0

0
0

文字

分享

0
0
0

海上風機將蓄勢來電

活躍星系核_96
・2012/04/27 ・3220字 ・閱讀時間約 6 分鐘 ・SR值 529 ・七年級

陳薈元、林賢齊/報導

發展風力發電需要廣大陸域面積,台灣地狹人稠,能作為風力發電使用的土地趨近飽和。因此,政府開始將希望投注在海上,企圖用「四面環海」的環境來扭轉地理上的限制。

先天臨海的歐洲便是十分適合發展離岸風力的地域,丹麥於 1991 建造了世界上第一座離岸風力發電廠,接著荷蘭、瑞典等國也跟進;到了 2000 年後,英國也開始逐漸發展,利用其四面環海的優勢,目前英國離岸風力發電的裝置容量全已達世界第一;而一直在綠能發展上不遺餘力的德國從 2007 年海底電纜的規劃開始、2009 年試驗性發電,也於 2010 年正式啟用了離岸風力發電。

2010 年 4 月德國就在北海離柏肯島(Borkum Insel)北方 45 公里處,設立第一座「離岸風力發電園區」。該園區預計年發電量為 220GWH,足以每年供應德國 5 萬戶 3 口之家;這個新成立的離岸風力園區,讓德國成為了全球第12個具有離岸風力發電廠的國家。

離岸風能綠能新星

離岸風力發電是將風力發電機建設於海域或水域地區,像是海面、峽灣或湖泊等區域,以陣列的形式架設風力發電機,再利用由水下或海底電纜建立起的電網,將電力收集並傳回陸上使用。

由於海面上的風速較陸上快且風的流動也相對穩定,而理論上,每增加 10% 的風速就可提高約 30% 的電力產量,因此海上離岸風力發電對能源上的貢獻潛力十分可觀,也是綠色能源中愈來愈受到世界各國重視的未來之星。

事實上,台灣的離岸風力發展計畫,已在 2000 年至 2004 年由經濟部能源局進行過台灣地區風力潛能調查,在西部台灣海峽沿海和外島地區,皆擁有年平均風速達 5 至 6(m/s)、風能密度達 250(W/m2) 等條件,顯示台灣具有開發離岸風力的潛力;經濟部也在 2007 年 9 月 1 日公告「第一階段設置離岸式風力發電廠方案」,開放設置離岸風力發電廠;並於 2009 年的「綠色能源產業旭升方案」中再度強調未來發展離岸風力發電的重要性。

發展離岸配套眾多

澎湖科技大學電機工程學系教授吳文欽指出,離岸風機的架設與準備工作十分複雜,牽涉到海底電纜的鋪設、輸送電網的建立、海下樁柱的架設,以及施工工程船的建造,都是開發離岸風力發電重要的一環。一切就緒後,工程船會將各零組件運送到海上打好地基的位置,在海面上將風力發電機組裝起來,這才完成了離岸風力發電機的架設。

儘管台灣的離岸發電發展儘管仍在規劃的「紙上談兵」階段,清華大學化學工程學系教授馬振基則樂觀認為,「最快再五至十年」,可以看到初步的成果。台灣大學工程科學及海洋工程學系教授林輝政則指出,政府若缺乏決心,則仍窒礙難行。

由於離岸風力發電機是設立在「海面上」的風力發電機,許多考量條件都與建設陸上風力發電機不同。馬振基舉例,海上場址的選擇會牽涉到海域的規劃,包括台灣海峽的水向、海象,甚至漁民、船隻等等的問題,因此整體發展起來會比陸上風力發電遇到更多的困難。

不過,去(2011)年曾前往德國考察離岸發電場的馬振基說,擁有世界五大最好的風場之一的台灣先天條件不輸歐洲,在後天的技術與管理卻仍待努力。

馬振基解釋,台灣比較沒有的條件就是風力發電機機台可能要向國外購買,還有較缺乏整體的電網設計與營運管理,「這方面可能要借重國外,像德國、或是英國、法國的經驗。」

離岸發電減碳效益佳

攤開考察資料,馬振基說明,以單單一台 5MW 的離岸風力發電機為例,它所能發的電力大概可以提供 5 千個家庭,一個家庭以 3 人來算、總共約 1 萬 5 千個人,一整年的用電量;如此可以節省的煤炭量,大概一年節省 5 千 500 萬噸,若以石化燃料來計算,等於是省下了約 150 萬公升的石油,就是 3 萬 8 千輛容積為 50 公升的油罐車。

