0

2
1

文字

分享

0
2
1

看 YouTube 漲知識:好看又好玩,那些充滿科學的頻道在這裡啦!

PanSci_96
・2019/04/12 ・1589字 ・閱讀時間約 3 分鐘 ・SR值 566 ・九年級

  • 文/ W編

泛科學的文章字太多?在此介紹幾個充滿科學的 YouTube 頻道,讓你用「看」的還是用「聽」的,深入淺出搞懂科學。

啾啾鞋

科普界無人不知無人不曉,台灣知識型 Youtuber 代表人物啾啾鞋。化學系畢業的他,喜歡將生硬的論文轉成大眾好吸收的科普知識,輕鬆逗趣(偶爾尷尬?)的解說風格,更是深獲觀眾們的喜愛的原因之一!

Taiwan Bar

從歷史講解起家的臺灣吧,近年開啟了大抓週計畫,影片內容跨足科學、舞蹈、經濟等領域。逗趣可愛的畫風、明快的節奏與扎實的內容,讓觀眾在短短幾分鐘內就能得到滿滿的收穫!

acapellascience

覺得科學好難懂?好難吸收?或許你只是用錯方法學習了!acapellascience 將科學知識編寫成朗朗上口的阿卡貝拉,只要聽個幾次,絕對忘不了那些滿滿科宅味的歌詞。

Kurzgesagt – In a Nutshell

榮登泛科員工最愛的的節目,常常探討意識、宇宙等大哉問的議題。畫風可愛卻不失唯美,是動畫型科普圈指標性的頻道,旁白充滿磁性的聲音,更是帶領著觀眾不知不覺中,看完十幾分鐘的知識型長片。

National Geographic

身為大前輩的國家地理頻道,在介紹世界各地的科學不遺餘力。從微觀到巨觀;從當地到全球;從地球到太空,以各種觀點介紹著科學與人文的不同面貌。

minutephysics

物理的原理好困難,不懂啦!不怕,minutephysics 用簡單的手繪圖,教你那些難懂的物理。秉持著愛因斯坦說的:「如果你不能簡單的說清楚,就表示你還沒有完全明白。」minutephysics 用有趣的方式,帶你解開那些擾人的物理主題。

Vsauce

訂閱數突破千萬、全球最大的知識型頻道。「地球是平的嗎?」「你的紅色跟我的紅色一樣嗎?」,看似簡單的問題,背後都有深刻的剖析,最近頻道還跟 YouTube 合作,錄製一系列心理學課程,高水準高質量的內容深獲全球觀眾喜愛!

NASA

工作壓力大,想逃到外太空?那你絕對不能錯過 NASA 的官方頻道。除了火箭發射、天文新知的影片,NASA 還是世界最狂直播主,全天候播送國際太空站的現場直播,搞不好有機會在影片中發現地球上的自己(?)

TED-Ed

由全球知名知識推廣團隊 TED 所創辦的教育頻道,與不同風格的動畫師合作,打造上百支深具教育意義的科普短片,絕對是您闔家觀賞的最佳選擇!

WIRED

以實拍為主的科普頻道,雖然沒有明確的領域,卻有許多令人欣喜的企劃主題。像是「為什麼幾乎不可能百米跑九秒」、「用五種程度解釋區塊鏈」等等,切入知識的角度絕對讓你耳目一新!

最後,要介紹科學的頻道,怎麼可以漏掉泛科學呢!

今年度的泛科學科學動畫,以「可能性調查署」為主題,邀請你一同來探索未來的各種可能!前所未見的「科學布袋戲」上線啦,快快來訂閱 PanSci泛科學 獲得第一手的資訊吧!

文章難易度
PanSci_96
1011 篇文章 ・ 1112 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
【泛科開課】知識型創作者的 YouTuber 流量密碼鍊金術!
PanSci_96
・2022/11/14 ・647字 ・閱讀時間約 1 分鐘

現代問題要用現代方法解決!Youtube 影音當道,尋求知識與學習新技能的過程,也從文字轉向影音!

台灣最大知識科學媒體「泛科學」創辦人 aka 知識長鄭國威將開設「知識型創作者的 YouTuber 流量密碼鍊金術!」線上課程,不僅分享自己從文字知識型網站「泛科學」,轉型為知識型 Youtuber 的心路歷程,也手把手教你如何在詭譎多變的影音環境中,找到專業知識與流量的甜蜜點。

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

你有碰到以下問題嗎?

