0

0
0

文字

分享

0
0
0

為何難懂女人心,大腦「電路」不一樣!

果殼網_96
・2014/01/17 ・2425字 ・閱讀時間約 5 分鐘 ・SR值 505 ・六年級

國小高年級科普文,素養閱讀就從今天就開始!!

文/Paradoxian

男人們有沒有曾經困惑過,女人是怎麼做到一邊講電話一邊塗指甲油,同時還能構思待會出門衣服要怎麼搭,晚上去哪吃?有沒有吐槽過路痴為何老是女人,新手女司機們又老是不會倒車?女人們又有沒有鬱悶過,為什麼可以當人肉GPS的男人們老是不懂自己的暗示,談起戀愛來呆得要命,活該孤獨一生?——這些可不只是人們的偏見,科學家們早就發現了男女之間的這些差異。賓夕法尼亞大學的拉吉妮‧維瑪(Ragini Verma)的研究團隊檢測了949名8~22歲的年輕人腦內的神經連接情況,並據此繪出了兒童、青少年和青年中男性和女性不同腦區相互連接的「電路圖」,於2013年12月2日發表在《美國科學院院報》(Proceedings of the National Academy of Sciences of the United States of America, PNAS)上[1]。他們用這些「大腦電路圖」告訴我們——嘿,你們的大腦的工作方式從小就不一樣!

hi70tg4fdAfAdFfKLl0rNbVMonUMBIJFuG5zHeKXruMsAQAA0AAAAEpQ
人類大腦皮層分葉示意圖。藍色:額葉;黃色:頂葉;綠色:顳葉;粉色:枕葉。圖片來源:維基百科。

我們大腦的不同區域各自有各自的分工:額頭部位的額葉負責邏輯、語言、決策等高級認知行為,在頭頂的頂葉主要處理感官,太陽穴附近的顳葉主要處理聽覺和記憶,後腦勺的枕葉則主要是視覺。至於左腦和右腦,雖然彼此沒有明確的分工,但是隨著不同人的使用偏好也會有不同的傾向——對佔多數的右撇子們來說,左腦通常擅長邏輯分析和語言,右腦則是直覺和空間感知[2]。在大腦之下還有小腦,它讓我們的動作更協調精確,幫助運動的學習,保持平衡和方向感;小腦也分左右,它們各自負責對側的身體[3]。人腦不同功能區之間的神經連接就好像它們間的「導線」,讓其中的一隻隻神經元能夠以此相互聯絡,彼此「合作」,構成整個「電路」。

PSn6FsHI2iQjlHi7DM0K4_gSVytLfrs8DhAGI50qUpJcAgAAlwIAAFBO
成年男性(上)和女性(下)的腦部神經連接示意圖。男性更多在半球內的連接,女性在半球之間的連接則更多。藍色的線表示半球內部的連接,橙色表示半球之間的連接。藍色的點在額葉,青色的在顳葉,綠色的在頂葉,紅色的在枕葉。圖片來源:Madhura Ingalhalikar et al. (2013) PNAS.

拉吉妮的團隊發現,相比女性,男性大腦裡「前後」的連接更多:左、右腦內部,前部和後部之間,以及各功能區內部的連接要比女性多很多,整體連接模式也更顯得以區塊為主。但小腦卻正相反,左右之間的連接較多。這種連接模式讓男人們得以更好地將決策和行為掛鉤,能更「男人」地進行協商與合作,對空間方位的感覺也較強——這也可以解釋男人們為何鍾情政治和軍事,具有優秀的方向感和行動力。同時,區塊化的連接表示著男人們能夠更專心專注地使用某些腦部分區,因為這些腦部分區很少受到其它部位的干擾。

