0

0
0

文字

分享

0
0
0

聽見台灣 「布農族小行星」宇宙永恆

臺北天文館_96
・2014/01/03 ・1273字 ・閱讀時間約 2 分鐘 ・SR值 509 ・六年級

SONY DSC

《看見台灣》中布農族孩童在玉山頂上高歌,天籟美聲讓世界「聽見台灣」,布農族之「八部合音」為世界音樂之瑰寶,他們是最能適應山地生活的高山子民,中央大學為感念布農族在鹿林天文台草創時期對基礎建設之貢獻,特將2006年3月18日發現的268669號小行星,經國際天文學聯合會(IAU/CSBN)通過,正式命名為Bunun (布農),象徵天人合一、宇宙永恆!

「布農族小行星」是2006年3月18日由中央大學天文所楊庭彰與廣州中山大學葉泉志同學於鹿林天文台所共同發現,國際永久編號268669,位於火星和木星之間的小行星帶。

布農高山子民 「八部合音」聞名於世

為慶祝布農族小行星的發現與命名,玉山國家公園管理處與國立中央大學於十二月四日共同舉辦布農族小行星頒贈儀式。南投縣久美國小以「踢出希望、踏上未來」作開場表演,天真無邪的孩童穿著傳統服飾,傳唱著布農族的天籟美聲,以及精彩的踢踏舞表演扣人心弦;人和國小則以話劇演出,訴說一個布農婦女被敵人擄走的傳說,地上做的樹枝記號被土石流沖走,最後靠著天上星星的指引,才順利找到回家的路。

南投代理縣長陳志清說,目前布農族人口約有五萬餘人,主要分佈在南投縣的信義鄉、仁愛鄉。布農族祭儀中所唱的「祈禱小米豐收歌」(Pasibutbut),以「八部合音」聞名於世,為世界音樂之瑰寶。玉山國家公園管理處游登良處長說,「觀星」是環境教育重要的一環,很高興因為布農族小行星的命名,賦予星星新生命,與人更加接近。

SONY DSC

鹿林天文台草創期 賴於布農族勇士協助

中央大學校長周景揚強調,玉山國家公園為台灣天文研究發展的搖籃,其海拔高、緯度低、接近赤道,空氣清新無污染,非常適合天文觀測。中央大學經過長期間選址,於民國78年開始籌設鹿林天文台,海拔2,862公尺的鹿林前山,沒水、沒電更沒有路,多虧布農族勇士一步一腳印將鐵皮、建材等揹上山,打下重要的建設基礎,如今成為亞洲最重要的天文觀測據點。因此將發現的小行星命名為Bunun (布農),以表達飲水思源,感念之意。

中央大學天文所所長高仲明表示,鹿林天文台的觀測工作,主要應用小型望遠鏡和台灣觀測條件的優勢。目前一米口徑的天文望遠鏡,已有許多豐碩的研究成果,屢次登上國際頂尖期刊《Nature》(自然)、《Science》(科學);未來將籌設兩米望遠鏡計畫,進行更前瞻、遠大的天文研究。台灣聯合大學系統副校長、中央大學天文所葉永烜教授指出,中央大學長期深耕環境教育,希望啟發下一代科學興趣。最近《看見台灣》獲得廣大回響,布農族孩童在玉山頂上高歌,讓世界不僅看見台灣,更聽見台灣,如今布農族小行星能躍上天際,永垂不朽,更加相得益彰。

鹿林天文台站長林宏欽也分享一段不為人知的故事,廿年前鹿林天文台草創時期,他因為臨時身體不適,山上沒有任何醫療設備,多虧布農族勇士將他緊急揹下山,才得以醫治,讓他一直感念在心。他也感謝布農族為鹿林天文台奠定重要基礎建設,讓台灣的天文研究得以被看見。

資料來源:聽見台灣 「布農族小行星」宇宙永恆,中央大學新聞網 [December 05, 2014]

