2

7
0

文字

分享

2
7
0

讓人工智慧為 VTuber 團隊撐腰!——AI幫你一鍵生成虛擬音樂家!

研之有物│中央研究院_96
・2021/11/03 ・5051字 ・閱讀時間約 10 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文│林承勳
  • 美術設計│林洵安

自動化音樂展演的可能性

人工智慧(簡稱 AI)技術日新月異,不只打敗人類圍棋高手,現在更用在醫療、交通、金融、資安各領域,遍佈了你我的日常生活。中央研究院資訊科學研究所副研究員蘇黎讓 AI 又多了一項新技能:自動化音樂展演。「虛擬音樂家系統」創造出具有動畫形象的虛擬人物,配合真人一同演出,而且演奏動畫和音樂伴奏皆可自動產生。未來,經營 VTuber(虛擬 YouTuber)背後可能不再需要龐大製作團隊,只要專注在企劃和劇本,其他讓 AI 幫你一鍵生成!

蘇黎與研究團隊開發的虛擬音樂家系統。圖/研之有物、Unsplash(資料來源:蘇黎)

真實與虛擬合奏的貝多芬小提琴奏鳴曲

虛擬音樂家系統,這是蘇黎與其團隊最近的研究成果,他將 AI 應用到音樂表演現場,並試圖推展到整個多媒體產業。這套系統已實際在舞台演示,並與多個音樂展演團隊合作,包括:沛思文教基金會、清大 AI 樂團、長笛家林怡君、口口實驗室等。

以近年蘇黎舉辦的音樂會為例,主要可分為兩部分,一個是台上親手彈奏著貝多芬〈春〉第一樂章伴奏部分的真人鋼琴家;另一個,即為該場演奏的特別之處:正在螢幕裡演奏主旋律的虛擬小提琴音樂家。這場表演是人類與「虛擬音樂家系統」的巧妙組合,真人鋼琴家彈奏的過程中,虛擬音樂家系統除了負責合奏,同時還要生成螢幕上虛擬演奏者的動畫身影。

蘇黎與研究團隊公開展示真人音樂家與虛擬音樂家的合奏。圖/蘇黎(虛擬音樂家 Virtual Musician

不放槍、不搶拍的自動伴奏系統

虛擬音樂家系統的「自動伴奏」,不同於卡拉 OK 的機器伴奏,演奏者不需配合伴唱音樂,而是程式控制伴唱音樂以配合演奏者,讓演奏者自由詮釋樂曲。但因為要配合真人演出的現場發揮與不確定性,自動伴奏的運算必須又快又準。蘇黎指出,這也是研究中比較具有挑戰性的部分。

-----廣告,請繼續往下閱讀-----

自動伴奏系統的音樂偵測器、音樂追蹤器與位置估算單元,讓虛擬音樂家精準掌握真人演奏實況。

舉例來說,想要跟人合奏,首先要確定能同步開始,這個重責大任就由自動伴奏系統中的「音樂偵測器」擔綱。「音樂偵測器是偵測音樂什麼時候發出,但現場會有其他聲音,不可以讓機器聽到雜音就以為演奏開始了。」蘇黎說,因此團隊會先將整個樂譜,輸入到虛擬音樂家的自動伴奏系統中,並在演奏會場早早就讓系統持續待命,只要音樂偵測器偵測到樂譜的第一個音,伴奏隨即啟動。

自動伴奏系統在確認演奏開始之後,馬上又有另一項任務:追蹤音樂進度。因為每位音樂家會有自己的演奏風格,而且真人不管如何熟練,都還是有可能出現搶拍或延遲等變數。追蹤音樂進度的這項任務,便由自動伴奏系統中的「音樂追蹤器」和「位置估算單元」來執行。

「音樂追蹤器採用多執行緒線上動態時間校正(online dynamic time warping)演算法,每一個執行緒在最短時間內各自計算並取平均值,以找出最貼近該音樂家當下演奏速度的數值。」蘇黎解釋,追蹤器抓到現場演奏速度後拿來跟參考音樂檔案比對,就能推測多久後會演奏下一個音。至於位置估算單元,則是用來估計當下已演奏到整個樂譜的哪個位置。