相對的,女性則有更多的「左右」連接:左右腦之間和各腦部分區之間的連接都比男性要多,這些連接讓女性們更如魚得水地「一心多用」,打電話塗指甲一樣都不誤。此外,負責倫理和社會責任的前額葉在女人的大腦中與其他部位有著更多的連接,這也許可以解釋為什麼女性總愛把事情「無限上綱」(像是動不動就說「你是不是不愛我了!」)。左右腦之間的緊密聯繫則整合了她們的直覺和邏輯分析,因而女性們常常更加擅長語言情感的表達和社交八卦,也難免更加感性——所以不要怪女人說起話來沒完沒了,她們只是思維廣一些而已。然而,在小腦處,女性的神經連接則是「前後」多於「左右」。

q_7Yq20rYrYEk-iHO4yAIQuOsc7C_tT3RvwFCOKJpE_9AQAAkwIAAEpQ
女性各個腦區的區域間連接分佈示意圖。紅色表示對外連接比例顯著高於男性的區域,藍色表示對外連接比例顯著低於男性的區域(主要在小腦)。Madhura Ingalhalikar et al. (2013) PNAS.

別以為這些不同只存在於成年人身上——研究結果還表明,這些差異從青春期早期就開始顯現出來,並且在日後變得愈發明顯。男生們似乎從小就有著更加連貫的連接,並在青春期間逐漸加強各區域的內部鏈接,漸漸變得以區塊為主;而女生則在青春期長出了更多左右額葉之間的連接,其它腦區間的連接隨後逐漸加強。這也和行為變化相呼應[4]:在青春期中期(12至14歲),男生和女生間的差異就很明顯了:男生更擅長體育運動和空間感知,而女生更擅長記憶,面孔識別和社交能力。青春期正是各自性別特質開始發展出來的時期,這也許表示,發育出這些腦連接上的差異就像發育出第二性徵一樣。

無論如何,這是科學家們首次運用功能連接組(Connectome)「畫出」男女神經系統工作方式的差異。「這些圖展示出了男女腦部結構之間彼此間的巨大差異,並從潛在神經機理的層面解釋了為什麼男性和女性擅長的任務大致上會有些不同。」拉吉妮說。這些「電路圖」不僅從神經結構上呼應了以往科學家們在行為和思維方面的結論,而且還追蹤了這些連接結構在青春期前後的變化。這不僅為兩性差異開拓了一個新的視角,同時也為一些存在明顯性別差異的神經系統疾病(如男性多發的自閉症和女性多發的抑鬱症)提供了一個新的思路。

所謂「演化弄人」,男女腦部的這些差異是彼此互補的,對應著我們祖先不同的社會分工[5]:男性合作狩獵,設計策略圍趕獵物,因而運動能力和方向感都更強;女性則在後方採摘果實,同時還得邊看孩子邊嘮嗑,因而更擅長圖像認知和社交。拉吉妮的這項研究讓我們進一步理解彼此不同的工作原理。

現在,你還會吐槽身邊的她/他嗎? 也許女人們說話不著邊際是因為某個他興奮了她的大腦,各個腦區都在踴躍「發言」,也許妳身邊的呆頭鵝有時「不解風情」只是因為神經迴路使然,但這不妨礙他專心用行動表示他的真心。所以,在她/他發生短路的時候,用自己的長處去幫助對方吧。

PS:互補的差異也不只腦部神經連接一種嘛。

參考文獻:

  1. Ingalhalikar, M. et al. (2013).Sex differences in the structural connectome of the human brain. PNAS.
  2. Taylor, I., Taylor, M. M. (1990). Psycholinguistics: Learning and using language. Englewood Cliffs, New Jersey: Prentice Hall. 362.
  3. Ghez C.,  Fahn S. (1985). The cerebellum. In Kandel ER, Schwartz JH. Principles of Neural Science, 2nd edition. New York: Elsevier. 502–522.
  4. Gur, R. C. et al. (2012). Age group and sex differences in performance on a computerized neurocognitive battery in children age 8− 21. Neuropsychology, 26(2):251.
  5. Wood, W., Eagly, A. H. (2002). A cross-cultural analysis of the behavior of women and men: implications for the origins of sex differences. Psychological bulletin, 128(5):699.