  • 影音時代,純文字內容已無法滿足觀眾快速求知的急切需求。當人們轉向 YouTube 尋求知識、直接學習各種新知與技能,知識工作者如何數位轉型?
  • 好知識值得訂閱,真專業必須爆紅,擁有專業知識的你,值得被更多人關注!想踏上創作者之路,該如何起步?專業知識如何輸出成觀眾好懂的內容?
  • 你可能看過許多「口語表達」、「自媒體經營」、「影音企劃」相關教學,但卻始終無法系統性整合,有效產出能吸引流量的內容⋯⋯
  • 你也可能想過,是因為知識內容共鳴度低?創作腳本不夠有趣?行銷方式不夠吸睛?

其實,最根本的原因 —— 是我們欠缺「知識轉譯」的能力!

知識傳播需要有效轉譯,將知識內化吸收,再輸出成他人易懂的內容。

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

PanSci_96
1011 篇文章 ・ 1112 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

6
3

文字

分享

0
6
3
從太空窺探金星表面的派克太陽探測器
Heidi_96
・2022/03/04 ・3829字 ・閱讀時間約 7 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

在天文觀測中,自古以來就有許多關於金星的紀錄。從 1960 年代起,蘇聯、美國太空總署(NASA)、歐洲太空總署(ESA)和日本也都相繼發射探測器,執行不同類型的太空任務,希望能夠更認識金星。

2020 年,NASA 的派克太陽探測器(Parker Solar Probe,簡稱「派克號」)首次在太空中以可見光拍攝金星表面,並在 2021 年 2 月再次拍攝一系列可見光照片後,將他們的分析成果公諸於世。

本篇文章將依序介紹金星探測史、派克號的探測方法、可見光照片的分析成果,以及金星探測的未來展望。現在,就讓我們從頭認識這位閃閃發亮的鄰居吧!

始於科學革命的金星之旅

對地球上的我們來說,月亮是夜空中最亮的天體,但你知道最亮的「行星」是哪一顆嗎?那就是本篇文章的主角——金星!金星的平均視星等,也就是肉眼所看到的平均星體亮度,大約是 -4.14,僅次於月亮的 -12.74 與太陽的 -26.74(數字越小就越亮)[1],不只是地球夜空中最亮的行星,更是太陽系第三明亮的星體。

有個這麼耀眼的酷東西掛在天上,想必科學家絕不會輕易放過!就在科學革命(1543–1687 年)期間,天文學領域突飛猛進——哥白尼提倡日心說、牛頓發現萬有引力、克卜勒導出行星運動定律等等。同時期的知名科學家還有伽利略,他改良望遠鏡,透過觀測金星相位(圖一),也就是金星表面的光照變化,得知金星並不是繞著地球運行,進而推翻當時蔚為盛行的地心說。

圖一:伽利略透過望遠鏡發現金星和月亮一樣有盈缺變化。圖片上半部分別是土星、木星和火星。圖/NASA

此後,眾多業餘天文學家和天文愛好者也都一窩蜂利用望遠鏡觀測金星。有許多人聲稱在背光側看見了微弱的灰白色光芒,並將其稱作「灰光」(Ashen light)。

有些人認為是灰光是金星上的閃電,有些人則認為是紫外線穿透金星大氣時,氧離子游離而輻射出的暗綠色光芒(類似地球上的極光現象),可是沒有人能夠確實拍照紀錄,因此當時普遍認為灰光只是一種視錯覺。時至今日,這些假設也都還沒有確切的科學根據。[2]

不斷演進的金星探測技術

時間來到 1960 年代,繼水手 2 號(Mariner 2)在 1962 年掠過金星後,金星 4 號(Venera 4) 在 1967 年進入金星大氣層進行分析,結果顯示金星大氣約含有 90-93% 二氧化碳、7% 氮氣,以及少許氧氣和水蒸氣。[3] 緊接著在 1975 年,金星 9 號(Venera 9)測出表面溫度約 485 °C、雲層厚度約 30–40 公里。除此之外,還拍下金星表面的 180 度全景照片(圖二),是史上第一個將金星照片傳回地球的探測器。[4]