轉載自網路天文館

文章難易度
臺北天文館_96
482 篇文章 ・ 29 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

6
1

文字

分享

0
6
1
謎樣的「超快自旋小行星」——什麼原因讓它自旋這麼快而不崩解?
科技大觀園_96
・2021/12/23 ・2604字 ・閱讀時間約 5 分鐘

超快自旋小行星的自旋週期小於兩小時。圖/沈佩泠繪

科學家相信,一顆小行星的內部可能是由一堆大大小小的碎片組成,這些碎片靠著彼此的重力聚集成一顆小行星,這就是所謂的「瓦礫堆模型」。瓦礫堆小行星無法自旋太快,如果自旋速度超過一個極限,整顆小行星就會遭受強大的離心力而崩解。瓦礫堆模型可以解釋為什麼小行星有一個自旋週期 2 小時的極限,因為超過這個極限,小行星就會瓦解。 

圖中的黑點是一般小行星,圖中虛線是 2 小時的自旋週期,藍色圓點是超快自旋小行星,它們的自旋週期比一般小行星快,短於 2 小時。圖/章展誥提供

「凡事都有例外」,這句話在小行星的自旋週期上也適用。2002 年,科學家發現一顆特別的小行星,它的長度大約 700 公尺,自旋週期只有半小時!這種小行星被稱為「超快自旋小行星」。這個例外讓天文學家感到困惑,是什麼原因讓它自旋這麼快而不崩解?瓦礫堆模型不適用了嗎?還有其他更多的超快自旋小行星嗎?這些問題就成了章展誥的研究主題。

如何量測小行星的自旋週期?

小行星本身不發光,只會反射太陽光。假設小行星的形狀是長橢圓形,當太陽照射到面積最大那一側,小行星看起來最亮;當太陽照射面積最小那一側,小行星看起來最暗。從小行星的亮度變化就可以知道它的自旋週期。 

從小行星的亮度變化可以推算出它的自旋週期。圖/沈佩泠繪

章展誥於 2011 年取得中央大學天文所博士學位,當時是跟隨高仲明教授研究銀河系結構。畢業後他先留在原團隊做博士後研究,後來轉跟隨葉永烜教授,與美國加州理工學院合作研究小行星的旋轉與結構模型,自此與超快自旋小行星結緣。

為了尋找其他的超快自旋小行星,章展誥利用加州理工學院帕洛馬瞬變工廠(Palomar Transient Factory)的 1.2 公尺廣視野望遠鏡,進行大量小行星自旋週期的測量。2014 年春季,他發現一顆疑似超快自旋小行星,這顆小行星的亮度相當暗,無法確定它是不是真的轉得很快,就像聽音樂時,音量很低,很難聽清楚是哪一首歌;這時如果你有一對大象般巨大的耳朵,就可以把旋律聽得清楚。音樂和光一樣都是一種訊號,章展誥需要大口徑的望遠鏡,進一步確認這顆小行星是不是真的轉得很快。 

加州理工學院帕洛馬瞬變工廠的執行地——帕洛馬天文台。圖/Wikipedia

當時他正在加州理工學院訪問,便與加州理工學院的合作者使用他們的 5 公尺口徑望遠鏡進行自旋週期確認,結果顯示它確實是一顆超快自旋小行星。這顆超快自旋小行星的發現,證實了 2002 年發現的第一顆超快自旋小行星並不孤單,超快自旋小行星是一個族群。 

提到那次經驗,章展誥心中除了喜悅還有震撼,原來美國一流名校是這樣做研究的!取得 5 公尺望遠鏡的使用時間就像是走到對街買杯奶茶一樣容易,資源如此豐富,做研究自然得心應手。

除了轉得快,與其他小行星有什麼不同?