轉載自果殼網

文章難易度
果殼網_96
108 篇文章 ・ 7 位粉絲
果殼傳媒是一家致力於面向公眾倡導科技理念、傳播科技內容的企業。2010年11月,公司推出果殼網(Guokr.com) 。在創始人兼CEO姬十三帶領的專業團隊努力下,果殼傳媒已成為中國領先的科技傳媒機構,還致力於為企業量身打造面向公眾的科技品牌傳播方案。

0

1
0

文字

分享

0
1
0
人造腦挑戰 AI!培養皿中的腦組織+腦機介面能打敗電腦嗎?
PanSci_96
・2023/05/27 ・3178字 ・閱讀時間約 6 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

2023 年 2 月底, 約翰霍普金斯大學教授 Thomas Hartung 帶領研究團隊,發表了「類器官智慧」(Organoid intelligence , OI)的研究成果,希望利用腦類器官加上腦機介面,打造全新的生物計算技術。

我們終於要製造人工大腦了嗎?OI 和 AI,誰會成為未來主宰?

類器官智慧 OI 是什麼?目標為何?

2023 年的現在,AI 就已展現了不少驚人的實際成果;相較之下, OI 仍只是一個剛起步的計畫,甚至連名稱都與 2018 年美國《自然—物理學》期刊專欄作家、物理學家布坎南以 Organoids of intelligence 作為標題的文章幾乎一樣。

類器官智慧、Organoid intelligence、OI 是個很新的跨領域名詞,同時結合了「腦類器官」和「腦機介面」兩個領域的技術。

簡單來說,腦類器官就是指透過培養或誘導多能幹細胞(iPSCs),在模擬體內環境的旋轉生物反應器中,產生的腦組織。這項聽起來好像只會出現在科幻電影裡的技術,確實已經存在。

最早的腦類器官是在 2007 年,日本 RIKEN 腦研究所的笹井芳樹和渡辺毅一的研究團隊,成功從人類胚胎幹細胞培養出前腦組織。第一個具有不同腦區的 3D 腦類器官則是發表在 2013 年的《Nature》期刊,由奧地利分子技術研究所的尤爾根.科布利希和瑪德琳.蘭開斯特研究團隊成功建立。

腦類器官的出現,在生物與醫學研究中有重大意義,這代表未來科學家們若需要進行大腦相關的研究,再也不用犧牲實驗動物或解剖大體老師來取得人類大腦,只需要在培養皿就製造出我們要的大腦即可。

儘管培養皿上的組織確實是大腦組織,但不論是在大小、功能,以及解剖構造上,至今的結果仍遠遠不及我們自然發育形成的大腦。因此要達到 OI 所需要的「智慧水準」,我們必須擴大現有的腦類器官,讓他成為一個更複雜、更耐久的 3D 結構。

要達到 OI 所需的「智慧水準」,必須擴大現有的腦類器官,成為一個更複雜的 3D 結構。圖/GIPHY

而這個大腦也必須含有與學習有關的細胞和基因,並讓這些細胞和 AI 以及機器學習系統相連接。透過新的模型、演算法以及腦機介面技術,最終我們將能了解腦類器官是如何學習、計算、處理,以及儲存。

OI 是 AI 的一種嗎?

OI 能不能算是 AI 的一種呢?可說是,也不是。

AI 的 A 指的是 Artificial,原則上只要是人為製造的智慧,都可以稱為 AI。OI 是透過人為培養的生物神經細胞所產生的智慧,所以可以說 OI 算是 AI 的一種。

但有一派的人不這麼認為。由於目前 AI 的開發都是透過數位電腦,因此普遍將 AI 看做數位電腦產生的智慧—— AI 和 OI 就好比數位對上生物,電腦對上人腦。

OI 有機會取代 AI ?它的優勢是什麼?

至於為何電腦運算的準確度和運算速度遠遠高於人腦,最主要原因是電腦的設計具有目的性,就是要做快速且準確的線性運算。反之,大腦神經迴路是網狀、活的連結。

人類本身的基因組成以及每天接收的環境刺激,不斷地改變著大腦,每一分每一秒,我們的神經迴路都和之前的狀態不一樣,所以即使就單一的運算速度比不上電腦,但人腦卻有著更高學習的效率、可延展性和能源使用效率。在學習一個相同的新任務時,電腦甚至需要消耗比人類多 100 億倍的能量才能完成。

神經網路接受著不同刺激。圖/GIPHY

這樣看來,至少 OI 在硬體的效率與耗能上有著更高優勢,若能結合 AI 與 OI 優點,把 AI 的軟體搭載到 OI 的硬體上,打造完美的運算系統似乎不是夢想。

但是 OI 的發展已經到達哪裡,我們還離這目標多遠呢?