圖二:1975 年 10 月 22 日,Venera 9 拍下第一張金星表面的照片。圖/NASA 

金星大氣層布滿厚厚的硫酸雲,不僅反射了大約 75% 的陽光,也阻擋了來自金星表面的大部分可見光。因此,科學家決定改用雷達儀器測繪金星表面。1990 年代,麥哲倫(Magellan)多次以雷達測繪金星表面的火山和隕石坑等地貌結構,其清晰程度與可見光測繪不相上下,可說是目前最詳細的金星地圖(圖三)。[5]

圖三:根據麥哲倫的數據資料製作的金星視圖。圖/NASA

此後,科學家進一步利用近紅外線(NIR)觀測金星背光面,因為近紅外線(波長 0.75–1.5 μm)有利於影像在低光環境下生成,而這個波段恰好也是大氣透明度最高的範圍,可以更清楚地看見金星表面。1998 年,卡西尼號(Cassini)以 0.85 μm 的波段觀測金星,可惜這種方法在技術上難以突破,因為輻射強度會隨著波長變短而迅速下降。直到 2020 年,派克號才終於以更短的波長捕捉到金星表面的輻射。

飛越金星七次的「派克號」

2018 年 8 月,派克號發射升空,飛往太陽(圖四)。為了在這漫長的旅途中節省燃料,派克號總共得進行七次重力輔助飛越(VGA),利用金星的引力逐步修正飛行軌道,最終在 2025 年抵達距離太陽中心 10 個太陽半徑(約 690 萬公里)的地方,進行日冕和太陽風的測量任務。

七次重力輔助飛越(VGA)的時程分別如下[6]

  • VGA1:2018 年 10 月 3 日
  • VGA2:2019 年 12 月 26 日
  • VGA3:2020 年 7 月 11 日
  • VGA4:2021 年 2 月 20 日
  • VGA5:2021 年 10 月 16 日
  • VGA6:2023 年 8 月 21 日
  • VGA7:2024 年 11 月 6 日
圖四:準備發射升空的派克號。圖/NASA

截至目前(2022 年 3 月),派克號順利完成了前 5 次 VGA。在 VGA1 和 VGA2 期間,派克號都沒有任何動作。

後來,科學家認為可以利用其搭載的 WISPR 望遠鏡(Wide-Field Imager for Parker Solar Probe)觀測金星雲層。WISPR 可說是派克號的靈魂之窗,但它並不只是一座望遠鏡,而是兩座寬頻光學望遠鏡—— WISPR-I(Inner)和 WISPR-O(Outer),兩者配備的濾光片都只能讓可見光(波長 0.5–0.8 μm)通過。

於是,在 VGA3 和 VGA4 期間,科學家突發奇想,讓 WISPR 對準金星的向光面和背光面,分別拍下照片,想藉此測量雲的速度。沒想到 WISPR 竟然直接穿透了厚重的雲層,以可見光拍攝到明暗不一的表面,同時達成「以光學望遠鏡觀測金星表面」和「從太空拍攝金星表面的可見光照片」兩項創舉。

這時候,問題來了!WISPR 的最短曝光時間是 2 秒,但金星的向光面太亮了,拍出來的照片張張過曝、過飽和,還產生假影,使得原圖和電腦重組照片有所誤差。為了避免這樣的問題,科學家只好放棄拍攝向光面,改以背光面的照片作為研究材料。

WISPR 拍攝的可見光照片

VGA3 期間拍攝的照片只有兩張可以用,其中一張如下(圖五,黑白部分)。在這張照片長達 18.4 秒的曝光期間,派克號不斷被宇宙塵埃(漂浮在太空中的小顆粒)撞擊,造成隔熱罩上的材料燒毀,留下許多水平方向的刮痕。若是忽略刮痕,可以清楚看到明暗不一致的區域,而造成顏色深淺不一的主要原因就是金星的地形特徵。

藉由比對 WISPR 照片與麥哲倫的雷達地形圖(圖五,彩色部分),科學家得以了解溫度如何隨高度變化。圖中黑色(紅色)部分是金星最大的高地區域,位於阿芙蘿黛蒂高地(Aphrodite Terra)西邊的奧瓦達區(Ovda Regio)——越接近白色的區塊越熱,是低海拔地形;越接近黑色的區塊則越冷,是高海拔地形。

