Loading [MathJax]/jax/output/HTML-CSS/config.js

0

0
0

文字

分享

0
0
0

太陽能也邁向群眾集資

thisbigcity城事
・2012/10/22 ・895字 ・閱讀時間約 1 分鐘 ・SR值 523 ・七年級

作者:Ben GoldfarbGreen Futures

由於初期成本與建置不易,阻礙太陽能板全面占領美國各地屋頂,但改變機會尚存,一家新創公司名為Solar Mosaic,希望透過類似KickStarterKiva的群眾集資平台,降低建築物與企業使用太陽能的門檻。該公司還有一點與其他新創公司不同,投資人可能很快就會獲得報酬,同時扭轉潔淨能源籌資方式。

營運模式相當簡單,該公司協助志同道合的團體,例如遊民收容中心,從網路募得款項後,出租太陽能板給這些機構,而投資人報酬則來自省下的能源費用。

該公司設於美國加州柏克萊,創始於2010年,至今已提供太陽能板給加州與亞歷桑納州共五棟建築物,生產共73000瓦電力,為用戶省下60萬美 元,目前該公司著重於協助具公益色彩的組織,不過Solar Mosaic社區建築師寇蒂斯(Lisa Curtis)表示,也希望「拓展至其他類型的計畫,如學校、商用建築、住宅區等」,並在美國各州開枝散葉。該公司最近共獲得450萬美元的經費,要擴大 營運規模,出資者包括聯邦政府能源部與創投公司Spring Ventures

-----廣告,請繼續往下閱讀-----

基於證券交易委員會規定,非受信投資人不得獲取利益,故Solar Mosiac至今無法提供報酬給網路捐款者。不過總統歐巴馬(Barack Obama)於四月通過新法(JOBS Act),允許美國企業銷售股份給小額投資人,該公司正與證交會協商,故不得對外發言,可是創辦人派立許(Billy Parish)曾表示,預估在未來幾個月內,就將提供5%至10%的報酬。

彭博新能源財務分析師布拉德(Nathaniel Bullard)指出,Solar Mosaic開發的工具前景可期,他認為,「與其把錢交給投資銀行,投資於實體計畫更令人興奮,也較不令人陌生,次級市場很可能形成,也讓此類公司真正起 飛」,只要投資人發現太陽能既穩定又有利可圖,布拉德預期群眾集資將達「數十億美元…在全國各地加速建置太陽能設備」。

本文原載於獨立永續專業團體「未來論壇」雜誌《Green Futures》。照片來源:N A I T

轉載自 This Big City 城事

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
thisbigcity城事
45 篇文章 ・ 0 位粉絲
《城事》為永續城市部落格,長期發掘關於建築、設計、文化、科技、運輸、單車的都市創新構想,曾數度獲獎。《城事》網羅世界各地城市生活作者,文章曾發表於Next American City、Planetizen、Sustainable Cities Collective、IBM Smarter Cities等網站。《城事》遍尋全球,在世界奮力邁向永續的時刻,呈現城市帶來的種種機會,力求保持樂觀,但不忘批判。

0

3
1

文字

分享

0
3
1
為機器人換上「物理大腦」:一場終結AI數位囚禁的革命
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/03 ・5732字 ・閱讀時間約 11 分鐘

本文與 研華科技 合作,泛科學企劃執行

我們都看過那種影片,對吧?網路上從不缺乏讓人驚嘆的機器人表演:數十台人形機器人像軍隊一樣整齊劃一地耍雜技 ,或是波士頓動力的機器狗,用一種幾乎違反物理定律的姿態後空翻、玩跑酷 。每一次,社群媒體總會掀起一陣「未來已來」、「人類要被取代了」的驚呼 。

但當你關掉螢幕,看看四周,一個巨大的落差感就來了:說好的機器人呢?為什麼大街上沒有他們的身影,為什麼我家連一件衣服都還沒人幫我摺?