因為超快自旋小行星的相關研究成果,在 2017 年 4 月舉行的「小行星、彗星、流星國際研討會」(Asteroids, Comets, Meteors 2017, ACM 2017)上,國際天文學會(IAU)宣布將編號 10679 的小行星命名為 Chankaochang——章展誥小行星。到 2020 年 3 月為止,已知的超快自旋小行星一共有 26 顆,其中的 23 顆是章展誥的團隊發現的。除了尋找更多超快自旋小行星,章展誥還進一步研究它們的組成和分佈,比較它們與其他小行星有什麼異同。

小行星距離我們那麼遠,天文學家要如何研究小行星的組成呢?假設建築工地裡有三種建材,分別是磚頭、水泥和大理石,如果它們放在手碰不到的距離,要如何分辨?你一定知道從顏色就可以分辨它們的材質,紅色是磚頭,灰色是水泥,白色是大理石。實際上天文學家也用類似的方法,他們用小行星的顏色來分辨它們的組成。章展誥的研究發現,這些超快自旋小行星的組成與一般的小行星並沒有不同。

小行星主要分佈在火星與木星的軌道之間,這些小行星分佈的區域稱為小行星帶。超快自旋小行星在小行星帶的分佈位置有什麼特別的地方嗎?它們比較靠近火星或木星?章展誥發現超快自旋小行星分佈的位置並不特別,與其他小行星分佈的位置很相似。

超快自旋小行星除了自旋得超快,它們的組成與分佈跟其他小行星並沒有什麼不同。至於為什麼它們可以轉得超快而不裂解,目前仍是未解之謎,期待未來章展誥能夠解開謎團,告訴我們答案。 

章展誥目前是中央大學天文所的助理研究學者。圖/章展誥提供

從星團到小行星 章展誥繞著天文轉

章展誥大學是念中央大學物理系,修過普通天文學後,覺得天文容易上手,後來進入天文所蔡文祥教授的研究室做暑期學生,開始他的天文研究之路。當時的時空背景,大多數的大學生畢業後都會選擇念碩士班,章展誥覺得天文比較親近,所以選擇報考天文所。考上中央大學天文所,繼續跟隨蔡文祥教授研究球狀星團。

碩士班畢業後,章展誥到成功大學物理系許瑞榮教授實驗室協助研究紅色精靈,紅色精靈是一種高空閃電現象,他參與的團隊很幸運地拍到紅色精靈,這是臺灣首次記錄這種特殊、罕見的現象。

離開成大後,章展誥曾經到科技業工作,後來覺得不同部門之間,對解決問題方式存在很大的差異,因此在一年後離開企業界,回到中央大學擔任高仲明教授的研究助理,工作是用大量的天文數據和影像建構虛擬天文台。處理大數據的經驗,讓他可以幫助學弟解決研究上的問題,這讓章展誥興起攻讀博士的念頭。於是在 2006 年,他進入中央大學天文所博士班就讀,研究銀河系;博士後一直到現在,則聚焦在小行星。

從球狀星團、紅色精靈、虛擬天文台、銀河系到小行星,章展誥跨足天文、太空多個研究領域,至於未來,且讓我們拭目以待!

科技大觀園_96
82 篇文章 ・ 1109 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

2

12
1

文字

分享

2
12
1
災難片成真!?小行星「貝努」行蹤飄忽,撞地球的機率有多大?
EASY天文地科小站_96
・2021/09/19 ・2764字 ・閱讀時間約 5 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

  • 文/陳子翔(現就讀師大地球科學系, EASY 天文地科團隊創辦者)

知名物理學家史蒂芬.霍金(Stephen Hawking)認為,小行星撞擊是宇宙中高等智慧生命最大的威脅之一。而回首地球的過去,六千五百萬年前的白堊紀末期,造成恐龍消失的生物大滅絕,也肇因於一顆直徑約十公里的小行星撞擊。那麼,我們應該擔心小行星帶來如同災難片場景的巨大浩劫嗎,人類又能為這件事做什麼準備呢?

我們該擔心哪些小行星,小行星撞擊能被預測嗎?

