mRNA疫苗也會失敗?在三期試驗鎩羽的德國CureVac疫苗

德國 CureVac 藥廠於 6月 16日發佈新聞稿,宣布其研發的 COVID-19 疫苗(CVnCoV)失敗:在三期試驗中期分析的保護力僅 47%,低於世界衛生組織(WHO, World Health Organization)的 50% 低標。最終分析出來的保護力也僅有48%

為什麼同為 mRNA 疫苗,輝瑞 (BNT) 與莫德納 (Moderna) 能大獲成功、CureVac 卻令人大失所望呢?

為什麼 CureVac 會失敗呢?圖/envato elements

mRNA 疫苗有什麼特別?

在 COVID-19 之前,疫苗只能用整顆病毒,或病毒蛋白質製成 [1],而 mRNA 疫苗是一種極特殊、極有突破性的概念,它有著前輩欠缺的優勢:

研發過程迅速、靈活

mRNA 的製程不用養細胞等繁瑣的步驟,只要知道病毒的基因序列,就能著手研發。去年(2020)1月,新冠病毒 (SARS-CoV-2) 的基因上傳 25 天後,莫德納就已做出首批 mRNA 疫苗。速度與靈活度都遠勝於傳統疫苗。

模仿自然感染,同時活化體液、細胞免疫

各類疫苗技術中,mRNA 疫苗非常接近自然感染。它能讓細胞表面和體液中產生病毒蛋白,同時活化抗體和T細胞。相較於其他疫苗技術如蛋白質、死病毒疫苗,mRNA 疫苗理論上能更全面性地誘發免疫力 [2]。

-----廣告,請繼續往下閱讀-----

同時 mRNA 疫苗尚有「無須佐劑」、「難以人工培養病原之疾病也能克服」等優勢,這些都是傳統技術難以觸及的境界。

mRNA 疫苗有著許多強大的優勢。圖/envato elements

以下是 mRNA 疫苗注射後,發揮作用的步驟 [1][3][4]:

  1. 注射 mRNA 疫苗於肌肉,局部組織出現發炎反應
  2. mRNA疫苗的成分進到身體後,會依不同的細胞有不同反應:
    • 肌肉、纖維細胞吸收內含 mRNA 的脂質奈米顆粒(LNPs, lipid nanoparticles)
    • 單核球(monocytes,巨噬細胞大姐姐活化之前)、樹突細胞趕赴現場,吸收脂質奈米顆粒
    • 部分脂質奈米顆粒循環至淋巴結,被其中的細胞捕獲、吸收
  3. 脂質奈米顆粒被細胞吞噬後,內含的mRNA逃脫並進入細胞質。
  4. 細胞將外來mRNA誤認為自己人,轉譯出棘蛋白。這些棘蛋白浮現於細胞膜表面且分泌到體液中。
  5. T細胞等淋巴球被棘蛋白活化,進而啟動整個免疫系統。

話說回來,輝瑞和莫德納的mRNA疫苗,都以超過九成的高保護力震驚世界。那麼同為 mRNA 疫苗的 CureVac 失敗得如此徹底,到底發生了什麼事?

CureVac 失敗可能原因:未修飾的鹼基?

CureVac 的新聞稿,將失敗歸咎於變異株。然而有些研究者並不認同此一聲稱,因為另兩款mRNA疫苗,對付變異株表現相當優秀。輝瑞疫苗對抗 α 變異株(B.1.1.7,俗稱英國變異株)有 92% 效力,對抗 δ 變異株(B.1.617.​2,俗稱印度變異株),則有 83% 的保護力 [5, 6]。

-----廣告,請繼續往下閱讀-----

因此部分科學家認為問題出在疫苗本身。

賓州大學的德魯・魏斯曼(Drew Weissman)就認為,CureVac 的 RNA 鹼基未做任何修飾,因此細胞能認出疫苗中的 mRNA 為外來物,從而引起發炎等免疫反應,讓 mRNA 被快速分解,進而削弱了 CureVac 的效果 [5, 6]。

BNT 疫苗能有效對抗變異株。圖/U.S. Secretary of Defense, CC2.0

上世紀末,科學家就發現細胞會辨認外來的 mRNA、快速地分解它,進而導致任何mRNA 療法都無法持久,因此研究了許多方法試圖克服。最常見的策略有以下兩種:

策略1:替換某些RNA 鹼基

德魯・魏斯曼和卡林柯(Katalin Karikó)的策略偏重在「欺騙」。他們模仿細胞內原生的 RNA(如tRNA)特徵,於 2005 年,研發出替換 RNA 鹼基的技術。將尿嘧啶,換成偽尿嘧啶(m1Ψ, N1-methylpseudouridine),有機會欺騙細胞、讓它誤以為此 mRNA 是自己體內的成分,以減少人體排斥 mRNA 疫苗 [7]。