這份存在於數位螢幕與物理現實之間的巨大鴻溝,源於一個根本性的矛盾:當代AI在數位世界裡聰明絕頂,卻在物理世界中笨拙不堪。它可以寫詩、可以畫畫,但它沒辦法為你端一杯水。

-----廣告,請繼續往下閱讀-----

這個矛盾,在我們常見的兩種機器人展示中體現得淋漓盡致。第一種,是動作精準、甚至會跳舞的類型,這本質上是一場由工程師預先寫好劇本的「戲」,機器人對它所處的世界一無所知 。第二種,則是嘗試執行日常任務(如開冰箱、拿蘋果)的類型,但其動作緩慢不穩,彷彿正在復健的病人 。

這兩種極端的對比,恰恰點出了機器人技術的真正瓶頸:它們的「大腦」還不夠強大,無法即時處理與學習真實世界的突發狀況 。

這也引出了本文試圖探索的核心問題:新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦,真的能終結機器人的「復健時代」,開啟一個它們能真正理解、並與我們共同生活的全新紀元嗎?

新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦 / 圖片來源:研華科技

為何我們看到的機器人,總像在演戲或復健?

那我們怎麼理解這個看似矛盾的現象?為什麼有些機器人靈活得像舞者,有些卻笨拙得像病人?答案,就藏在它們的「大腦」運作方式裡。

-----廣告,請繼續往下閱讀-----

那些動作極其精準、甚至會後空翻的機器人,秀的其實是卓越的硬體性能——關節、馬達、減速器的完美配合。但它的本質,是一場由工程師預先寫好劇本的舞台劇 。每一個角度、每一分力道,都是事先算好的,機器人本身並不知道自己為何要這麼做,它只是在「執行」指令,而不是在「理解」環境。

而另一種,那個開冰箱慢吞吞的機器人,雖然看起來笨,卻是在做一件革命性的事:它正在試圖由 AI 驅動,真正開始「理解」這個世界 。它在學習什麼是冰箱、什麼是蘋果、以及如何控制自己的力量才能順利拿起它。這個過程之所以緩慢,正是因為過去驅動它的「大腦」,也就是 AI 晶片的算力還不夠強,無法即時處理與學習現實世界中無窮的變數 。

這就像教一個小孩走路,你可以抱著他,幫他擺動雙腿,看起來走得又快又穩,但那不是他自己在走。真正的學習,是他自己搖搖晃晃、不斷跌倒、然後慢慢找到平衡的過程。過去的機器人,大多是前者;而我們真正期待的,是後者。

所以,問題的核心浮現了:我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好?

-----廣告,請繼續往下閱讀-----
我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好? / 圖片來源:shutterstock

機器人的大腦,為什麼不能放在雲端?

聽起來好像很合理,對吧?把所有複雜的運算都交給雲端最強大的伺服器,機器人本身只要負責接收指令就好了。但……真的嗎?

想像一下,如果你的大腦在雲端,你看到一個球朝你飛過來,視覺訊號要先上傳到雲端,雲端分析完,再把「快閃開」的指令傳回你的身體。這中間只要有零點幾秒的網路延遲,你大概就已經鼻青臉腫了。

現實世界的互動,需要的是「即時反應」。任何網路延遲,在物理世界中都可能造成無法彌補的失誤 。因此,運算必須在機器人本體上完成,這就是「邊緣 AI」(Edge AI)的核心概念 。而 NVIDIA  Jetson 平台,正是為了解決這種在裝置端進行高運算、又要兼顧低功耗的需求,而誕生的關鍵解決方案 。

NVIDIA Jetson 就像一個緊湊、節能卻效能強大的微型電腦,專為在各種裝置上運行 AI 任務設計 。回顧它的演進,早期的 Jetson 系統主要用於視覺辨識搭配AI推論,像是車牌辨識、工廠瑕疵檢測,或者在相機裡分辨貓狗,扮演著「眼睛」的角色,看得懂眼前的事物 。但隨著算力提升,NVIDIA Jetson 的角色也逐漸從單純的「眼睛」,演化為能夠控制手腳的「大腦」,開始驅動更複雜的自主機器,無論是地上跑的、天上飛的,都將NVIDIA Jetson 視為核心運算中樞 。

