0

0
0

文字

分享

0
0
0

從臺灣經典小吃學解剖:看完這篇讓你搞懂點黑白切的「黑話」

科學月刊_96
・2019/11/29 ・3855字 ・閱讀時間約 8 分鐘 ・SR值 501 ・六年級

-----廣告,請繼續往下閱讀-----

  • 作者/張景淞,願將知識的可愛善美,結緣世人。

在臺灣,常常可以看到許多攤販、小吃店在招牌上寫著大大「黑白切」三字,店家案頭前會放著很多不同的內臟與肉類部位,點餐單上甚至還會有許多神秘的名詞:「脆管」、「脆腸」和「粉腸」等。

這些彷彿黑話的名詞,聽起來好像差不多,但其實都指稱著不同的解剖部位,吃進嘴裡的口感與滋味也有著很大不同。這些名詞,是屬於饕客們與店家的豬隻解剖學,用詞正確,才能吃到心裡所想的部位;了解這些名稱,才能順利點單、大啖美食。這次,就透過科學的角度,細細爬梳這些獨特的名稱,探索其相對應的部位吧!

黑白切的由來

要說為什麼會有黑白切一詞,不可不提及早期臺灣社會。由於大部分人民並不富裕,只有在逢年過節或慶典時,才有機會大啖肉類,平時少有閒錢購買。因此,麵攤、小吃店家會在動物(特別是豬隻)屠宰後,留下內臟,洗乾淨後以水或滷汁煮熟透,與其它豆製品和蔬菜等一起作為街坊巷弄旁攤販提供的小菜選擇。

這種點餐形式隨意,也不講究刀工與形狀一致的小菜形式,就以臺語「烏白切」為名,寫成中文為「黑白切」。圖/Rockhsp @wikipedia

當顧客上門時,可能沒有明確想吃的菜色,再加上每日店家提供的皆不盡相同,因此,請店家依照人數或預算,隨意切點小菜。店家接到點單後,擇取數樣小菜種類切下所需份量,搭配醬油膏與薑絲上桌。這種點餐形式隨意,也不講究刀工與形狀一致的小菜形式,就以臺語「烏白切」為名,寫成中文為「黑白切」。

-----廣告,請繼續往下閱讀-----

臺灣各地的黑白切,依照風俗民情不同,除了可能有些區域限定的品項,也可能對於一樣的器官部位有著不同的稱呼,其中最特別的是富有美食之都的府城──臺南。在這裡,店家會自行灌製香腸、精心製作多種特色小菜,蒸、煮、炸、滷等烹調手法繁複多變,品質與價格反而是早期的有錢人家比較消費得起,因此,一般人所熟知的黑白切,在臺南被稱作「香腸熟肉」。

在了解黑白切的由來後,接下來就來揭秘黑白切菜單上、五花八門的名稱,逐一認識對應的器官部位。

腸與管:長形的中空部位

無論是以腸或管為名,都可以想像這些部位是長形、中空的圓柱體。被取名為腸和管,或許是依據這些器官所在的位置與功能而定。無論是人或豬,在肺部下方有一塊由肌肉構成的橫膈,以橫膈為界,區分腸與管:橫膈以上的部位,只要是長形、中空的,皆以管命名,如軟管、咽管等;橫膈以下的腹腔有許多的消化管,稱為腸,讀者所熟悉的大腸、小腸就屬此類。以下,就進一步細分在滷味、小吃中常見的名詞。

軟管/黑管/紅管/豬肚頭:食道

食道主要由平滑肌構成,顏色偏紅、偏深,所以被稱作紅管、黑管,也因口感較軟,故稱為軟管。另外,在食道與胃的接口部分稱作賁門(cardia),銜接細瘦的食道與胃(豬肚)之間,這段逐漸膨大的地方,便稱作豬肚頭。