圖五:VGA3 觀測到的金星可見光影像(黑白)與麥哲倫雷達地形圖(彩色)的對比。圖/NASA

有了 VGA3 的失敗經驗後,VGA4 的照片就沒有出現刮痕了,而且還從不同的角度拍到了金星表面(圖六)。在 VGA3 期間,派克號是從金星後方飛越,因此 WISPR 拍到的是金星的東側邊緣;在 VGA4 期間,派克號則是從金星前方飛越,因此 WISPR 拍到的是金星的西側邊緣——這讓科學家能夠更細微、更全面地觀察金星的背光面。

圖六:VGA4 觀測到的金星可見光影像(黑白)與麥哲倫雷達地形圖(彩色)的對比。圖/NASA

金星探測的未來展望

雖然金星、地球和火星都是在同一時間形成,現在卻大不相同——火星的大氣層非常稀薄,而金星的大氣層非常厚重。為了解開這個謎團,NASA 和 ESA 在 2021 年 6 月宣布了 3 項全新的金星探測任務,分別是 VERITAS[7]、DAVINCI[8] 和 EnVision[9]。這些任務將進一步探測金星的大氣、地質和其他條件,瞭解這顆星球是否曾經宜居,又是如何演變成現在的樣貌。

至於派克號,不幸的消息是,2021 年 10 月的 VGA5 不利於背光面拍攝,而 2023 年 8 月的 VGA6 也將是如此。如果你也和我一樣想看更多 WISPR 拍攝的可見光照片,就讓我們期待 2024 年 11 月的最後一次飛越(VGA7)吧!

NASA 官方針對派克號金星探測任務的介紹。影/YouTube-NASA

註解

  1. Apparent magnitude – Wikipedia
  2. Ashen light – Wikipedia
  3. Venera 4 – Wikipedia
  4. Venera 9 – Wikipedia
  5. Magellan (spacecraft) – Wikipedia
  6. Parker Solar Probe: The Mission
  7. In Depth | Veritas – NASA Solar System Exploration
  8. DAVINCI Homepage – Probe and Flyby Mission to Venus Atmosphere
  9. EnVision: a mission for understanding planets everywhere

參考資料

Heidi_96
6 篇文章 ・ 12 位粉絲
PanSci 編輯部角落生物|外語系還沒畢業,潛心於翻譯與教學,試圖淡化語言與知識的隔閡。

3

8
2

文字

分享

3
8
2
各國意識抬頭,太空碎片帶來的災難有多嚴重?
黃 正中_96
・2022/02/22 ・2181字 ・閱讀時間約 4 分鐘

十年前(2011 年)美國國家科學委員會(NRC)發布了一份報告,對於環繞地球的碎片數量發出了警報[1]。當時根據美國太空總署的估計,碎片已達到「臨界點」,導致在軌道上的碎片,不斷碰撞並產生更多碎片,從而增加了人造衛星故障的風險。十年過去了,繞地球運行的碎片數量越來越多,甚至風險增加得更快;是否太空碎片數量的臨界點正在逼近?沒有人知道答案,但可能很快。

何謂太空碎片?

首先,我們先來談談什麼是太空碎片。

依據美國航空太空總署(NASA)定義,太空碎片泛指不提供有效服務,且繞行地球運行的人造物,如廢棄衛星、留在軌道上的火箭與其零件、大碎片相互碰撞後產生的小碎片,均可為之。而太空碎片最主要來源為火箭殘餘燃料爆炸而產生的碎片。

根據全球最完整追蹤太空碎片的系統——美國太空監視網絡(SSN),所登錄的太空碎片已超過一億個。

衛星送入軌道,依照能量守恆和動量守恆定律,飛行的速度必須達到每秒幾公里,才能繞著地球飛行;因此如果它在軌道上撞到任何太空碎片,比如廢棄衛星撞到一片油漆碎片,即使不是災難性的,也可能造成巨大的損失。

太空碎片造成的災難有多嚴重?