OI 可能面臨的阻礙及目前的發展

去年底,澳洲腦科學公司 Cortical Labs 的布雷特.卡根(Brett Kagan)帶領研究團隊,做出了會玩古早電子遊戲《乓》(Pong)的培養皿大腦—— DishBrain。這個由 80 萬個細胞組成,與熊蜂腦神經元數量相近的 DishBrain,對比於傳統的 AI 需要花超過 90 分鐘才能學會,它在短短 5 分鐘內就能掌握玩法,能量的消耗也較少。

現階段約翰霍普金斯動物替代中心等機構,其實只能生產出直徑大小約 500 微米,也就是大約一粒鹽巴大小的尺寸的腦類器官。當然,這樣的大小就含有約 10 萬個細胞數目,已經非常驚人。雖然有其他研究團隊已能透過超過 1 年的培養時間做出直徑 3~5 毫米的腦類器官,但離目標細胞數目 1000 萬的腦類器官還有一段距離。

為了實現 OI 的目標,培養更大的 3D 腦類器官是首要任務。

OI 的改良及多方整合

腦類器官畢竟還是個生物組織,卻不像生物大腦有著血管系統,能進行氧氣、養分、生長因子的灌流並移除代謝的廢物,因此還需要有更完善的微流體灌流系統來支持腦類器官樣本的擴展性和長期穩定狀態。

在培養完成腦類器官以及確定能使其長期存活後,最重要的就是進行腦器官訊息輸入以及反應輸出的數據分析,如此我們才能得知腦類器官如何進行生物計算。

受到腦波圖(EEG)紀錄的啟發,研究團隊將研發專屬腦類器官的 3D 微電極陣列(MEA),如此能以類似頭戴腦波電極帽的方式,把整個腦類器官用具彈性且柔軟的外殼包覆,並用高解析度和高信噪比的方式進行大規模表面刺激與紀錄。

研究團隊受腦波圖(EEG)紀錄的啟發。圖/Envato Elements

若想要進一步更透徹地分析腦類器官的訊號,表面紀錄是遠遠不夠的。因此,傷害最小化的的侵入式紀錄來獲取更高解析度的電生理訊號是非常重要的。研究團隊將使用專門為活體實驗動物使用的矽探針Neuropixels,進一步改良成類腦器官專用且能靈活使用的裝置。

正所謂取長補短,欲成就 OI,AI 的使用和貢獻一點也不可少。

下一步,團隊會將進行腦機介面,在這邊植入的腦則不再是人類大腦,而是腦類器官。透過 AI 以及機器學習來找到腦類器官是如何形成學習記憶,產生智慧。過程中由於數據資料將會非常的龐大,大數據的分析也是無可避免。

隨著 AI 快速發展的趨勢,OI 的網路聲量提升不少,或許將有機會獲得更多的關注與研究補助經費,加速研究進度。更有趣的是,不僅有一批人希望讓 AI 更像人腦,也有另一批人想要讓 OI 更像電腦。

生物、機械與 AI 的界線似乎會變得越來越模糊。

OI=創造「生命」?

生物、機械與 AI 的界線越來越模糊。圖/Envato Elements

講到這裡,不免讓人擔心,若有一天 OI 真的產生智慧,我們是否就等於憑空創造出了某種「生命」?這勢必將引發複雜的道德倫理問題。

雖然研究團隊也強調, OI 的目標並不是重新創造人類的意識,而是研究與學習、認知和計算相關的功能,但「意識究竟是什麼」,這個哲學思辨至今都還未有結論。

到底懂得「學習」、「計算」的有機體能算是有意識嗎?如果將視覺腦機介面裝在 OI 上,它是否會發現自己是受困於培養皿上,被科學家們宰割的生物計算機?