太陽系中的小行星不可勝數,但並非所有小行星都對於地球有潛在的危害。那麼,哪些小行星是應該注意的呢?

我們可以簡單從兩個條件,篩選出對地球有潛在威脅的小行星:第一是小行星的軌道,第二則是小行星的大小。如果一個天體的運行軌道與地球的運行軌道沒有交會,那也就不需要擔心它會不會撞到地球了。而直徑越大的小行星,撞擊地球產生的災害就會越大,例如一顆直徑 10 公尺的小行星墜落能造成小範圍的建築物受損,而直徑 50 公尺的小行星撞擊,其威力則足以摧毀整座大型城市。

https://upload.wikimedia.org/wikipedia/commons/thumb/5/59/Chelyabinsk_meteor_event_consequences_in_Drama_Theatre.jpg/1024px-Chelyabinsk_meteor_event_consequences_in_Drama_Theatre.jpg
2013 年俄羅斯車里亞賓斯克小行星墜落事件,隕石在空中爆炸的震波震碎大片玻璃。圖/Nikita Plekhanov

過去天文學家透過遍布世界的天文台,不斷在夜空中尋找近地小天體,並持續監測它們的動向。而透過觀測資料推算其軌道,就可以算出這些危險的小鄰居未來與地球發生「車禍」的機率有多大。這篇文章的主角「貝努」,就是一顆被認為有較大機會撞擊地球,因此被重點關注的對象。

貝努撞地球會是未來的災難嗎?

貝努在 1999 年被發現,是一顆直徑約 500 公尺的小行星,它以橢圓軌道繞行太陽,公轉週期大約 437 天。由於貝努的軌道與地球相當接近,它每隔幾年就會接近地球一次,而本世紀貝努最接近我們的時刻將會發生在西元 2060 年,不過別擔心,該年貝努與地球最接近時,距離預計也還有七十萬公里,大約是地球至月球距離的兩倍,撞擊風險微乎其微。

綠色為地球軌道,藍色為貝努軌道。圖/University of Arizona

然而天文學家真正關注,撞擊風險較大的接近事件則會發生在下一個世紀。根據目前的軌道計算,貝努在西元 2135 年和 2182 年的兩次接近,會有較大的撞擊風險。說到這裡可能許多讀者會覺得,既然我們都活不到那個時候,何必去操心那些根本遇不到的事情呢?

那麼,讓我們想像一個情境:

如果今天天文學家突然發現了一顆與貝努一樣大的小行星,並算出它將在一年後撞上地球,那身為這個星球上「最有智慧的物種」,我們能怎麼應對呢?

很遺憾的:我們很可能對於撞擊束手無策。當前人類並沒有任何成熟的技術,能夠在這麼短的時間內改變小行星的軌道。這時候人們可能就會希望前人早點望向星空,調查小行星,好讓人們能夠有多一百年的時間準備應對的方法了!

小行星軌道計算不就是簡單的牛頓力學,為什麼算不準?

那麼貝努在未來 100〜200 年到底會不會撞擊地球呢?其實天文學家也說不太準,只能給出大概的機率而已,而且時間越久,預測的不確定性就越大。

你也許會想,天體的運行軌道不就只是簡單的牛頓力學,三百年前的人就已經掌握得很好了,在電腦科技發達的現代怎們會算不準呢?確實,如果要算地球與火星在 100 年後的相對位置,那電腦還能輕鬆算出相當精確的答案,但如果是計算小行星 100 年後的位置,事情就變得棘手多了……

由於小行星的質量很小,就算是相對微小的引力干擾還是足以改變其運行方向,而混沌理論(Chaos theory)告訴我們,任何微小的初始條件差異,都能造成結果極大的不同。因此要對小行星軌道做長期預測,就不能只考慮太陽的引力,而是必須把行星等其他天體的引力也納入計算,才能獲得比較準確的結果。尤其是當這些小行星與地球擦肩而過時,即使只有幾百公尺的位置偏差,受到的引力也會有相當的不同,使得小行星的未來軌跡出現巨大的差異。