虛擬音樂家系統藉由上述的自動伴奏技術,追蹤真人演奏進度,並自動觸發並演奏相應的聲部。目前團隊已經將偵測到觸發伴奏的平均延遲控制在 0.1 秒左右,但蘇黎的目標是要降低到「0.01」秒內。蘇黎表示,音樂心理學已證實,就算是沒有經過專業訓練的一般人,0.1 秒的誤差聽起來仍非常明顯,「延遲 0.01 秒可以勉強不引起業餘人士的注意;但面對專業音樂家時,延遲可能要到 0.001 秒左右才能過關。」

-----廣告,請繼續往下閱讀-----
自動伴奏系統可以即時追蹤音樂進度,判斷真人音樂家目前已經演奏到樂曲的哪個位置。圖/蘇黎(虛擬音樂家 Virtual Musician

訓練 AI 自動生成虛擬音樂家動畫形象

現場音樂表演是影音的雙重享受,所以虛擬音樂家除了擁有自動伴奏的「聲音」,還需要擁有將表演動作形象化的動畫「影像」。

真人音樂家演奏時,不論是情感的表達、與其他合奏者及觀眾互動、還有操作樂器的動作等,都存在個人差異,沒有一套固定標準。例如拉琴的手勢,10 個音樂家可以有 10 種不同的習慣。因此蘇黎與研究團隊採取的方法是:取得大量影音資料,讓 AI 學習如何製造虛擬音樂家的肢體動作。

首先,徵求多位專業小提琴演奏者,穿上有標記點的特殊衣服,站在有動態捕捉裝置的空間中,演奏不同風格曲目。蘇黎使用的 3D 動作偵測技術,會偵測音樂家全身骨骼的關節點,作為虛擬音樂家動畫生成的訓練資料,並在訓練動畫生成模型的過程中,重點關注持弓的右手如何移動。

透過 U 型網路、自注意力機制等核心技術,來輸出虛擬音樂家動態肢體影像。

在訓練 AI 與生成動畫影像的過程中,需要卷積神經網路來協助完成工作。蘇黎團隊採用的模型是 U 型網路(U-net),負責圖像之間的轉換,由編碼圖層傳到解碼圖層。它的優點是速度快,而且輸入輸出格式相對容易設計,能一次輸出大量資料點。「 U-net 可以一次輸出單一時間的所有肢體骨架點,而非一個一個骨架點逐步輸出。」蘇黎說。

-----廣告,請繼續往下閱讀-----
蘇黎與研究團隊採用 U 型網路模型訓練 AI,自動生成虛擬音樂家動畫影像。圖/蘇黎(Wu, Y. T., Chen, B., & Su, L. (2020)

除此之外,還有自注意力(self-attention)機制,讓 AI 學習判斷肢體動作與音樂的相關性。因為肢體動作跟音樂都是序列形式,有時間上的關聯性,假設真人音樂家某個動作在大鼓響起時一直出現,就會判定兩者存在關聯。之後自注意力機制在虛擬動作生成過程中,只要聽到該音樂的大鼓聲出現,就會發出明顯訊號,認為此時要搭配相應的肢體動作。

簡單來說,想要自動化生出虛擬小提琴家,不僅聲音要到位,動畫也要足夠精準。音樂需要自動伴奏系統,即時追蹤真人演奏者的進度並觸發伴奏;而相應的肢體動作,則有賴透過 U 型網路與自注意力機制,讓 AI 在音樂現場了解此時要搭配何種動作。

虛擬音樂家動畫的比較,左邊採用之前的研究,動作較不精準;中間是蘇黎團隊研究成果,自動生成的動畫骨架已有較多變化,並且右手拉弓動作較為準確;最右邊是符合真人動作的演奏動畫,需人工製作。圖/蘇黎(虛擬音樂家 Virtual Musician

進階挑戰:由聽覺到視覺的跨感官轉換

自動生成聲音和影像後,研究團隊還有一個更進階的目標。「我們想讓機器聽到某一首歌,就聯想到一幅畫。但坦白講,這種音樂到視覺風格轉換(music-to-visual style transfer)非常困難。」蘇黎說。當初有學生向他提出這個構想,想要訓練 AI 將音樂與畫面連結。只是這設定一開始就困難重重,因為最重要的訓練資料幾乎是無法取得。

