜未知,即使科學家們已經致力於研究地震前兆和地震之間的關聯,目前地球科學界,仍然無法發展出成熟的地震預測技術。

與其奢望能提前 3 天知道地震的預告,不如日常就做好各種地震災害的防範,購買符合防震規範的家宅、固定好家具,做好防震防災演練。在國家級警報響起來時,熟練地執行避震保命三步驟「趴下、掩護、穩住」,才是身為臺灣人最關鍵的保命之策。

延伸閱讀

討論功能關閉中。

0

9
3

文字

分享

0
9
3
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

討論功能關閉中。

0

2
1

文字

分享

0
2
1
地震前兆研究的另一條路:慢地震
鳥苷三磷酸 (PanSci Promo)_96
・2023/12/19 ・1906字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/何其恩

大家印象中的地震是什麼樣子呢?是災難電影中,地震來了就是天搖地動、山崩地裂?還是曾經在新聞上看到路面裂開、房屋損壞?

其實地震可以根據不同區域、產生原因等分成許多種類。像是火山地震、隕石地震、冰川地震⋯⋯等。如果我們用物理特性來分類,可以把地震分為快地震及慢地震。

什麼是慢地震訊號?

一個斷層存在著接近脆性變形(可以想像這時地層像餅乾一樣,受到壓力會破碎)的孕震區,當應力累積到極限時,就會發生破裂產生地震;隨著溫度及壓力改變,會慢慢接近韌性變形(這時地層比較像黏土,受到壓力不會破碎,而是直接變形,難以累積應力)的穩定滑移區。

-----廣告,請繼續往下閱讀-----

當然也存在介於兩個性質之間的區域,就是慢地震常發生的地方,累積應力到一定程度時破裂,但又緩慢回彈,形成維持時間長但瞬時能量不大的一種地震,稱為「慢地震」。

在 21 世紀前,地球科學家們就有共識,斷層依照破裂方式可大約分成兩個種類:一種是會被鎖定一段時間,發生錯動產生地震的黏滑斷層(stick-slip faults);另一種則是持續穩定滑移的潛移斷層。

慢地震的發現,讓我們了解並驗證斷層的錯動方式,有介於上述兩者之間的模式,可以像黏滑斷層一樣累積應力,錯動的方式卻類似潛移斷層。

慢地震的發現

慢地震分成非常多種,像是長微震(Tremor)、低頻事件(LFT)、超低頻事件(VLF)、慢滑移事件(SSE)⋯⋯等。有些名字很早就被拿去火山地區使用,因為岩漿等流體造成的震動,也會有長微震、低頻事件出現。2002 年,日本學者首次發現非火山區的板塊交界帶出現了長微震,臺灣則是在 2008 年開始出現相關研究。現在學界會特別區分這些微震是屬於火山區(volcanic )還是非火山區(non-volcanic)。

-----廣告,請繼續往下閱讀-----

臺灣的慢地震:中央山脈南段底下的長微震

在臺灣,非火山長微震主要位於中央山脈南段下方的地震空區。那裡有高 Vp/Vs 值、高地熱梯度、低電阻⋯⋯等特性,說明了在隱沒過程中,脫水產生的流體在此富集。往北方經歷更多碰撞作用時,應力在深部呈現局部集中,孔隙壓劇烈變化產生了長微震訊號。

臺灣發現的長微震比其他國家的更短、更微弱。根據文章的描述,2007 年至 2012 年中在臺灣搜尋到的長微震,最長僅約半小時左右。

此外,臺灣的慢地震有明顯的年週期性:長微震數量多時,氣壓較低、潮位較高、降水量較低,地下水位也較低。這跟我們說明了,地下水位變化帶來的應力擾動和潮汐力一樣重要,其綜合效應可能有效加速慢地震的活動性。

開啟地震前兆研究的另一條路

為什麼近年來慢地震開始受到地震前兆研究關注呢?因為研究發現,這些微震對應力的變化非常敏感,甚至潮汐力的改變都有可能影響長微震的發生率。那是不是有個可能,地震發生前的應力改變,也會反映到長微震身上呢?

-----廣告,請繼續往下閱讀-----

一篇 2017 年發表在《美國地球物理研究期刊》的論文,就以 2010 年甲仙地震(規模 6.4)為目標,研究團隊分析地震發生前的長微震發生率。結果顯示在甲仙地震發生的 2 個月前以及 3 週前都看到長微震發生率的顯著變化!另一方面,研究團隊也比較了 GPS 地表位移場的資料,同樣發現在這兩個時間點出現了異常變化。

除了主震之外,團隊還研究了比較大的餘震。同樣在 2011 年 1 月一場規模 4.2 的餘震也看到類似的異常現象。不過,並不是所有餘震都能觀察到,像是 2010 年 7 月規模 5.7 的餘震就沒有觀察到任何異常變化。研究團隊表示,可能是主震造成長微震的影響還在,所以沒辦法觀測到顯著的變化。

這也說明了,利用長微震異常作為地震預測的手段還是存在許多限制。但這份研究的確為地震前兆開啟新的可能,觀察到顯著的關聯並提出可能的物理機制,為地震前兆研究注入一股新的力量!

延伸閱讀

  • Kato, K. Obara, T. Igarashi, H. Tsuruoka, S. Nakagawa, N. Hirata, Propagation of Slow Slip Leading Up to the 2011 Mw 9.0 Tohoku-Oki Earthquake, Science, vol335, 705 (2012)
  • Chao, K., Z. Peng, Y.-J. Hsu, K. Obara, C. Wu, K.-E. Ching, S. van der Lee, H.-C. Pu, P.-L. Leu, and A. Wech (2017), Temporal Variation of Tectonic Tremor Activity in Southern Taiwan Around the 2010 ML6.4 Jiashian Earthquake, J. Geophys. Res. Solid Earth, 122, 5417-5434, DOI:10.1002/2016JB013925.
  • 慢地震 Slow Earthquake https://academic-accelerator.com/encyclopedia/zh/slow-earthquake#google_vignette
  • Yoshihiro Ito, Ryota Hino, Motoyuki Kido, Hiromi Fujimoto, Yukihito Osada, Daisuke Inazu, Yusaku Ohta, Takeshi Iinuma, Mako Ohzono, Satoshi Miura, Masaaki Mishina, Kensuke Suzuki, Takeshi Tsuji, Juichiro Ashi,
    Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake,
    Tectonophysics, Volume 600, 2013, Pages 14-26, ISSN 0040-1951, https://doi.org/10.1016/j.tecto.2012.08.022

討論功能關閉中。