而更令天文學家們頭痛的是,有些問題甚至不是萬有引力能夠解決的,其中一個因子就是「亞爾科夫斯基效應」(Yarkovsky Effect)。這個效應是這樣的:當陽光照在自轉中的小行星上,陽光會加熱小行星的受光面,而被加熱的這一面轉向背光面時,釋放的熱能會像是小小的火箭引擎一樣推動小行星。這個作用的推力非常小,但長期下來還是足以對質量很小的天體造成軌跡變化,也讓軌道預測多了很大的不確定性。

亞爾科夫斯基效應的動畫。影片/NASA

OSIRIS-REx 任務揭露貝努的神秘面紗,也讓軌道推估更精確

為了更深入了解貝努,NASA 在 2016 年發射 OSIRIS-REx 探測器探查這顆小行星。OSIRIS-REx 主要的任務包括從貝努表面採取樣本並送回地球分析、對整顆小行星做完整的調查,以及評估各種影響貝努運行軌道的因子,改善貝努軌道的預測模型,評估將來的撞擊風險。

在軌道分析方面,OSIRIS-REx 一方面能在環繞貝努的過程中緊盯貝努的「一舉一動」,讓天文學家透過精確的觀測結果反推貝努的軌道特性。另一方面,要評估亞爾科夫斯基效應對小行星軌道的影響,也需要考量小行星的地形地貌、反照率等等因素,因此 OSIRIS-REx 的各項觀測資料,也有助於建立更精確的軌道預測模型。

OSIRIS-REx 探測器。圖/University of Arizona/NASA Goddard Space Flight Center

目前 OSIRIS-REx 的任務還沒有結束,但是在取得更準確的軌道預測模型與撞擊風險評估上,已經有了初步的成果。根據這次任務提供的觀測資料,天文學家將預測貝努未來軌道的時間極限,從原本的西元 2200 年延長至 2300 年。而西元2300年之前,貝努撞上地球的機率大約是 0.057% (1/1750),最危險的一次接近則會發生在西元 2182 年

「知己知彼,百戰不殆」。面對像貝努這樣的危險鄰居,唯有盡可能認識它的一切,才越能夠掌握其未來的動向,進而在將來思考要如何面對小行星的撞擊的風險。另外,目前 OSIRIS-REx 也正在返航地球的旅途上,期待 2023 年 OSIRIS-REx 能順利的帶著貝努的樣本回到地球,帶給我們更多有關小行星的重要資訊!

參考資料

所有討論 2
EASY天文地科小站_96
21 篇文章 ・ 827 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

0

0
0

文字

分享

0
0
0
世紀大彗星像夢想一樣說碎就碎了?C/2019 Y4彗星的發現與黯淡
科學月刊_96
・2020/05/08 ・2505字 ・閱讀時間約 5 分鐘 ・SR值 533 ・七年級

  • 洪景川/臺北市立天文科學教育館視聽組研究助理退休,現任臺北市文山與士林社大天文課程講師。

急速增光的 C∕2019 Y4 彗星在飛向太陽前,出現了彗核裂解的突發現象。再次應證了「彗星是不穩定而且不可預測的」?

C∕2019 Y4,或稱 ATLAS、撞地警報彗星,是一顆軌道近似拋物線、離心率為 0.99871621 的彗星,由「小行星陸地撞擊最後警報系統(Asteroid Terrestrial-impact Last Alert System, ATLAS)」在去(2019)年 12 月 28 日的自動巡天觀測時所發現。

它曾經是今(2020)年截至今日最亮的彗星,總光度在 3 月底時視星等約為 7 等,到 4 月中旬卻已降到僅 9 等左右,光度比最亮時暗 6 倍多,甚至比同在夜空中的 C∕2017 T2(PanSTARRS)、C∕2019 Y1(ATLAS)和 C∕2020 F8(SWAN)等彗星還要暗淡。為何如此?原來這顆彗星在 4 月 2 日左右,經歷一次重大的分裂解體事件。