不過這些問題不僅僅是 OI 該擔心的問題,隨著人工智慧的發展,GPT、Bing 和其他由矽構成的金屬智慧,隨著通過一個又一個智力、能力測試,也終將面臨相應的哲學與倫理問題。

最後,Neuralink 的執行長馬斯克說過(對,又是他 XD),人類要不被 AI 拋下,或許就得靠生物晶片、生物技術來強化自己。面對現在人工智慧、機械改造、生物晶片各種選擇擺在眼前,未來你想以什麼樣的型態生活呢?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

0

2
1

文字

分享

0
2
1
我不期待每天快樂,我只是想要好好生活——《與你相鬱的日子》
商鼎數位出版
・2023/05/19 ・1368字 ・閱讀時間約 2 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

憂鬱症是什麼?

憂鬱症不是一個人不知足、懶惰,或是悲觀。它是個確確實實存在的疾病。雖然光從一個人外表無法看到,但是觀察腦部的話,可以發現腦結構、區域活動力、腦部神經傳導素的平衡都與沒有罹患憂鬱症的腦部不一樣。憂鬱症會造成各種不一樣的症狀,深深地影響日常生活品質。

它屬於一種情感性疾患,亦可以稱為情緒障礙。患者會感到心情持續低落,對原本感興趣的事情失去興趣,即使有好事情發生,心情也可能好不起來,也會被各種負面的想法侵襲,像是自責、貶低自己,讓一個人感受到罪惡、羞恥、沒有價值、沒有希望,甚至會萌生想死的念頭。

它會讓一個人記憶力變差,注意力變得比較不集中,感覺沒有精神,總是很累。憂鬱症也會害一個人睡眠與飲食失調,可能睡太多或太少或難以入眠,白天嗜睡,或是吃太多或太少,都有可能。除此之外,也可能會感到昏沉、頭痛等身體不適。

憂鬱症是真正的疾病。圖/與你相鬱的日子

但是每個人都會有情緒起伏啊!

「憂鬱症」與「悲傷」的差別

如前面所提,憂鬱症屬於一種情緒障礙。每個人都會有情緒起伏,但情緒病的情緒極端超越正常範圍,使它們難以控制。情緒病常常被汙名化,其中一個原因可能是因為情緒管理是衡量一個人有沒有成熟的一個標準,但是考慮到每個人的情緒起伏趨勢都不一樣,面臨到的調適難度也不一樣,應當要更加同理而不是斥責那些因為受情緒病而受苦的人。

憂鬱症的情緒狀態。圖/與你相鬱的日子
憂鬱症和悲傷傷的不同。圖/與你相鬱的日子
如果你開始瞭解優鬱症。圖/與你相鬱的日子
憂鬱症的「低落」。圖/與你相鬱的日子
憂鬱症的心理狀態 (1) 。圖/與你相鬱的日子
憂鬱症的心理狀態 (2) 。圖/與你相鬱的日子
憂鬱症的心理狀態 (3) 。圖/與你相鬱的日子

憂鬱症可能長這樣。圖/與你相鬱的日子
憂鬱症的不同樣貌。圖/與你相鬱的日子

——本文摘自《與你相鬱的日子:給患者與陪伴者的憂鬱症基礎指南》,2023 年 3 月,商鼎出版,未經同意請勿轉載。

0

1
0

文字

分享

0
1
0
一「拍」即合!大腦與拍子的二三事
雅文兒童聽語文教基金會_96
・2023/05/17 ・3030字 ・閱讀時間約 6 分鐘

  • 文/王姿雅 雅文基金會聽語科學研究中心 助理研究員 

拍子 = 大腦要的規律感 

你是否曾見過鼓手一邊帥氣地揮舞鼓棒,一邊數「One & Two & Three & Four」,或看到音樂老師對正在演奏的學生大喊「數出來!」?為什麼演奏和數字有關?他們是怎麼數的?今天,​就讓我們來認識這位讓台上演奏者和台下觀眾得以「同步」對樂曲產生共鳴的功臣:拍子[1]! 