AI 並非無中生有,機器學習有賴龐大、高品質的資料。

想要讓 AI 學習聽音樂聯想畫面,就必須要有真人示範,聆聽音樂並畫出心中所浮現的畫面來當作訓練資料。找人聽音樂不難,但找來的人未必善於繪畫;即使花大錢請畫家參與實驗,人少沒有代表性,人多則風格又可能大相逕庭。「演奏動作還有跡可循,但大家聽音樂腦補的畫面都不一樣,這樣是沒辦法當作訓練素材的。」蘇黎點出其中關鍵。

-----廣告,請繼續往下閱讀-----

研究團隊決定退而求其次,改成在一組音樂跟一組影像資料庫,透過兩者之間共享的語義標註(labels),試圖建立起對應關係。就像是電腦在連連看,如果配對起來共通點還算合理就成功。此時問題又來了,所謂「合理」實在難以界定,於是執行標準只好再一次降低,音樂與畫面的共同標註越簡單越好。

「雖然這跟當初想像中的差距非常大,但目前我們也只能用創作年代來當標註。」蘇黎說,經由創作年代這個共同標註,電腦聽到 1800 年的樂曲就會連到同樣年代的圖畫。即使不符原本理想,模型建立起來後,在虛擬音樂家系統裡還是可以發揮一些功能,像是為演奏會搭配符合音樂年代的背景畫面,或色彩效果。

蘇黎團隊風格轉換的案例,透過共享語義標註,在電腦聽到印象樂派作曲家德布西的音樂(Sarabande in Pour le piano, L. 95(1901))之後,原本為巴比松畫派的圖像(The Lake Her Lone Bosom Expands to the Sky(1850)),會轉換成印象畫派風格。圖/蘇黎(Crossing You in Style

如何成為音樂資訊研究者?

在虛擬音樂家系統之前,蘇黎與實驗室團隊(音樂與文化科技實驗室)在自動音樂採譜方面的研究已經有豐厚成果,他們研發出開源工具《Omnizart》。

《Omnizart》是音樂與文化科技實驗室研究成果集大成的實用開源工具。

它具備當前全世界最多樣樂器組合的分析功能,只要輸入一段音樂,不管是鋼琴獨奏、多重樂器、打擊樂,還是和弦辨識、節拍偵測,甚至是困難的人聲處理,都會幫你分析。

-----廣告,請繼續往下閱讀-----

「像鋼琴這類樂器的話,是音樂進去《Omnizart》,生出 MIDI;而人聲進去會輸出成供電腦判讀的數位資料。」蘇黎解釋,透過這些數字化的音訊數據能了解每一瞬間的音高變化,或是泛音、抖音等手法。研究自動採譜 AI 是因為,蘇黎想探究如蕭邦的夜曲等,這些百年來不斷被重複演奏超過千百次的古典樂,在不同時代、風格迥異的音樂家手中究竟是如何被詮釋。

而這次蘇黎用 AI 創造虛擬音樂家系統,同樣也是源於本身對音樂的喜愛與好奇。不是科班出身的他能彈奏鋼琴、吉他,會吹小號,喜歡聽經典的古典樂。對蘇黎來說,興趣是驅使研究向前的一大動力,他認為身為研究者必須要時常探索新的領域,因此常會要求自己不斷接觸世界各國的在地歌謠。

蘇黎的下一步,是以現有虛擬音樂家系統為基礎,加入更多細膩動作(例如臉部表情)的虛擬多人樂團。他也坦言目前自動伴奏系統、肢體生成還有風格轉換這三項技術,都還有很大的進步空間。想訓練電腦產生出更貼近真人演奏者動作的虛擬音樂家,必須花大量人力取得更多影片資料。「民眾常以為不用多做什麼 AI 就會自己學習,但真相是沒有夠好的資料什麼都不用談。」蘇黎解釋,AI 研究者的時間幾乎都耗在蒐集資料上。

同時,研究室也在規劃下一場發表。蘇黎認為,實體演奏會是考驗研究品質最好的方式。除了訓練好模型,現場還有很多要克服的變數,像是很多音樂廳沒有網路,團隊必須將整場演奏會所需的模型,事先設計成用一台筆電就能執行。「總不可能演奏到一半,資料量太大電腦跑不動,然後要跑出去連網路吧。」蘇黎笑著說,音樂會現場要面對很多做研究時不曾碰到的狀況,是很刺激、有挑戰性的任務。