-----廣告,請繼續往下閱讀-----

脆管/咽管/白管:胸大動脈

動脈的血管壁相較靜脈和微血管,是最厚的,尤其是直接連接心臟的大動脈,承受的壓力最大,因此,具有非常強的彈性與韌性。動脈血管壁由三層膜組成,除了肌肉組織外,大部分由彈性纖維和少量的膠原纖維組成,因此,經過清洗過後的大動脈顏色潔白,煮過之後口感爽脆。

在小吃攤中常見的各種料理與豬身上所對應的各器官。圖/徐維駿繪製

管頭/硬管:氣管

氣管由接近環狀的軟骨和平滑肌組成,因此,口感帶有軟骨的硬脆與彈性。一般取喉頭部位,稱其為管頭;而在基隆地區則會食用氣管部分,依照口感稱其為「硬管」。

粉腸:小腸前、中段空腸

小腸分為三個部分:與胃相接的十二指腸、與大腸相接的迴腸及界於兩者之間的空腸。小腸內有許多絨毛,以增加養分吸收的表面積,是許多養分被消化與吸收最主要的場所。空腸的絨毛最長,常存有正在消化中的白色食糜(chyme)與消化液,如果食糜中的膽汁過多,會造成苦味。因此,在豬隻屠宰前,會先將其飢餓、空腹,以確保消化道乾淨。

生腸/脆腸:輸卵管與子宮體

吃起來口感滑脆的生腸,其實是豬的輸卵管與部分子宮。因為捲曲在一起的輸卵管像朵花,在某些地區,生腸也被稱為花腸。另外,有些人會分得比較細,把子宮體另稱為生腸頭。

-----廣告,請繼續往下閱讀-----

大腸頭:直腸與肛門內括約肌

而一般會以「頭」結尾的部位,通常是指管狀器官的末端,形狀開始膨大,是與其它部位的連接處。大腸頭也不例外,指的是大腸與外界相通的肛門括約肌,也就是排遺的出口。看到這邊,讀者對於往後食用大腸頭可能會有心理障礙,不過不必擔心,經過處理的大腸頭皆須符合衛生標準,也不會有排遺的味道。

圖/截圖自泛科學 youtube 影片

腸管之外的器官

「管」與「腸」有直觀的命名方式,而其它的內臟部位,命名方式則皆不脫「依形狀命名」與「依所在部位命名」兩種。掌握住這兩大原則,便能明白每項佳餚背後的意義、就能成為在滷味攤、小吃店橫著走的饕客了。

豬肚:胃

胃主要由肌肉構成,具有很大的伸縮性以儲存食物,也負責分泌消化液與蠕動,進而消化及運送食物,所以,咀嚼豬肚時特別有韌性與嚼勁。

腰尺:脾臟

豬的脾臟呈長條形,又位在腰部上方,因此有腰尺之名,可以說是融合了形狀與所在部位命名的兩項原則。另外,人的胰臟也屬長條形,一樣稱作腰尺,有時候容易和豬的脾臟搞混。而豬的胰臟,因為是白色,故稱作白胰。

-----廣告,請繼續往下閱讀-----

腰胑/腰子:腎臟

腎臟的位置在腰部背側,依照所在位置命名,稱作腰子。順帶一提,在身為具代表性臺南小吃之一的鱔魚意麵店家中,菜單上時常可見麻油腰子,腰子在大火快炒,伴隨麻油香,是佐以鱔魚意麵的最佳拍檔。

小肚:膀胱

膀胱位在小腹,和腎臟稱作腰子的命名方式相同,稱膀胱為小肚。

天梯:上顎軟骨

在某些店家或滷味攤的櫥窗或架上會擺著一卷一卷、富有平行紋路的白色部位,乍看之下以為是刻花、川燙過的烏賊肉,在菜單上以形象化的「天梯」稱之。這個神秘部位,其實是豬的上顎軟骨,可別以為是海鮮喔!由於富含膠質所以吃起來口感爽脆,若是有讀者沒試過,下次經過有販售的小吃店時不妨點盤來嘗鮮。