至於對於海洋生態的影響,台灣大學工程科學及海洋工程學系林輝正教授認為,雖然仍未定論,但目前看來影響不大。林輝正指出,國外的案例發現離岸風力發電機的基座,反而會聚集魚群躲藏,如同魚礁一般。且離岸風機的設立也一定會避開航道、避開魚場,也就是在選擇場址與建設的過程中,讓它對環境生態的衝擊面降到最低。

生態問題未成阻礙

至於低頻噪音影響的方面,林輝政說明,海上的風聲原本就不小,而風力發電機運轉時,葉片震動產生的噪音,也是局限在一定範圍內,過一定距離後風聲就遠大於風機噪音了,因海面上此噪音問題其實不大;而且,「空氣中的噪音是傳不進去海裡的」。

林輝政解釋,這是由於空氣中與水中聲音傳播阻抗(acoustic impedance)不同的緣故,因為水的聲阻抗遠大於空氣的聲阻抗,意思就是,聲音傳到水面時有點像撞到牆壁般,很難傳遞過去,因此水面上的噪音並不會傳遞到海裡。至於葉片旋轉時的震動,則會經由塔架傳到海裡面的樁柱,造成海底噪音的影響,林輝正表示,這個問題國外仍在研究,尚無法下定論。

發展台灣風能產業鏈

對於台灣離岸發電的發展,林輝正認為仍需要政府根據國外以及發展陸域發力發電的經驗。林輝政舉例說,德國很注重國家自主研發,政府規劃並支持產業投資發展,同時也與技術研究機構緊密合作,形成穩固的產業鏈,是十分值得台灣參考之處。

「政策先行、先訂好,未來要怎麼做、做多少、該怎麼做」,林輝政說,這些內容德國政府在政策上都清楚訂定,明確地傳達給國內廠商知道,而廠商除了看到政策作法外,還看到了商機。「有錢賺,廠商就會投入了,如此一來,政策就誘導了產業的推動」。

此外,想要推動離岸風力發電,技術力十分重要,像是風機各零件的製造、塔架結構的技術、葉片材料的合成、組裝焊接等技術。林輝政說,德國有四個機構,扮演著像台灣工業研究院的角色,「他們就會解決該解決的問題」。

林輝政說,最重要還要做出產業才行。他舉例,安裝一臺發電機,就會需要船舶、起重機、重型設備的儲放港口、生產的廠房等,這些都需要很多資金和設備,要各個相關產業共通合作,形成更大一個集體產業,創造共同利益。

打造台灣風力基地

德國主要的離岸發電基地就設在布萊梅港(Bremerhaven),布萊梅港周邊還有些腹地可以使用,由政府規劃成葉片、發電機、塔架的生產基地。形成一個完整性的產業聚落,除了有生產外,還有將零組件存放、運送出去組裝的運轉基地,是個類似台灣「科學園區」的「綠能基地」。對此,林輝政語帶保留地說,「可惜目前台灣都還沒有」。

因此,林輝政認為台灣未來在發展離岸風力發電上,政府若能有明確的策令,配合各公、民營機構的合作協助,要發展起來不是問題;對台灣來說,「離岸風力發電主要會是在西海岸」,林教授說明,所需要的船隻是工業使用,不需要到吃水十幾公尺的商業用船,現有、廢棄的魚港都可以,找一個離風場不致於太遠的港口,就近規劃。

關於地點的選擇,林輝政認為,台灣的西海岸是有很多的土地可以應用的,且台灣的風機數量需求不用太多,以一支風機提供 3 MW 來算,假設未來風能電力需求量為 2000 MW,約需裝七百套風機,這數量對西部沿岸土地及港口來講不是很大的困難。林輝正重申,「很多不是不具有公權力的廠商可以做得到的」。

澎湖離岸發電俱優勢

而台灣除了西岸臨台灣海峽的風場外,清大馬振基教授表示,「澎湖」也是個十分適合發展離岸風力發電的地區,澎湖的溫度、潮汐差,與北海比較相對穩定,且澎湖臨海的地盤是玄武岩,再架設離岸風力發電機塔架時,較為穩固。

林輝政解釋,「這些問題工程都能解決,只是成本的問題」。以經濟部目前規劃設立離岸發電風場所在的彰濱外海地質屬沙質,地基要打更深,要花的錢就多,成本就提升了,但「澎湖地質是玄武岩,大多是岩盤,成本就較低」,林教授表示,地質方面對於發展離岸風力不是問題,就只是在台灣西岸的沙岸建設風機上成本會較高。

馬振基表示,以西岸台灣海峽來講,架設風機的技術會比較像德國北海地區利用鑽油平台式的建造方式,而澎湖沿岸因地質岩盤不同,會是另外一種方式。

雖然選址仍待考察,但其實離岸風機通常設置在岸邊約 100 公尺以上、接近大陸棚地區附近,馬振基解釋,因為如果場址再遠的話,海底距離海面會變深,而如果太深的話,對於建立離岸風機在打樁和架設上的成本反而太高。