-----廣告,請繼續往下閱讀-----

但再強大的晶片,如果沒有能適應現場環境的「容器」,也無法真正落地。這正是研華(Advantech)的角色,我們將 NVIDIA Jetson 平台整合進各式工業級主機與邊緣運算設備,確保它能在高熱、灰塵、潮濕或震動的現場穩定運行,滿足從工廠到農場到礦場、從公車到貨車到貨輪等各種使用環境。換句話說,NVIDIA 提供「大腦」,而研華則是讓這顆大腦能在真實世界中呼吸的「生命支持系統」。

這個平台聽起來很工業、很遙遠,但它其實早就以一種你意想不到的方式,進入了我們的生活。

從Switch到雞蛋分揀員,NVIDIA Jetson如何悄悄改變世界?

如果我告訴你,第一代的任天堂Switch遊戲機與Jetson有相同血緣,你會不會很驚訝?它的核心處理器X1晶片,與Jetson TX1模組共享相同架構。這款遊戲機對高效能運算和低功耗的嚴苛要求,正好與 Jetson 的設計理念不謀而合 。

而在更專業的領域,研華透過 NVIDIA Jetson 更是解決了許多真實世界的難題 。例如

-----廣告,請繼續往下閱讀-----
  • 在北美,有客戶利用 AI 進行雞蛋品質檢測,研華的工業電腦搭載NVIDIA Jetson 模組與相機介面,能精準辨識並挑出髒污、雙黃蛋到血蛋 
  • 在日本,為避免鏟雪車在移動時發生意外,導入了環繞視覺系統,當 AI 偵測到周圍有人時便會立刻停止 ;
  • 在水資源珍貴的以色列,研華的邊緣運算平台搭載NVIDIA Jetson模組置入無人機內,24 小時在果園巡航,一旦發現成熟的果實就直接凌空採摘,實現了「無落果」的終極目標 。

這些應用,代表著 NVIDIA Jetson Orin™ 世代的成功,它讓「自動化」設備變得更聰明 。然而,隨著大型語言模型(LLM)的浪潮來襲,人們的期待也從「自動化」轉向了「自主化」 。我們希望機器人不僅能執行命令,更能理解、推理。

Orin世代的算力在執行人形機器人AI推論時的效能約為每秒5到10次的推論頻率,若要機器人更快速完成動作,需要更強大的算力。業界迫切需要一個更強大的大腦。這也引出了一個革命性的問題:AI到底該如何學會「動手」,而不只是「動口」?

革命性的一步:AI如何學會「動手」而不只是「動口」?

面對 Orin 世代的瓶頸,NVIDIA 給出的答案,不是溫和升級,而是一次徹底的世代跨越— NVIDIA Jetson Thor 。這款基於最新 Blackwell 架構的新模組,峰值性能是前代的 7.5 倍,記憶體也翻倍 。如此巨大的效能提升,目標只有一個:將過去只能在雲端資料中心運行的、以 Transformer 為基礎的大型 AI 模型,成功部署到終端的機器上 。

NVIDIA Jetson Thor 的誕生,將驅動機器人控制典範的根本轉變。這要從 AI 模型的演進說起:

-----廣告,請繼續往下閱讀-----
  1. 第一階段是 LLM(Large Language Model,大型語言模型):
    我們最熟悉的 ChatGPT 就屬此類,它接收文字、輸出文字,實現了流暢的人機對話 。
  2. 第二階段是 VLM(Vision-Language Model,視覺語言模型):
    AI 學會了看,可以上傳圖片,它能用文字描述所見之物,但輸出結果仍然是給人類看的自然語言 。
  3. 第三階段則是 VLA(Vision-Language-Action Model,視覺語言行動模型):
    這是革命性的一步。VLA 模型的輸出不再是文字,而是「行動指令(Action Token)」 。它能將視覺與語言的理解,直接轉化為控制機器人關節力矩、速度等物理行為的具體參數 。

這就是關鍵! 過去以NVIDIA Jetson Orin™作為大腦的機器人,僅能以有限的速度運行VLA模型。而由 VLA 模型驅動,讓 AI 能夠感知、理解並直接與物理世界互動的全新形態,正是「物理 AI」(Physical AI)的開端 。NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 。

NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 / 圖片來源:研華科技

其中,物理 AI 強調的 vision to action,就需要研華設計對應的硬體來實現;譬如視覺可能來自於一般相機、深度相機、紅外線相機甚至光達,你的系統就要有對應的介面來整合視覺;你也會需要控制介面去控制馬達伸長手臂或控制夾具拿取物品;你也要有 WIFI、4G 或 5G 來傳輸資料或和別的 AI 溝通,這些都需要具體化到一個系統上,這個系統的集大成就是機器人。

好,我們有了史上最強的大腦。但一個再聰明的大腦,也需要一副強韌的身體。而這副身體,為什麼非得是「人形」?這不是一種很沒效率的執念嗎?

為什麼機器人非得是「人形」?這不是一種低效的執念嗎?

這是我一直在思考的問題。為什麼業界的主流目標,是充滿挑戰的「人形」機器人?為何不設計成效率更高的輪式,或是功能更多元的章魚型態?

-----廣告,請繼續往下閱讀-----

答案,簡單到令人無法反駁:因為我們所處的世界,是徹底為人形生物所打造的。

從樓梯的階高、門把的設計,到桌椅的高度,無一不是為了適應人類的雙足、雙手與身高而存在 。對 AI 而言,採用人形的軀體,意味著它能用與我們最相似的視角與方式去感知和學習這個世界,進而最快地理解並融入人類環境 。這背後的邏輯是,與其讓 AI 去適應千奇百怪的非人形設計,不如讓它直接採用這個已經被數千年人類文明「驗證」過的最優解 。

這也區分了「通用型 AI 人形機器人」與「專用型 AI 工業自動化設備」的本質不同 。後者像高度特化的工具,產線上的機械手臂能高效重複鎖螺絲,但它無法處理安裝柔軟水管這種預設外的任務 。而通用型人形機器人的目標,是成為一個「多面手」,它能在廣泛學習後,理解物理世界的運作規律 。理論上,今天它在產線上組裝伺服器,明天就能在廚房裡學會煮菜 。

人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態 / 圖片來源:shutterstock

但要讓一個「多面手」真正活起來,光有骨架還不夠。它必須同時擁有強大的大腦平台與遍布全身的感知神經,才能理解並回應外在環境。人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態。但這些訊號若沒有通過一個穩定的「大腦平台」,就無法匯聚成有意義的行動。

這正是研華的角色:我們不僅把 NVIDIA Jetson Thor 這顆核心晶片包載在工業級電腦中,讓它成為能真正思考與反應的「完整大腦」,同時也提供神經系統的骨幹,將感測器、I/O 介面與通訊模組可靠地連結起來,把訊號傳導進大腦。你或許看不見研華的存在,但它實際上遍布在機器人全身,像隱藏在皮膚之下的神經網絡,讓整個身體真正活過來。

但有了大腦、有了身體,接下來的挑戰是「教育」。你要怎麼教一個物理 AI?總不能讓它在現實世界裡一直摔跤,把一台幾百萬的機器人摔壞吧?

打造一個「精神時光屋」,AI的學習速度能有多快?

這個問題非常關鍵。大型語言模型可以閱讀網際網路上浩瀚的文本資料,但物理世界中用於訓練的互動資料卻極其稀缺,而且在現實中反覆試錯的成本與風險實在太高 。

答案,就在虛擬世界之中。

NVIDIA Isaac Sim™等模擬平台,為這個問題提供了完美的解決方案 。它能創造出一個物理規則高度擬真的數位孿生(Digital Twin)世界,讓 AI 在其中進行訓練 。

這就像是為機器人打造了一個「精神時光屋」 。它可以在一天之內,經歷相當於現實世界千百日的學習與演練,從而在絕對安全的環境中,窮盡各種可能性,深刻領悟物理世界的定律 。透過這種「模擬-訓練-推論」的 3 Computers 閉環,Physical AI (物理AI) 的學習曲線得以指數級加速 。