-----廣告,請繼續往下閱讀-----
U/Uridine和m1Ψ/ N1-methylpseudouridine 的結構差異。From: PNAS

如下圖,動物實驗也證實,將 mRNA 的 U 換成 m1Ψ,能大幅地減緩 mRNA 的分解速率,提高疫苗的成功率。

此技術被輝瑞、Moderna採用,很可能也是其疫苗成功的關鍵。

mRNA中的鹼基是否經取代,其保存與代謝的速度均受影響。圖顯示兩種mRNA,局部注射於動物,檢視其發光的強度,可了解其於體內持續的時間。From: Journal of Experimental Medicine

策略2:各種方法優化mRNA鹼基序列

而 CureVac 的策略偏重在「優化」,尋找各式各樣可延長 mRNA 壽命、提高轉錄效率的手段,如:「優化非翻譯區」和「優化鹼基序列」 [3, 8, 9]。

「優化非翻譯區」是指在 mRNA 中「不會被轉譯成蛋白質的區塊」(如:5’ UTR),引入能增強轉譯效益的序列。而「優化鹼基序列」是指在「不改變轉譯後胺基酸」序列的前題下,調整 AGUC 鹼基的比例(如:減少 U 比例、增加 GC 比例) [8-10]。

-----廣告,請繼續往下閱讀-----

CureVac 累積了非常多不同物種、不同蛋白質的 mRNA 資料,在設計疫苗時,希望藉此客制化地調整 mRNA、設計出較不易被細胞辨認、分解的 mRNA。

由一期試驗結果,推測失敗的可能原因

那麼 CureVac 失敗的可能原因是什麼呢?有人認為「未修飾的 mRNA」引起發炎、分解疫苗;也有人認為是「劑量不足」 [5, 6]。

我認為這兩個論點都正確,很可能互為因果。可能是疫苗成分「被判定為外來物」,導致 mRNA 分解過快、疫苗失敗。同時當疫苗成分被判定為外來物,也會引起嚴重發炎反應、無法再提高劑量而導致「劑量不足」,在此情況下,產生的保護力難以和另兩支 mRNA 疫苗比肩。

mRNA疫苗設計策略簡單比較[2]

-----廣告,請繼續往下閱讀-----
各項比較\疫苗輝瑞莫德納CureVac
對抗分解策略替換尿嘧啶為偽尿嘧啶替換尿嘧啶為偽尿嘧啶優化非翻譯區和鹼基序列
劑量 (μg)3010012
保護力(%)949447

下圖為該疫苗一期試驗中,受試者不良反應結果 [11]。圖中可發現,最高劑量、也是三期試驗採用的 12μg 組別,出現全身性不良反應,如:發燒、疲勞、頭痛⋯⋯的比例有 100%,也就是「所有人都感到不舒服」。而「中等」和「嚴重」的比例也很高,超過九成的受試者感到「超過輕微程度的不舒服」。

從 CureVac 一期試驗可判斷,12μg 產生的不適感,應該頗為驚人。此結果也間接支持德魯・魏斯曼教授的觀點 :CureVac 的 RNA 鹼基未做任何修飾,因此細胞認出 mRNA 為外來物、引起發炎、快速分解。

CureVac 一期試驗中,不同劑量下,第 1, 2 針的不良反應比例、嚴重程度。中文資訊為本文作者提供。[11]

CureVac失敗替免疫橋接研究打上問號

我國食品藥物管理署在 6 月 10 日公布了國產 COVID-19 疫苗的緊急使用授權標準,將以「抗體中和病毒效價」做為評估國產疫苗的療效。換言之,食藥署傾向認定「抗體中和病毒效=疫苗保護效力」 [12]。

但 CureVac 的失敗,恐怕替食藥署敲了一記警鐘。

-----廣告,請繼續往下閱讀-----
「抗體中和病毒效=疫苗保護效力」可能不成立?圖/envato elements

而一篇有關免疫橋接研究的重要研究,5月發表在《Nature Medicine》,研究團隊也假設「抗體中和病毒效價=疫苗保護效力」。他們使用七種疫苗的中和抗體效價、三期試驗保護力進行計算,獲得兩者之間關係的模型,該模型的預測能力,在後來的某些疫苗有得到某種程度的驗證。