天然資源缺乏的台灣,卻在風力資源方面具先天優勢,若善加發展,定能為台灣的能源挹注一股新力量。

原刊載於節能減碳故事賞,經作者授權轉載。

文章難易度
活躍星系核_96
752 篇文章 ・ 117 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

1

1
0

文字

分享

1
1
0
離岸風機建設又貴又麻煩,蓋的好處是什麼?又會對環境造成什麼影響?
PanSci_96
・2023/11/04 ・5780字 ・閱讀時間約 12 分鐘

北風和太陽,你賭誰贏?

台灣為了發展綠能卯足全力,風力與太陽能是最受關注的兩大巨頭。這幾年太陽能就像開了加速器,建置量扶搖直上,產生的討論與爭議當然也不少。但在風光併行的策略中,風機的關注度似乎就沒有那麼高。

最主要的原因,大概就是太陽能板近年大量設置,甚至出現在我們的周圍,因此產生更多對於環境影響的討論。

然而風機不比太陽能,單一支風機隨便就超過 20 層樓高,十分巨大。不僅建設成本較高,也需要蓋在遠離人群的地方。

但是,為何風機一定要如此巨大,甚至跑到外海去蓋呢?那麼巨大的風機,對環境生態會造成多少衝擊?

到海上去蓋風機有什麼好處呢?

蓋在海上,遠離陸地的風車我們稱為離岸風機。雖然風電的新聞版面不如光電,但其實一直有持續在進展。例如今年 6 月,台中外海的渢妙風場,就才剛遞交行政契約簽署文件,該地的最大裝置容量預計有 1800MW。

但即便如此,我們還是能感受到風力發電的開發比光電吃力許多。其中原因是,要將風力發電廠從陸上搬到海上,要付出的代價可不小。根據經濟部的資料,如果用年發電量一百萬瓦來算,設置離岸風電的裝置成本約 1 億 5 千~1 億 7 千萬元,幾乎是陸域風電廠的三倍。此外,離岸風電開發流程也比陸域長,經過前期的選址調查與評估後,還要另外花 1~2 年安裝水下基礎,才能建置風力發電裝置。既然如此,在討論離岸風電之前,我們應該先問問,跑去海上找風電有什麼優勢呢?

最常聽到的理由是噪音的影響。風力發電運轉過程持續發出低頻噪音,對周圍環境帶來噪音污染,引起居民反彈。環保署原本規定,風機與最近建築物距離 250 公尺以下就必須做環評,不過由於近年來仍爭議不斷,今年初更修法將門檻提高到 500 公尺。

圖/giphy

而且台灣的陸域風機已經發展了二十幾年,優良風場飽和後,接下來如何權衡容量擴張和環境影響成為一大課題。因此往海上發展便成為重要的選項。

不過除了沒地可用這個原因之外,從發展的角度來看,更吸引人的因素其實是海上更加豐沛的風電資源。之前我們在介紹「宇宙太陽能」那集的時候,有提到科學家考慮將太陽能板送到遠離地表的太空中,好避開夜晚與雲層的影響,能不分天氣接收直接日照。

建置離岸風電也是一樣的道理,遠離陸地的平坦海面可以讓氣流暢行無阻。相較之下,陸地上的建築物,植物,地形等等都會顯著地拖慢地表附近的風速。更進一步,越往上空,風速被地表建物影響的幅度就越小。因此風機一支比一支高大,原因除了受風面積增加之外,在於高處的風能也更加豐沛。

最重要的是,風能和風速的三次方成正比,也就是說,風速只要快兩倍,風力發電的功率就會直接翻八倍。因此風速幾乎可以說是頭號考量因子,而高風速的外海也成為了最佳的選擇。

平常站在海邊,海風就已經常讓人站不穩了,但其實從平均風速資料可以看到,台灣海峽附近離海岸線十公里以外的海上風速更是快上許多。尤其台灣海峽北半部相較其他鄰近海域,蘊含的風能可說是相當驚人。這是因為台灣海峽位在中央山脈和中國的武夷山脈中間,兩座山脈形成天然管道,而且方向剛好與盛行的東北季風與西南季風方向一致,每當季風流過山脈中間時,就會加速通過形成強勁的風場,就像兩座高樓大廈中間總是吹著強風一樣。