我原本以為模擬只是為了節省成本,但後來發現,它的意義遠不止於此。它是在為 AI 建立一種關於物理世界的「直覺」。這種直覺,是在現實世界中難以透過有限次的試錯來建立的。

所以你看,這趟從 Switch 到人形機器人的旅程,一幅清晰的未來藍圖已經浮現了。實現物理 AI 的三大支柱已然齊備:一個劃時代的「AI 大腦」(NVIDIA Jetson Thor)、讓核心延展為「完整大腦與神經系統」的工業級骨幹(由研華 Advantech 提供),以及一個不可或缺的「教育環境」(NVIDIA Isaac Sim 模擬平台) 。

結語

我們拆解了那些酷炫機器人影片背後的真相,看見了從「自動化」走向「自主化」的巨大技術鴻溝,也見證了「物理 AI」時代的三大支柱——大腦、身軀、與教育——如何逐一到位 。

專家預測,未來 3 到 5 年內,人形機器人領域將迎來一場顯著的革命 。過去我們只能在科幻電影中想像的場景,如今正以前所未有的速度成為現實 。

這不再只是一個關於效率和生產力的問題。當一台機器,能夠觀察我們的世界,理解我們的語言,並開始以物理實體的方式與我們互動,這將從根本上改變我們與科技的關係。

所以,最後我想留給你的思想實驗是:當一個「物理 AI」真的走進你的生活,它不只是個工具,而是一個能學習、能適應、能與你共同存在於同一個空間的「非人智慧體」,你最先感受到的,會是興奮、是便利,還是……一絲不安?

這個問題,不再是「我們能否做到」,而是「當它發生時,我們準備好了嗎?」

研華已經整裝待發,現在,我們與您一起推動下一代物理 AI 與智慧設備的誕生。
https://bit.ly/4n78dR4

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
新北「2024 國際青年氣候行動論壇」即起開放報名邀美、日、韓、馬拉威青年行動者齊聚 暢談永續實踐力
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/05 ・1148字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

本文由 新北市環保局 提供,泛科學協助刊登。 

極端氣候現象頻繁發生,敲響人類減碳意識的警鐘,環保局將於 8 月 29 日於板橋新板金融大樓 17 樓舉辦「新北 2024 國際青年氣候行動論壇—綠色觀察家的行動沙龍」,邀請來自美國、日本、韓國、馬拉威等國的氣候行動專家及青年行動者們與會,與臺灣青年朋友交流,共同激盪永續方案、應對氣候挑戰。論壇即 ( 31 ) 日起開始報名,邀請關注氣候行動的新世代共襄盛舉(網址:https://greenage2024.com/services )。

環保局長程大維表示,氣候變遷是全球共同關注的焦點,更是跨世代議題,下一代的創新力與行動力絕對是淨零轉型的關鍵。新北市在逐步實踐淨零的過程,非常重視納入青年力量、持續聆聽年輕人的聲音。

2020 年環保局首創「新北永續未來學院」,以營隊形式培養青年關注環境時事、強化思辨能力;2021 年環保局邀集產官學界跨域領袖,首辦「新北青年氣候論壇」,整合各界豐富資源提供給青年世代,讓永續生活影響力開始發芽。

環保局表示,新北青年氣候論壇已邁入第四屆,今年更強化全球行動能量與國際視野,邀請多位國際產官學界專家參與暢談氣候行動實踐力,包括去年首次參與新北青年氣候論壇後,將再度來台的美國紐約荒野中心氣候行動主任 Jen Kretser,其獲白宮科技政策辦公室認可為「氣候教育和素養變革倡導者」,持續培養有潛力的青年成為氣候領袖,本次也將帶來全球青年氣候實踐行動的豐富經驗。

另外,論壇還將邀請強調社區永續及跨域人才培訓的日本 Glocal Center 主任 Hila Yamada、致力於建構永續生產與消費系統的韓國非營利組織 Hansalim 專案規劃 Park Ye-Jin、持續幫助在地社區提出應對氣候挑戰解決方案的馬拉威 Green Girls Platform 創辦人 Joy Hayley Munthali 共同交流。同時也邀請到前述 4 個國家的青年代表來到論壇現場,以行動沙龍形式進行國際交流,凝聚各國年輕人的思考與創意能量。