先讓我們想像兩種情況:第一,空白紙上有一排糖果;第二,在這排糖果中,每四顆就畫一條線。猜猜看,哪種情況讓人更容易算出總糖果數?毫無疑問,後者容易許多,因為線條把糖果按照固定的數量劃分。藉著找出線條的規則,不只可以快速算出總糖果數,還可以利用線條定位糖果的位置。

拍子就像劃分糖果的線條,它們把曲子切割成固定的單位。例如四拍子,指的是一個小節被切割成四個拍子。切割的單位數不同,就會帶給聽者不同的感受。 拍子除了讓大腦在音樂中找到時間性的規律,還對「下個拍子會在什麼時候出現?」產生預期。那麼,大腦怎麼預測拍子呢?只要用耳朵聽就會了嗎?這可不是件容易的事,就讓我們繼續看下去。 

拍子將樂曲切割成數個單位。一個單位即為一拍。
切割的單位數不同,一個小節的拍數就不同,聽者感受到的節奏也不一樣。圖/Freepik

腦內的尋「拍」高手——聽覺區和動作計畫區 

拍子是一種規律的時間性刻度,而我們對拍子的感知由預測而來。這意味著在拍子出現之前,大腦就已經料到它會出現在那。當音樂經過外耳、中耳、內耳,而後轉換成神經訊號被送進大腦,腦內的聽覺區和動作計畫區會進行交互作用,進而產生對拍子的預期[2]。你可能納悶,數拍子和動作計畫區有什麼關係?或許我們未曾留意,但,動作計畫區其實是腦內預測拍子的大師! 

日常生活中,我們有許多動作是有節奏的,像是走路時的腳步間隔,或游泳時划水的頻率。這些由運動區域控制的動作,都以數百毫秒的週期進行運動。碰巧,拍子的間隔往往也在數百毫秒的範圍內。因此,音樂被轉換成神經訊號傳入大腦後,為了尋找時間性的規律,我們的動作計畫區會被「徵召」。這時,神奇的事發生了!動作計畫區可以在我們沒有實際行動的狀況下,藉由「模擬週期性的身體動作」讓神經訊號跟拍子對應,接著,再將對應完成的神經訊號傳回聽覺區,以幫助聽覺區預測下一拍到來的​​時機[2]。 

拍子的引路人!跟著低音動滋動

「原來數拍子這麼難!那交給學音樂的人就好啦。」別急,不只音樂家需要拍子,事實上,如果你曾情不自禁地跟著音樂「動起來」,那麼你已經嘗過拍子帶來的甜美滋味!讓我們召喚一下美好的音樂記憶,回想那首總是讓你不禁隨之搖擺的歌曲。在這首曲子中,你通常跟著哪種樂器的演奏擺動身體?也許是貝斯,或大鼓、吉他。這些樂器通常為曲子提供穩定的拍子,而大家可能已經發現他們的共同點。沒錯,他們多屬低音樂器。

在音樂中,低音樂器常被用來傳遞拍子,中高音樂器則負責傳遞旋律[3]。這種分工不只聽來理所當然,也有科學根據。 Lenc 等人(2018)從實驗發現,腦內用來​預測拍子區域對低頻音調比較敏感。他們請受試者跟著不同頻率的音樂拍子進行敲擊,並記錄腦電波反應。結果顯示,相對於 1236.8 赫茲的音調,當拍子透過 130 赫茲的音調傳遞時,更多與時間特性相關的神經反應被激發。因此,如果我們去留意音樂的時間特性,像是試圖對到拍,或注意播放的長度,音樂裡的低音會促使大腦更大程度地動員動作計畫區進行協助,甚至可能因此增加身體律動的幅度喔[3]

音樂裡的低音可能會影響身體律動的幅度。 圖/envato

聽得見也摸得著!讓人「觸動」的拍子 

前面談的,是音樂透過耳道和聽神經傳遞至大腦後,大腦如何「對到拍」。其實,雖不如聽覺準確,但觸覺有時也在感知拍子上參一腳[3]。我們先回想一下,在夜店或演唱會時,假如站得離音響很近,是不是會感覺到空氣在振動,甚至身體也跟著音樂「蹦、蹦」地振呢?如果你有,也許已經開始有點頭緒。日常狀況下,聲音的強度通常不會達到讓人「透過空氣就感受到振動」的程度,然而透過皮膚的振動,我們確實能感知部分的音樂特性[4]