4 月中旬時,人們尚可使用望遠鏡在鹿豹座(Camelopardalis)中找到它,貌似光線瀰散的天體。由於可能剛經歷彗核解體事件,因此這顆彗星是否能夠繼續增亮,尚屬未知數。但是天文學家原先預估它將在 4 或 5 月時達到肉眼能見到的亮度,似乎已不可能達成。

彗星的發現過程和亮度變化

2019 年 12 月 28 日,它從位於夏威夷茂納羅亞(Mauna Loa)火山頂上 0.5 米口徑的賴特-施密特式望遠鏡(f∕2 Wright-Schmidt Telescope)所拍攝的影像中被發現。當時此彗星位於大熊星座中,以視星等 19.6 等的亮度發光。丹諾(Larry Denneau)是第一個辨識出這顆彗星的人,並立刻將其通報到小行星中心(Minor Planet Center, MPC)的網頁上,以便向其他天文學家發出警示。隨後幾天的進一步觀察中,發現它出現彗髮。持續觀察追蹤,又發現彗尾變得越來越明顯。

2 月初到 3 月底間,亮度從 17 等激增至 8 等,增加近 4000 倍。單單在 3 月份,光度就增加 4 個星等。彗髮淡綠色的外觀是由雙原子碳 C2 的發射所產生的,估算它具有約 330 萬公里長的多色彗尾,雖然外側當時仍很黯淡,但是氣態狀的細絲結構可以掃過背景恆星的前方,觀察起來狀似一個瀰散的天體。不料在 4 月初時,發生重大的彗核分裂或破碎事件,C∕2019 Y4 突然變暗。

C∕2019 Y4 彗星是中央大學鹿林天文台 SLT 40 公分(cm)望遠鏡長期監測的目標之一。組圖可看出彗星從 2020 年 3 月 19 日到 4 月 9 日之間的亮度變化戲劇性過程。原本持續增亮的彗星於 3 月 29 日時開始變暗。(林忠義影像提供;林啟生、蕭翔耀、侯偉傑觀測)

彗星的軌道與位置

在它剛剛被發現時,距離太陽約 3 個天文單位。基於先前的觀測結果,推斷它具有約 4400 年的軌道週期和 0.25 AU 的近日點距離。經計算比對發現,C∕2019 Y4 和歷史上的 C∕1844 Y1 彗星(又稱1844年大彗星)竟然具有十分相似的軌道元素,表示 C∕2019 Y4 和 C∕1844 Y1 可能是同一母體彗星的碎片。

NASA 噴射推進實驗室小天體資料庫(JPL Small-Body Database, SBDB)使用 2020 年 2 月 18 日曆元為基礎來計算,顯示 C∕2019 Y4 的軌道週期約為 6000 年,但該計算包括在行星區域內的誤導性擾動。在彗星進入行星區域之前,一種更合理的重心計算顯示「飛入軌道週期」應約為 4800 年。預計於 2020 年 5 月 31 日到達近日點,之後離開行星區域,「飛離軌道週期」約為 5200 年。

在 2020 年 1~3 月期間,C∕2019 Y4 位於大熊星座(Ursa Major)方向;4 月份時則位於鹿豹座中;預計在 5 月 12 日之後將進入英仙星座(Perseus)。5 月 23 日時逢朔,屆時與太陽離角達 17 度時,將通過近地點。在 5 月 31 日通過近日點時,它將位於金牛座(Taurus)的方向,與太陽離角減為 12 度。

彗核的分裂與可能解體?