環保局進一步表示,今年青年氣候行動論壇更首度搭配「氣候行動團隊創意徵件」,環保局於今年初廣邀臺灣學生從校園或社區出發,針對觀察到的環境問題提出行動方案,經過初選選拔及線上導師培訓課程後,4 組入選隊伍將於本次論壇中進行發表,與各國青年分享交流氣候實踐經驗,創造青世代影響力,培育具有改變城市力量的未來氣候人才。

「新北 2024 國際青年氣候行動論壇—綠色觀察家的行動沙龍」將於 8 月 29 日於板橋新板金融大樓 17 樓舉行,開放 100 位關注永續發展的青年參與,論壇自即日起開放報名至 8 月 20 日止(或額滿為止),歡迎有興趣參與的青年朋友至活動網頁報名(網址:https://greenage2024.com/services )。

新北環保局攜手全球產官學夥伴持續同行,並鼓勵青世代發聲,從校園到城鄉、從臺灣到世界,盼望以跨國行動思維讓臺灣青年的行動創意站上國際舞台,一同打造更美好的永續明天。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
231 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
1

文字

分享

0
3
1
從成長的極限到永續系統發展——《成長的極限》導讀
臉譜出版_96
・2024/04/22 ・3899字 ・閱讀時間約 8 分鐘

  • 文/顏敏仁
    • 國立政治大學教育學院教授暨數位賦能與永續發展研究中心主任
    • 國際系統動態學臺灣分會主席

何飛鵬社長邀請我寫這篇導讀時,《成長的極限》(The Limits to Growth)系列書籍已被翻譯成近 40 種語言,全球銷售一千多萬本,被譽為 20 世紀最具影響力書籍之一。1972 年出版的本書源自傑伊.佛烈斯特(Jay W. Forrester)教授創立的 MIT System Dynamics Group 系統科學研究,由羅馬俱樂部(Club of Rome)支持其研究及出版。17 位科學家運用佛烈斯特的世界模型原型為基礎提出 World3 電腦模型,分析描述地球環境與經濟社會從 1972 年到 2100 年的可能未來景象並提出警示建議,由唐妮菈.米道斯(Donella Meadows)、丹尼斯.米道斯(Dennis Meadows)、喬詹.蘭德斯(Jorgen Randers)及威廉.貝倫斯(William Behrens)代表撰文出版成為世界第一本以電腦科學分析環境風險的報告。同年聯合國提出《人類環境宣言》。

想像 50 年多前這本書帶給世人什麼震憾?世界頂尖科研團隊提出,在有限的地球資源條件下,若依人類追求經濟成長的慣性發展趨勢,以及環境社會解方的行動時間延遲,將可能不自覺導致超過地球限度的開發(overshooting)而讓資源失衡崩潰。本書運用科學數據分析描繪的 12 種未來發展可能景象,不只是成長趨緩或停滯而已,還有全面毀滅式的環境經濟社會崩潰。這樣的論述在追求經濟成長的 1970 年代堪稱非常反直覺的驚天論述,有其支持者,也有大量的批評接踵而來。包含諾貝爾經濟學獎得主在內的許多批評者無法理解其分析的依據,也不相信其推論,甚至認為是不負責任的危言聳聽。

出版 20 年後的 1992 年,作者群更新內容以《超過限度》(Beyond The Limits)之名重新出版,同年聯合國召開首次全球環境及發展高峰會,宣布《聯合國氣候變化綱要公約》(UN Framework Convention on Climate Change, UNFCCC)與《生物多樣性公約》(Convention on Biological Diversity);30 年後的 2002 年,作者群再更新實際發生數據研究出版《成長的極限》三十週年增訂版,再與聯合國世界永續發展高峰會議同步,跨入 21 世紀倡議永續社會;40 年後的 2012 年,聯合國通過「永續發展目標」(Sustainable Development Goals, SDGs),乃至於 2015 年 193 個會員國全數簽署《巴黎協定》(Paris Agreement)執行 1992 年的相關環境公約。本書出版 50 週年時,世界頂尖科學期刊《自然》(Nature)發表專文呼籲科學家們應該停止對成長極限的爭論而共同全力為經濟環境永續發展努力。