讓我舉一個神奇的例子說明。前面提過,動作計畫區對低音傳遞的拍子更有反應,於​是就有研究者思考:「有沒有可能,頻率低到人耳難以聽見的聲音,也有這種讓人『搖』起來的魔力?!」。他們將 8-37 赫茲的聲波加入夜店音樂中,然後測量人們的頭部動作。實驗結果指出,我們的皮膚會感知到聲波帶來的振動,進而透過觸覺和運動系統的緊密連結,提升身體的律動[5]。觸覺對音樂的感知當然沒有聽覺精準,但若仔細感受音樂在物體上造成的振動,我們有機會透過觸覺感知到音樂的強度變化與拍子[6]。需要時,大腦也會整合兩方的線索,產生對拍子更準確的預測[7] 。

我們的皮膚會感知到聲波帶來的振動,需要時大腦會整合觸覺與聽覺的訊息,幫助我們更準確地對到拍子。 圖/envato

拍子不穩怎麼辦?換身體主動出擊! 

現在你們知道,對拍子的感知不只用到聽覺,有時觸覺也會派上用場。但,還有一件事我沒告訴你:我們並非只能「靜靜地」等大腦對到拍,事實上,想要捕捉拍子時,刻意讓一部分的身體「動起來」也能幫上忙!我們的身體動作會自發地和外在刺激的節奏對齊[7],而且,相比於像根槁木動也不動,​涉及前庭覺的頭部運動,例如:點頭,更可以提升感知拍子的精準度[8]。此外,研究者也透過觀察鼓手的動作和腦電波發現,演奏時的手指動作會引發​觸覺刺激,頭部動作會引發前庭覺回饋,而這兩種刺激都會反過來加強鼓手對拍子的感知[9]

這意味著,當音樂中的拍子讓人難以捉摸,我們可以藉由有意識地移動身體「主動出擊」,讓身體感覺幫助我們穩固對拍子的感知!就像音樂老師常要求學生手跟著敲,腳跟著踩,甚至是頭跟著點一樣。所以下次,當你一下找不到拍子,可以試著跟隨曲子自然地晃動頭或手,相信藉由身體的規律運動和動作引發的感覺刺激,很快就能幫助大腦找到音樂的拍子呢[9]! 

參考資料

  1. 菌(2019年,10月14日)。教你好好數拍子,《1234 跟上大家的節奏》。樂手巢。https://ysolife.com/rhythmkan-1234/
  2. Patel, A. D., & Iversen, J. R. (2014). The evolutionary neuroscience of musical beat perception: the Action Simulation for Auditory Prediction (ASAP) hypothesis. Frontiers in systems neuroscience, 8, 57. https://doi.org/10.3389/fnsys.2014.00057
  3. Lenc, T., Keller, P. E., Varlet, M., & Nozaradan, S. (2018). Neural tracking of the musical beat is enhanced by low-frequency sounds. Proceedings of the National Academy of Sciences, 115(32), 8221-8226. https://doi.org/10.1073/pnas.1801421115
  4. Larson, J. (2015, December 29). Bass: the Physical Sensation of Sound. Audioholics. https://www.audioholics.com/authors/james-larson
  5. Cameron, D. J., Dotov, D., Flaten, E., Bosnyak, D., Hove, M. J., & Trainor, L. J. (2022). Undetectable very-low frequency sound increases dancing at a live concert. Current Biology, 32(21), R1222-R1223. https://doi.org/10.1016/j.cub.2022.09.035
  6. Renken, E. (2022 July 20). How the Brain Allows the Deaf to Experience Music. NAUTILUS. https://nautil.us/how-the-brain-allows-the-deaf-to-feel-music-238516/#new_tab
  7. 7.  潘祿、錢秀瑩(2015)。不同感覺通道的節奏感知及其交互作用。心理科學進展,23(11),1910-1919。
  8. Phillips-Silver, J., & Trainor, L. J. (2008). Vestibular influence on auditory metrical interpretation. Brain and cognition, 67(1), 94-102.
  9. 王俐晴(2010)。身體隨著音樂而律動:動作型態與生理訊號測量研究[未出版之碩士論文]。國立臺灣大學音樂學研究所。
雅文兒童聽語文教基金會_96
46 篇文章 ・ 207 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。