據馬里蘭大學(University of Maryland)天文學家葉泉志和加州理工學院(California Institute of Technology)張啟成使用拉帕爾馬島(La Palma)上的利物浦2米望遠鏡(Liverpool)對 C∕2019 Y4 進行一系列的觀測,顯示原先的點狀彗星假核(pseudo-nucleus)已演化出細長形的彗星假核,長度約為 3 角秒,並且與彗尾的軸線方向一致。

這種變化形態與彗星塵埃噴出量突然下降,甚至跡近停止噴發的現象頗為一致。彗核似乎已分裂成兩塊,前方較尖的一塊與隨後截面積較寬的第二塊之間出現了間隙,因此推論彗核已開始分裂。

使用鹿林天文台的影像觀察到 C / 2019 Y4 彗星兩個碎片的詳細報告。(林忠義影像提供;林啟生、蕭翔耀、侯偉傑觀測)

其實早在 4 月 6 日,幾位天文學家就在《天文學家電報》(The Astronomer’s Telegram)中通報 C∕2019 Y4 可能已經解體的推斷,碎裂的原因可能是釋氣(outgassing)的結果,導致彗星的離心力增加。

此外,塞爾維亞天文學家斯莫里奇(Igor Smolic)和塞庫里奇(Miodrag Sekulic)使用貝爾格勒天文台(Astronomical Observatory of Belgrade)維多耶維卡(Vidojevica)觀測站的米蘭科維奇(Milankovic)1.4 米 f∕5.1 望遠鏡對 C∕2019 Y4 進行攝影,發現彗核已經分裂成至少五塊,光度由 3 月底的 7 等變暗降低至 4 月中旬的 10 等,判斷彗星可能已經解體,並且可能將逐漸消散。

亮與不亮,這是一個好問題

預測一顆彗星是否能成為明亮又彗尾悠長的大彗星是相當困難的,因為有許多因素都會影響彗星的後續表現,致使偏離預測的光度。如果彗星本身擁有一顆龐大而活躍的彗核,且近日點足夠接近太陽,在它光度最亮時沒有被太陽遮掩能從地球觀察,就有機會成為大彗星。

然而歷史上,1973 年的科侯德彗星(Comet Kohoutek,C∕1973 E1)雖然符合前述的所有標準,也曾被預測會成為壯觀的世紀大彗星,但結果並非如此。而 1976 年出現的威斯特彗星(Comet West,C∕1975 V1)彗核曾分裂成四個部分,卻從原先對它期望不高到後來意外地成為令人印象深刻的大彗星。

至 20 世紀末期,有很長的一段時間都沒有出現過大彗星,直到兩顆大彗星接連現身:

  • 1996年的百武第二號彗星(Comet Hyakutake,C∕1996 B2)拖著 120 度長的長彗尾和高達 0 等的光度亮麗現身;繼它之後,海爾─博普彗星(Comet Hale–Bopp,C∕1995 O1)在 1997 年達到最大亮度 -1.4 等,而且還拖出兩條明亮而異色的彗尾。
  • 21 世紀的第一顆大彗星則是麥克諾特彗星(Comet McNaught,C∕2006 P1),於 2007 年 1 月時光度高達到 -5.5 等,並且成為 40 年來最明亮的彗星,呈現出寬廣巨大的扇狀彗尾。

如同前面提及的威斯特彗星,其第一份彗核分裂報告出現於 1976 年 3 月,當時它已分裂成兩個部分。這些彗核碎片在當時是極少數被觀察到彗星發生分裂的案例,之前最顯著的例子是 1882 年大彗星。1882 年大彗星與本文所討論的 C∕2019 Y4,都同屬於「克魯茲族彗星」的成員之一。

近年來,許多克魯茲族彗星都曾被觀察到彗核於通過太陽附近的過程中,發生了分裂。這麼說來,此次令人意外沒能成為世紀大彗星的C∕2019 Y4,彗核分裂甚至面臨解體的結局,應該要算是意料中的事了囉?

感謝鹿林天文台觀測員林啟生、蕭翔耀、侯偉傑的觀測和林忠義博士提供影像。

 

〈本文選自《科學月刊》2020年5月號〉
科學月刊∕在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

科學月刊_96
232 篇文章 ・ 2398 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。