有「東方諾貝爾獎」之稱的唐獎永續發展獎得主、歷任三屆聯合國祕書長特別顧問的國際知名經濟學家傑佛瑞.薩克斯(Jeffery Sachs)是聯合國千禧年發展目標(MDGs)、永續發展目標(SDGs)及《巴黎協定》重要推手。曾公開表示《成長的極限》是 50 年前他就讀哈佛大學經濟系時的指定必讀名著,對其影響啟發深遠。

-----廣告,請繼續往下閱讀-----
圖/envato

時至今日,國際經濟社會已廣為倡議 SDGs 及 ESG 等等永續發展行動與政策實踐,甚至是產官學各界領導人必修知識與國民素養教育。再讀這本引領思潮,橫跨兩世紀的經典之作,我們可以用什麼視角來品析及反思學習呢?

以對話取代對立:研究方法學

本書所引發的跨世紀跨領域對話,可以從研究方法學的特性來理解。古有云:事實勝於雄辯。對於已經發生的事件及資料加以科學分析歸納,是為研究方法中的歸納法(inductive reasoning)。這種方法的好處是依據取得資料幫助吾人從經驗中學習,以及傳遞知識。然而,對於還沒有發生的未來可能,歸納法則可能受到限制或僅能以過去相關資料有限度的推測未來趨勢。演繹法(deductive reasoning)則是一種運用行為邏輯與科學分析推論未來可能發展的研究方法,可依據邏輯幫助吾人規畫未來情境並分析可能性。若是從科學研究角度,要隨著時代持續進步,最好是同時有從經驗學習的能力以及展望未來的能力,亦即歸納法加上演繹法的持續運用。反之,若將歸納法 vs 演繹法直接二選一,便容易產生對立觀點。

若要能夠開放式對話,其實我們需要理解的是歸納法強調「資料」(data),演繹法重視「規則」(rule)。這兩種研究方法並沒有直接衝突,而是關注點不同。持各種不同研究方法及論述立場的人們之間沒有不合,而是需要對話及互相理解彼此想法。分析已發生的事件及資料需重視精準度及解釋力;而對於未來看法的對話,我們既然拿不到「未來」的資料,便需要更重視行為邏輯結構的分析(structural analysis)而避免不知其所以然而為之的黑箱(black box)預測。如此大家才有機會一起探討各種未來可能的行為模式及發展趨勢。因此,作者持續的對外聲明,他們沒有要直接對未來做預測(prediction),而是希望勾勒規畫各種行為模式下的可能未來情境(scenario planning),以做為政策及個人選擇參考。

以平常應對無常:系統動態學

許多人看到本書描繪 21 世紀可能成長超過限度並導致崩毀的反直覺景象,非常難以相信亦或是恐懼無常。然而本書卻有條有理的說明,不論是呈現持續成長、成長趨緩、超過限度並出現振盪、超過限度並導致崩毀等等看似反直覺的各種未來情境,都有 World3 模型中可以解釋各種行為模式的結構性原因。這樣的分析方式正是典型的系統動態學(System Dynamics, SD)。相較於傳統的線性思考方式,SD 重視系統思考(Systems Thinking)及因果回饋環路關係,考慮作用時間延遲,並運用電腦模型分析系統運作結構模式來推論未來發展趨勢。經歷各種複雜系統研究分析與歸納學習各種非線性動態趨勢變化後,系統科學家習以為常的運用 SD 分析方法將一般人認為動態趨勢變化的「無常」理解為可以探究其結構性原因及對策的「平常」。因此,作者在書中強調的「調整系統結構」(change the structure of the system)等等論述。雖然文字上並不親民,卻也是典型的系統科學家用語及系統思維。

-----廣告,請繼續往下閱讀-----

SD 重視脈絡分析,從心智模式(Mental Model)、系統思考、電腦模擬與未來情境分析,到對行為模式的反思學習,其持續追根究柢的科學專業,以及對未來保持開放思考的態度正是精髓所在。因此,當系統科學家在情境分析的過程中發現有非常不利的未來可能時,會防範未然提出早期警訊,呼籲要調整系統結構並儘早採取對策,便不難理解。系統動態學的應用也能有效協助規畫建立有利於未來發展的各種系統。