-----廣告,請繼續往下閱讀-----

AI 將是未來主流,是好、是壞終究取決於人心。

AI 出現之後,自然也面臨許多批判,例如工作是否會被 AI 取代,甚至以 AI 操控虛假言論或用在軍事用途,但蘇黎覺得,主導權終究還是躲在背後操作的「人」。同樣,隨著虛擬音樂家系統日漸完善,真人音樂家是否擔心未來飯碗被搶走?令人意外的是,蘇黎說身邊最期待這個系統的反而就是與他合作的藝術家,「別小看他們,藝術家可是一群勇敢、期待新事物、信仰未來的人。」

蘇黎未來研究方向是以現有虛擬音樂家系統為基礎,再加入更多細膩動作的虛擬多人樂團。他坦言目前自動伴奏系統、肢體生成還有風格轉換這三項技術,都還有很大的進步空間。圖/研之有物

延伸閱讀:

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
研之有物│中央研究院_96
296 篇文章 ・ 3620 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

2

20
1

文字

分享

2
20
1
AI 接手譜出的貝多芬遺作《第十號交響曲》,連專業音樂家也「難解難分」!
Peggy Sha/沙珮琦
・2021/11/03 ・2214字 ・閱讀時間約 4 分鐘

在古典音樂界裡,流傳著這麼一個傳說:作曲家在寫完第九號交響曲之後,生命也就到了盡頭。而貝多芬(Ludwig von Beethoven)便是這個詛咒最著名的「受害者」之一。

著名作曲家貝多芬。圖/維基百科

1817 年,英國皇家愛樂協會(Royal Philharmonic Society)請貝多芬創作了兩首交響曲,這第一首呢,便是《第九號交響曲》(Symphony No.9 in D minor, Op.125),完工後成為了經典不朽的代表作,把《歡樂頌》快樂直送到世界各地的人們耳中。

然而,可惜的是,在開始著手《第十號交響曲》(Beethoven Symphony No.10)後不久,貝多芬的健康便迅速惡化,最終在 1827 年離開了世界,而這第十號交響曲,除了幾個音符加上各式各樣的筆記之外,就啥也沒有了,從此成為了樂迷們心中的遺憾。

人死不能復生,但,大家的好奇心可沒這麼容易被殺死。最近,一個專門推廣音樂科技的奧地利機構,卡拉揚研究所(Karajan Institute)便集結了一群音樂學家、作曲家、AI 科學家、歷史學家,嘗試從手稿裡找到蛛絲馬跡,並藉由 AI 的力量,將貝多芬的遺作帶給世界,為他慶祝 250 歲生日。

-----廣告,請繼續往下閱讀-----

到底,AI 是怎麼「寫」出這首曲子的?它真能滿足大家的耳朵嗎?

早有人挑戰續寫大師神作!風格不同被罵慘

你或許會想,啊都交給 AI 了,寫個曲應該沒什麼困難的吧?嘿,那你可就太小看貝多芬給大家出的作業了。

1988 年時,一位名叫貝瑞庫珀(Barry Cooper)的音樂學家便曾嘗試挑戰這項任務,他蒐集了貝多芬老大的手稿和各式資料,用自己的理解試圖創作出一個最接近貝多芬風格的第一和第二樂章。

不過呢,這兩個樂章寫完了之後,大家卻是罵聲連連,很多人覺得他根本沒有搞懂貝多芬的風格,只是在狗尾續貂。

-----廣告,請繼續往下閱讀-----

另一方面,所謂「寫得出」曲子跟「寫得好」曲子完全是兩回事,要真正讓 AI 掌握作曲家原本的風格、進而去模仿,需要考量的面向比單純輸入資料難多了。

曾有音樂家挑戰續寫貝多芬的《第十號交響曲》,卻被抨擊為狗尾續貂。圖/Pixabay

發揮偵探精神,分工合作打團戰

曾經失敗沒關係,這次計畫的負責人,卡拉揚研究所的所長 Matthias Röder 可不是吃素的,他的最高原則大概可以八字概括:AI 不夠、人腦來湊

專家們開了幾次小組會議後,基本協調出了這樣的分工:計算音樂學家 Mark Gotham 與 AI 專家 Ahmed Elgammal 要梳理貝多芬的手稿,並將他過去的寫作脈絡通通餵給 AI,讓機器學習他的邏輯與理念;寫出 Intel 鈴聲的奧地利作曲家 Walter Werzowa 負責把貝多芬留下的片段和 AI 生出的旋律給合在一起;音樂學家 Robert Levin 提供專業建議,協助進行優化與調整。

這組合不錯,聽起來會順順完成對吧?錯!