自 1957 年以來,人造衛星和火箭製造了越來越多軌道碎片物體,大小從幾微米到幾米不等。儘管已經達成了一些國際協議,限制碎片的增長速度,各國卻沒有嚴格的計劃來減少現有碎片的數量。

地球周圍的太空充斥著碎片。圖/歐洲太空總署

如今越來越多功用的人造衛星被發射進入地球周圍的低軌道,然而其所造成的碎片與衛星數量分佈超過太空碎片容量限制時,則可能發生理論失控的碰撞反應[2]

最近,美國太空新聞(Spacenews)報導,非洲的小國家盧安達(Rwanda)向國際電信聯盟(ITU)申請 327,230 顆衛星[3],加拿大的開普勒新創公司提出 115,000 顆衛星的超級大型太空網路系統,加上亞馬遜、OneWeb、SpaceX 和 Telesat 等公司已經在積極開發的系統,以及地球靜止軌道上的通訊衛星,這些衛星數量遠遠超過預期需求的容量,達到碰撞臨界點的極限風險;問題是國際電信聯盟沒有執法權,國際電信聯盟對軌道壅塞的規定為零。

2007 年中國反衛星計劃試驗所產生的的碎片擴散,以及 2009 年銥星(Iridium)與俄羅斯 Cosmos 的碰撞,讓人們意識到,並提高了積極管理碎片情況的緊迫性,努力採取緩解方法,並提出了許多減少太空碎片的技術。去年(2021)年底,中國的天宮太空站緊急啟動姿態控制,以規避靠近中的星鏈(Starlink)太空網路衛星潛在的碰撞危機。

空間碎片撞擊試驗:以輕氣槍射擊鋁板的方式,模擬一片 14.2 克的塑料,以 5.334 公里/秒的飛行速度在太空低軌道與鋁板碰撞的情況。圖/前 NASA 工程師 Megs H. 推特貼文

「凱斯勒效應」和連鎖反應

美國 NASA 科學家在 1978 年提出凱斯勒效應(Kessler Effect)理論,說明當太空碎片達到或超過容量限制時,由於碎片碰撞而失效的太空船數量將顯著增加。地球軌道上大大小小的物體,數量將變得非常大,它們會不斷相互碰撞,產生更多碎片——最後成為一種被稱為「碰撞級密度」的連鎖反應。緊隨其後,新產生的碎片將呈指數倍增,直到近地太空被各種大小垃圾堵塞。

一旦這樣的衛星碰撞災難發生,整個連鎖反應可能只需要幾天或幾週的時間,最後可能只有幾顆衛星完好無損。

若是繼續毫無限制地增加巨型衛星星系,可能會導致數十年,甚至更長時間的太空活動完全喪失。

太空碎片一旦超過臨界點,造成碰撞災難,無論是太空網路、衛星導航、通訊衛星、地球監控、氣象預報等等,大部分可能都將失去功能。科技帶給人們的便利,以及所建立的文明,將大幅衰減、倒退。

如何解決太空碎片的問題?

若是我們什麼都不做,可能會導致每年 5 兆美元的太空商業收入損失。重新開放太空將花費至少數千億美元,並且可能需要數十年才能實現。若是能想出補救措施,就能確保太空碎片不會帶來災難性的問題,但這就需要一個非常縝密的計劃,涉及幾個新的太空系統和數十億美元的投資。

美國、歐盟、澳洲和日本以及各國的太空機構都意識到太空碎片問題的嚴重性,相繼提出不同的補救措施,包括:建立太空碎片追蹤機制,由觀測站和天文台精確跟蹤、監控太空物體的軌跡,避免現役衛星與大型物體相撞;提出減少計劃,清除太空小碎片物體的數量;跨國協調衛星的太空交通,以維持安全的飛行路徑;在設計人造衛星時,規劃衛星壽命結束前的退場機制,讓衛星降低軌道返回地球,並且在大氣層燒掉。這些方法目前都正在陸續實驗、進行中。

最近有一個例子,在今年 2 月初所發射的星鏈 (Starlink)太空網路衛星,發射時正好受到太陽風暴衝擊,有 40 顆衛星被風暴摧毀,幸好當時這一批衛星有返回地球的機制,能夠重新進入大氣層並燃燒掉,順利地減少了一批太空垃圾。

註解

  1. Report says space debris past ‘tipping point,’ NASA needs to step up action
  2. Space debris
  3. Satellite operators criticize “extreme” megaconstellation filings
  4. Space Debris: Wall-E’s Future is Real
所有討論 3
黃 正中_96
8 篇文章 ・ 5 位粉絲
國家實驗研究院國家太空中心研究員。勿忘對科學研究的熱情,勇敢築夢,實現夢想…...