平均風速圖。圖/global wind atlas
平均風力功率圖。圖/global wind atlas

說到這裡,台灣要發展離岸風電,可說是需求與資源兼備。從 2012 年 7 月,經濟部公告「風力發電離岸系統示範獎勵辦法」開始,台灣的離岸風電已經發展超過十年。不過,離岸風電近期進度有待追趕。根據 109 年經濟部能源轉型白皮書台灣風力發電推動方案,2025 年離岸風力發電累計設置容量的目標是 5.7 GW。但統計到今年五月,離岸風力發電裝置容量只有 1.15 GW,雖然預估到年底達 2 GW,但還是不夠快,這也讓經濟部原本預計 2025 年達成的再生能源佔比 20% 目標,延至 2026 年 10 月才可能達標。。在政府與企業積極向海借地來蓋風力發電廠時,遇到了什麼問題呢?

離岸風電對環境有影響嗎?

儘管我們剛剛提到,離岸風電對岸上居民影響較小,但是對於海上的居民就不是這麼一回事了。舉例來說,首當其衝的就是空中飛的鳥與蝙蝠。風力發電機組的葉片高速旋轉,時常讓空中的鳥類與蝙蝠閃避不及而撞擊死亡。一篇 2013 年的研究估計,北美洲的風電扇葉每年殺死的鳥隻數量約介於 14 萬到 32 萬之間,雖然這是針對北美陸域的調查,但由於台灣海峽也是許多鳥類跟蝙蝠的遷徙路線,豎立在台灣海峽的風力發電機必然會成為不少生物的絕命終結站。

面對這類的鳥擊事件,許多較新的風力發電機組開始引進新型態的防鳥設計。像是在機組周圍裝設音波偵測器、熱感應器,藉此來監控鳥類與蝙蝠活動,並依據監測結果停機降載。此外,還有一份 2020 年的研究將風電機組的其中一個扇葉塗黑,並發現該機組的鳥擊事件數量降低 70%。研究人員表示這是因為單一的黑色扇葉可以減少高速旋轉的動態模糊,讓鳥類看得更清楚。不過比起這些預防措施,最根本的做法是從謹慎的選址做起,讓風場遠離鳥類的聚居地,例如候鳥遷徙路徑上的濕地或是過境棲地,降低風機和鳥類接觸的機會。

圖/giphy

當然,鳥擊的威脅是陸域和離岸風電都會有的難題。而離岸風電雖然遠離我們居住的陸地,不會對我們產生噪音危害。但建造和運轉期間所帶來的「水下噪音」,卻對當地,也就是海洋生態帶來不可忽略的影響,也因此成為離岸風場環評的一大關注重點。

在建造離岸風電機組時,需要先在海床上打樁作為固定的基礎,才能繼續往上建造風力發電機組。打樁的過程就等於將一根超大的釘子打入海床中,會產生極大的撞擊聲,雖然打樁的噪音是短期的,蓋好之後就不會再有了,但在運轉期間,離岸風場也會和陸上機組一樣發出低頻的嗡嗡聲。不論是打樁還是運轉的噪音,都會在海水中傳遞,影響到海中生物的生存。

由於聲音在水中傳遞速度快,損耗低,加上海水中光線不足,能見度較低。魚類跟海洋哺乳類等生物的聽覺自然演化得比視覺靈敏,讓他們有了非常廣闊的聽覺「領域」。因此從生態保育的觀點來看,海底噪音跟地上的噪音一樣,需要嚴密的監控和管制,否則會對海洋生物的感知與溝通能力帶來極大的影響。

環保署在 2022 年的二月將海事工程打樁噪音的規範訂為單一次打樁不能超過 190 分貝、打樁超過 160 分貝的次數不能超過總打樁次數的 5%。國內研究也建議打樁開始前 30 分鐘,必須確認沒有鯨豚在方圓 750 公尺內;並以緩啟動模式開始打樁,讓附近鯨豚可以及時迴避。畢竟,瀕臨絕種的中華白海豚就棲息在台灣西岸中段的沿海區域,和最有開發潛力的風場地區高度重疊,因此在設立風場時需要格外地謹慎。

圖/海洋委員會海洋保育署

離岸風電可能帶來的環境負擔,需要在建造前以及運轉期間持續監控。但目前台灣發展離岸風電遇到的最大瓶頸,其實並不是環評與選址等環境問題,而是其他供應面的限制。

離岸風機的施工問題

前幾年在 COVID-19 疫情的籠罩下,各項工程與供應運輸時程難免延宕,國內離岸風電的建置進度大幅落後。此外,政府政策、國外廠商的商業決策、以及資金流動等等現實問題,都影響到台灣離岸風電的發展。