-----廣告,請繼續往下閱讀-----

所謂交響曲呢,通常會由四個樂章組成:第一個樂章開場,節奏稍快;第二個樂章來個轉折,變得較慢;第三樂章會是中板或快板;到了最後一個樂章時,則會以澎湃激昂快節奏結束。

好了那麼問題來了:同樣一段旋律,它出現在第二樂章與第四樂章,會達成完全不同的效果,弄得不好,那差異就像「我要結婚啦!」、「新郎不是我QQ」一樣悲劇。

於是乎,團隊需要判斷:第十號交響曲的主題旋律到底為何?哪個時候可能是新樂章的起點?這種種判斷,都有賴人腦協助決定。

作曲小白,從零開始的譜曲之路

決定好了各個音符或片段出現的位置後,團隊又有新的考驗:要怎麼就既有片段進行擴寫呢?當然不能隨機組合,想要延伸樂句,就必須遵從一些音樂形式,它可能是三拍子、聽起來輕快的詼諧曲;又或許是不同音高旋律和諧融合出的賦格……

-----廣告,請繼續往下閱讀-----

接下來,團隊就開始了漫漫 AI 教學之路,先學會怎麼讓音符組起來和諧、再學怎麼將兩個段落連結、接著要知道怎麼為段落收尾、還要知道怎麼分配各個樂器,總而言之,就是讓 AI 掌握各種基本的作曲規則與技巧,生出的旋律才能符合規範。

小考囉!電腦、人腦,傻傻分不清楚?

經過一段時間的努力後,團隊終於帶著 AI 奔赴「考場」。2019 年 11 月,他們找來了一群記者、音樂學家和專門研究貝多芬的專家作聽眾,並讓鋼琴家演奏 AI 創作的音樂片段,測測聽眾們是否可以確定 AI 開始接手作曲的節點出現在哪裡?結果大家並未成功找出來。

幾天之後,他們又透過弦樂四重奏的方式演奏了 AI 所作的作品片段,結果只有非常熟悉貝多芬手稿的人才能確定人工智慧接手的點究竟在哪裡。

這兩次小考都算是成功通過,讓團隊信心倍增。在接下來的 18 個月中,研究團隊一起編出了兩個完整、各超過 20 分鐘的樂章。

-----廣告,請繼續往下閱讀-----

終於,在 10 月 9 日,研究團隊帶著 AI 創作的作品回到了貝多芬的出生地德國波昂(Bonn)進行了全球首演,至於這首曲子聽起來到底夠不夠「貝多芬」呢?就交給你判斷吧:Beethoven X: The AI Project

參考資料:

  1. https://www.classicfm.com/composers/beethoven/news/computer-completes-unfinished-tenth-symphony/
  2. https://theconversation.com/how-a-team-of-musicologists-and-computer-scientists-completed-beethovens-unfinished-10th-symphony-168160
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
Peggy Sha/沙珮琦
69 篇文章 ・ 390 位粉絲
曾經是泛科的 S 編,來自可愛的教育系,是一位正努力成為科青的女子,永遠都想要知道更多新的事情,好奇心怎樣都不嫌多。

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
AI 能像人類一樣思考?諾貝爾物理學獎研究助力人工智慧模擬人類大腦
PanSci_96
・2024/11/14 ・2117字 ・閱讀時間約 4 分鐘

即使再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?畢竟電腦的電子元件和我們大腦中的神經細胞結構截然不同。再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?

錯,可以。

2024 年諾貝爾物理學獎跌破所有專家的眼鏡,頒給了兩位研究機器學習的科學家——約翰·霍普菲爾德(John Hopfield)和傑佛瑞·辛頓(Geoffrey Hinton)。他們以「人工」的方法打造了類神經網路,最終模擬出生物的「智慧」,奠定了當代深度學習的基礎。

為什麼解決人工智慧發展瓶頸的,竟然會是物理學?物理要怎麼讓 AI 更像人類?