Nature Medicine 中的研究,以七支疫苗的抗體中和病毒效價,以及三期試驗保護力,進行電腦模型推算。中文資訊為本文作者提供。From: 參考文獻12

但是,CureVac在此則成為了反例。CureVac 一期的抗體中和病毒效價,和康復者血清相等、比值為1[11]。由前述的研究推估,則 CureVac 三期試驗的保護力應會超越 AZ 牛津疫苗;不幸的是在三期臨床試驗目前已有的結果揭露,實際上 CureVac 的保護力僅有 47%。

CureVac 一期試驗中,不同劑量下,抗體中和病毒效價。中文資訊為本文作者提供。[11]

CureVac 的挫敗,不只影響 mRNA 疫苗,其他科學領域對於免疫橋接,也有待更深入的研究。

對台灣而言,更重要的啟示是:「抗體中和病毒效價」也許不能代表「疫苗保護效力」。後續如免疫橋接研究是否可持續作為判斷 EUA之基準等議題,將需要更多基於科學的公開討論與研究。

-----廣告,請繼續往下閱讀-----

保持冷靜,繼續前進。Keep Calm and Carry On.

參考文獻

  1. 蔣維倫 (2021) 拯救世界的 mRNA 疫苗—疫苗科學的里程碑(四)。泛科學
  2. 張金堅,許辰陽等 (2020) 新冠肺炎 (COVID-19) 的免疫學探討。臺灣醫界
  3. Rein Verbeke, Ine Lentacker, Stefaan C. De Smedt and Heleen Dewitte (2021) The dawn of mRNA vaccines: The COVID-19 case. Journal of Control Release. DOI: 10.1016/j.jconrel.2021.03.043
  4. About mRNA-1273, Moderna’s Potential Vaccine Against COVID-19. Youtube Channel of Moderna. 2020/03/21
  5. Jon Cohen (2021) What went wrong with CureVac’s highly anticipated new mRNA vaccine for COVID-19? Science. DOI: 10.1126/science.abk0458
  6. Elie Dolgin (2021) CureVac COVID vaccine let-down spotlights mRNA design challenges. Nature. DOI: https://doi.org/10.1038/d41586-021-01661-0
  7. 科學月刊 (2021) 終結疫情、治癒癌症,從魯蛇到英雄! 拯救世界的 mRNA 療法和它的母親。泛科學
  8. Karl-Josef Kallen, Regina Heidenreich, Margit Schnee. et. al. (2013) A novel, disruptive vaccination technology. Human Vaccines & Immunotherapeutics. DOI: 10.4161/hv.25181
  9. CureVac官網
  10. Rauch S., Lutz J., Kowalczyk A., Schlake T., Heidenreich R. (2017) RNActive® Technology: Generation and Testing of Stable and Immunogenic mRNA Vaccines. In: Kramps T., Elbers K. (eds) RNA Vaccines. Methods in Molecular Biology, vol 1499. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6481-9_5
  11. Peter Kremsner, Philipp Mann. et. al. (2020) Phase 1 Assessment of the Safety and Immunogenicity of an mRNA- Lipid Nanoparticle Vaccine Candidate Against SARS-CoV-2 in Human Volunteers. medRxiv. DOI: https://doi.org/10.1101/2020.11.09.20228551
  12. 蔣維倫 (2021) 「抗體中和效價」是什麼?看懂高端疫苗二期試驗的眉角。泛科學
-----廣告,請繼續往下閱讀-----
miss9

蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9

View Comments

  • 如果進到血腦屏障或胎盤之類的相關細胞上,也能在內外產生與釋出病毒蛋白? 不過因為很小,應該也可能穿過去? 讓之內的細胞產生病毒蛋白?

    • #1
      印象中好像在小鼠實驗裡,曾出現穿過胎盤的跡象。但今年美國人打了數萬名孕婦,目前尚未看到什麼獨特的狀況

  • 突然覺得,mrna應該不會被甚麼其他微生物吞進去,被異種核醣體解讀跟組合出不可預期的蛋白吧? (因為解讀方式跟密碼應該都不同,也不見得拚得起來)

    • #2
      mRNA疫苗應該可以被微生物吃掉,但我不認為一定會被轉譯成蛋白質
      原、真核生物mRNA應該都有自己的標誌,要確認才會真的幫忙代工

  • 一、嗜中性白血球在打入疫苗有拌演什麼角色嗎?二、MRNA或腺病毒被樹突細胞吞入後就能在內部產生S蛋白嗎?
    三、樹突細胞也有核醣體,也可以產生棘蛋白的話,那腺病毒的疫苗抗原呈現是腺病毒還是S蛋白? 謝謝

    • #5
      1) 可能沒有扮演重要的角色
      2) 能
      3) 應該都有。應該呈現腺病毒載體的碎片,以及載體乘載的DNA、轉錄後的棘蛋白

Recent Posts