圖/截圖自泛科學 youtube 影片

不只是吃肉,還要講究其部位

如前面所述,黑白切主要是豬隻的內臟、器官各部位組合而成的小菜。不過,隨著時代變遷,生活相較以往富足,現代的黑白切中,增加許多肉類品項。

-----廣告,請繼續往下閱讀-----

食不厭精,膾不厭細,豬肉的名稱與部位分類非常浩繁,這邊簡單介紹黑白切菜單上最常見的幾種肉,其命名方式主要也是以所在部位、形狀或口感而名。

菊花肉/嘴邊肉:臉頰肉

第一次聽到菊花肉,可能會以為來自於俗稱「菊花」的肛門部位,其實菊花肉來自於下巴到臉頰的肌肉,因為肌肉紋路呈現放射狀,形似菊花,因此得名。以嘴邊肉稱之,就更容易讓人望文生義了。

松阪肉/玻璃肉:豬頸肉

不只是在小吃店,在燒肉店也經常可以看到,卻不知所在部位的分切肉品,首推大概就是松阪肉了。松阪肉位於豬的頸部,在豬頰連接下巴之處,被層層脂肪包覆,需要小心清除,才會露出巴掌大的肉。

據傳松阪豬名稱由來,最初是業者意外發現此部位的口感不輸給日本和牛「松阪牛」,故取自松阪肉;又因為口感爽脆,被稱為玻璃肉。每隻豬能取下的松阪肉,只有頸部兩側加起來大約六兩重(225 公克),所以價格十分高昂,又被稱為「黃金六兩肉」。

-----廣告,請繼續往下閱讀-----

二層肉/離緣肉:僧帽肌

在人體背部肩胛骨的附近,有一塊倒三角形的肌肉,負責維持肩、頸的穩定性,這塊肌肉因為形似西方僧侶的帽子,被稱為「僧帽肌」,又叫做斜方肌。

而在豬隻身上,頸部延伸下來的這兩片薄薄僧帽肌,看起來好像與脊椎的肌肉分離一般,臺語稱為「離緣肉」,聽音生義,寫作中文便成「二層肉」。每隻豬也只有兩片二層肉,肉量雖然比松阪肉多一些,但也是十分珍貴,因此價格同樣偏高。相較於松阪肉的脆,二層肉的口感十分軟嫩,在饕客市場中亦有擁護者。

肝連/隔間肉/條仔肉:橫膈肌

在小吃攤上常常看到「肝連」這個品項,指的是區隔胸腔與腹腔的大片肌肉──橫膈。會稱為肝連,感覺和肝臟關係密切;但這塊肌肉和肝臟唯一的關係,大概就只是肝臟上緣緊貼橫膈吧!因為橫膈分開胸腔與腹腔,所以,在中部地區,產生了隔間肉這種形象化的名詞。

也因為橫膈形狀扁平,會切成條狀上桌,和其他部位的肉可以切成片狀,有很大的不同,遂「條仔肉」就成此部位的標準名稱。

-----廣告,請繼續往下閱讀-----
豬隻身上各種不同部位的肉類名稱。圖/徐維駿繪製

結語

儘管隨著時代變遷,直至今日無論是黑白切或者香腸熟肉,目標客群都和當年不同,已轉型成人人都能消費的起的日常小吃。

此外,煮法也從最簡單的水煮,到加入滷包與特色醬汁,甚至採用燒烤與油炸等,讓這些食材的面貌與風味更加豐富與精采。黑白切菜單上的專有名詞其來有自,了解其名稱由來,除了可以滿足身為一個饕客的好奇心,在科學上也能對豬隻的解剖部位更加了解。

這些小吃滿足了臺灣人民的口腹之慾,也一代代的沿襲傳遞至今。透過這些特殊的「黑話」,傳承屬於地區與時光的記憶。希望讀者透過這篇文章的介紹,以後在店家櫥窗前面對這些讓人眼花撩亂的腸、管或肉品時,能胸有成竹、得心應手地和老闆點菜。


〈本文選自《科學月刊》2019年11月號〉

在這個資訊不被期待的時空裡,卻仍不忘科學事實至上的自由價值。

 

文章難易度
科學月刊_96
249 篇文章 ・ 3653 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。