主動選擇勝過被動無奈

這不是無奈,這是我們的選擇。本書提到世界面臨的不是一個預先注定的未來,而是一個選擇,亦即在不同的心智思考模式之間所做的選擇。

面對成長的極限與可能的崩潰,作者仍然採取積極的思考方式,建議人類從面臨成長極限的經濟模式反思典範轉移到永續系統(Transitions to a Sustainable System),為長存發展之道。因此作者提出了許多可能協助人類邁向永續系統的作法。惟面對未來發展,值得我們重視的並不僅於作者所建議的作法,亦或是再次爭論作者所提方法的精準度,而是我們是否能夠用非常審慎的態度、以科學方法為基礎來關注分析真實環境威脅與經濟及社會需求,進而可能找到兼容並進的永續發展路徑。作者也表示其研究是在試圖找出各種可能的未來,而不是要單一預測未來。他們鼓勵讀者多學習、多思考、並做出個人的選擇。

圖/envato

思索面對未來發展,心智模式非常重要。永續發展需奠基於人類自我覺察的視界與能力。挪威前首相、唐獎永續發展獎第一屆得主布倫特蘭(Gro Harlem Brundtland)所領導的聯合國環境與發展委員會(United National Commission on Environment and Development)在 1987 年發布著名報告:〈我們共同的未來〉(Our Common Future),為「永續發展」提供經典定義:「永續發展係指能滿足當今需求,卻不犧牲未來世代滿足其需求」。在諸多學者、倡議人士的持續努力下,永續發展成為一種理性看待世界的系統性思考,有了結合物理環境、工程系統、社會經濟文化背景的分析框架。永續發展試圖理解世界經濟、全球社會和地球的實體環境等三個複雜系統的互動。而為了實現永續的經濟、社會及環境目標,也必須達成政府和企業的良善治理。

-----廣告,請繼續往下閱讀-----

邁向永續系統的未來展望

教育與自覺非常重要,我們主動選擇的行為改變與經濟社會轉型,是邁向永續系統的未來展望。聯合國倡議推動的永續發展教育(Education for Sustainable Development, ESD)已將系統思考、自我覺察、未來情境策略規畫等能力列入未來人才核心能力培育綱領。2023 年《聯合國氣候變化綱要公約》(UNFCCC)第 28 屆締約方大會(COP28),更是首度盤點全球近200國氣候行動,正視具體實踐。

羅馬俱樂部沒有停止其主動選擇權和科學精神,在《成長的極限》出版 50 年後,發布了核心主張聲明,希望協助大眾正確瞭解該書所欲傳遞的訊息。並邀請原作者丹尼斯.米道斯和喬詹.蘭德斯再撰寫出版《極限與超越》(Limits and Beyond)一書,回應他們 50 年期間對相關重大議題的持續考證與反思學習報告。羅馬俱樂部仍持續出版其他以科學探索永續發展未來路徑的書籍報告。

MIT System Dynamics Group 持續推廣系統科學研究並成立永續發展倡議單位。國際系統動態學會(System Dynamics Society)在全球五大洲許多國家及區域設立分會,以推廣相關教育及產業社會服務。在臺灣,系統思考能力的培養已列入教育部頒布的十二年國民教育課綱(108 課綱),系統動態學的核心管理科學技術已經國科會核定成立全國第一個 ESG 產學技術聯盟。SDGs 與 ESG 等永續發展行動與相關政策已經在具體實踐過程中,如本書所建議的方針「In transition to a sustainable system」,以科學基礎和建設性的對話,大家一起集思廣益地球與人類發展典範轉移邁向永續系統。最後呼應本書以及聯合國的倡議及努力,「Towards sustainable system development from the limits to growth」,從成長的極限到永續系統發展的積極作為,是我們共同的未來。

——本文摘自《成長的極限》,2024 年 03 月,臉譜出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。