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從巴甫洛夫的狗到赫布理論:理解學習的基礎

為了解答這個疑問,我們需要一些背景知識。

20 世紀初,俄羅斯心理學家巴甫洛夫發現,狗在食物還沒入口前,就會開始分泌唾液。他進行了一系列實驗,改變食物出現前的環境,比如讓狗習慣在聽到鈴聲後馬上得到食物。久而久之,狗只要聽到鈴聲,就會開始分泌唾液。

大約 50 年後,神經科學家赫布(Donald Hebb)提出了一個假說:大腦中相近的神經元,因為經常同時放電,會產生更強的連結。這種解釋稱為「赫布理論」,不僅奠定了神經心理學的發展,更成為現代深度學習的基礎。

然而,赫布理論雖然描述了鄰近神經元的關係,卻無法解釋大腦如何建構出如此複雜的聯想網路。

-----廣告,請繼續往下閱讀-----

霍普菲爾德網路:物理學家對神經網路的貢獻

然而,赫布理論雖能描述神經元之間的關係,卻缺乏數學模型。物理學家約翰·霍普菲爾德從數學家約翰·康威(John Conway)的「生命遊戲」(Game of Life)中獲得靈感,試圖建立一個可以在電腦上運行的記憶系統。

霍普菲爾德受「生命遊戲」啟發,嘗試建立電腦記憶系統。圖/envato

「生命遊戲」由數學家康威(John Conway)發明,玩家開始時有一個棋盤,每個格子代表一個細胞,細胞可以是「活」或「死」的狀態。根據特定規則,細胞會根據鄰居的狀態決定下一次的生存狀態。康威的目的是展示複雜的系統不一定需要複雜的規則。

霍普菲爾德發現,這個遊戲與赫布理論有強大的關聯性。大腦中的大量神經元,在出生時處於初始狀態,經過刺激後,神經元間的連結會產生或斷裂,形成強大的記憶系統。他希望利用這些理論,創造一個能在電腦上運行的記憶系統。

然而,他面臨一個難題:赫布理論沒有明確的數學模型來決定神經元連結的規則。而在電腦上運行,必須要有明確的數學規則。

-----廣告,請繼續往下閱讀-----

物理學的啟發:易辛模型

霍普菲爾德從物理學的研究中找到了類似的模型:易辛模型(Ising Model)。這個模型用於解釋鐵磁性物質的磁性特性。

在鐵磁性物質中,電子具有「自旋」,自旋產生磁矩。電子的自旋方向只有「向上」或「向下」,這就像生命遊戲中細胞的「生」或「死」。鄰近的電子會影響彼此的自旋方向,類似於細胞之間的互動。

易辛模型能用數學描述電子間的相互影響,並通過計算系統能量,得出自旋狀態的分佈。霍普菲爾德借用了這個概念,將神經元的互動視為電子自旋的互動。

他結合了康威生命遊戲的時間演化概念、易辛模型的能量計算,以及赫布理論的動態連結,創造了「霍普菲爾德網路」。這讓電腦能夠模擬生物大腦的學習過程。

-----廣告,請繼續往下閱讀-----

突破瓶頸:辛頓與波茲曼機

約翰·霍普菲爾德於1982年發明聯想神經網路,即「霍普菲爾網路」。圖/wikimedia

然而,霍普菲爾德網路並非完美。它容易陷入「局部最小值」的問題,無法找到系統的全局最優解。為了解決這個問題,加拿大計算機科學家傑佛瑞·辛頓(Geoffrey Hinton)提出了「波茲曼機」(Boltzmann Machine)。

辛頓將「模擬退火」的概念引入神經網路,允許系統以一定的機率跳出局部最小值,尋找全局最優解。他還引入了「隱藏層」的概念,將神經元分為「可見層」和「隱藏層」,提高了網路的學習能力。

受限波茲曼機(Restricted Boltzmann Machine)進一步簡化了模型,成為深度學習的基礎結構之一。這些創新使得 AI 能夠更有效地模擬人類的思維和學習過程。

AI 的未來:跨學科的融合

霍普菲爾德和辛頓的工作,將物理學的概念成功應用於人工智慧。他們的研究不僅解決了 AI 發展的瓶頸,還奠定了深度學習的基礎,對現代 AI 技術產生了深遠的影響。因此,2024 年諾貝爾物理學獎頒給他們,並非意外,而是對他們在跨學科領域的重大貢獻的肯定。

-----廣告,請繼續往下閱讀-----

AI 的發展,離不開物理學、生物學、數學等多學科的融合。霍普菲爾德和辛頓的工作,正是這種融合的典範。未來,隨著科學技術的進步,我們有理由相信,AI 將越來越接近人類的思維方式,甚至可能超越我們的想像。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1259 篇文章 ・ 2383 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。