離岸風機的建設,不是選址選好了就萬事解決,這些巨型建築的架設也是一大挑戰。要知道,過去 3MW 的陸域風機,葉片的長度就可能超過 30 公尺。建設在外海,裝置容量超過 10MW 的離岸風機,葉片的長度會超過 100 公尺,整支風機的高度更可能來到 260 公尺,蓋一座風機就像是在蓋一座摩天大樓。

要在海面上搭建如此龐大的建物十分具有挑戰性,各個大型組件需要先在陸地上做好,運到港口,再由工程船隻載到海上進行組裝。

而能攜帶並安裝這些部件的「安裝船」是台灣目前最欠缺的。而且不只台灣,近年來為了趕上對再生能源的需求,從歐盟到中國等國家的離岸工程開發案不斷成長,相關船隻的需求和價格也水漲船高。這使得台灣開發商想要租到合適的工程船變的越來越困難,已經做好的組件只能放在港口等待安裝。

面對這樣的困境,國內造船產業也有所回應。在今年六月,台灣國際造船宣布,亞洲最大的海事工作船「環海翡翠輪」已經完成交船。全長 216.5 公尺、寬 49 公尺,甲板面積有相當於 1.3 座足球場的超大面積,足以提供進行離岸風電水下基礎及大型風機的運輸與安裝作業。目前環海翡翠輪已經行程滿檔,工程已排程至 2025 年。

結語

雖然目前進度落後,但根據政策的規劃,台灣還是會持續興建離岸風場,往能源轉型的目標前進。

但除了劃更多區域、建造更大型的風機,風力發電還有別的玩法嗎?除了常見的水平軸三葉式風車之外,我們還有沒有其他的選擇?在拚發電量以外,有沒有對生態影響更低的風力發電方式?如果你也對其他型態的風力發電有所好奇,就請使出超級感謝,或加入會員來敲碗吧!如果你看不過癮,也可以看我們與 taiwan keywords 合作的這一集,看我如何挑戰爬上 23 層樓高的風機。

最後也想問問大家,關於風力發電,你還有哪些問題呢?

  1. 風力發電的工作船有哪幾種?應用了哪些科技?
  2. 那麼大台的風力發電機水下基礎是怎麼蓋的?製程跟材料環保嗎?
  3. AI 能夠讓風力發電更穩定嗎?
  4. 更多想法,留言告訴我們吧

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

所有討論 1
PanSci_96
1208 篇文章 ・ 1898 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
環保從今天開始、從 i 開始,和家樂福一起減塑、減廢,愛地球!
鳥苷三磷酸 (PanSci Promo)_96
・2023/09/12 ・1851字 ・閱讀時間約 3 分鐘

  • 文/陳彥諺

環保行動從源頭出發

說到「環保」,許多人第一時間想到的關鍵字就是「減塑」、「限塑」,在現代社會中,大量塑膠製品、塑膠袋充斥在生活中,而一次性使用的塑膠製品就是環保行動的最大敵人。不過,你知道嗎?發明塑膠袋的初衷,其實是為了拯救地球。
在塑膠袋發明以前,紙袋、布袋是主流的包裝用品。為了讓人們能有好看、方便、低成本的包裝材料運輸物品,1959 年,瑞典工程師斯坦・圖林發明了塑膠袋,其輕便、價格低廉、耐用、可重複使用,也可以取代紙袋以減少伐木量。

圖一、1959年,瑞典工程師斯坦・圖林發明了塑膠袋,其輕便、價格低廉、耐用、可重複使用,也可以取代紙袋以減少伐木量。

卻沒想到,這麼好用又便宜的塑膠袋問世後,在20 世紀末以前,紙袋、布袋幾乎被塑膠袋取代了,但是,人們並沒有如圖林發明當時所設想的,將耐用的塑膠袋重複利用,以減少地球負擔,反而衍生出單次使用後便丟棄的習慣,時至今日,塑膠垃圾更造成了嚴重的環境污染。

然而,地球是大家的,是每一個人的,也是家樂福所關心的。

家樂福十多年來,響應聯合國永續發展目標 SDGs,除了推行友善農業關懷土地,也以透明系列商品支持動物福利,2019 年,更設立影響力概念店,鼓勵消費者自備購物袋,同時把家中不需要的紙袋,帶到店中分享給需要的民眾,家樂福以具體行動響應 SDG 12 責任消費與生產,希望改變從 i 開始。

圖二、家樂福響應 SDGs,改變從 i 開始

家樂福賣場實際響應環保行動

(A) 生活區:瓶身再生塑膠的環保洗護產品

日常生活中,洗澡洗髮使用的盥洗用品,是塑膠瓶罐的一大來源。家樂福攜手台鹽生技、台灣設計研究院、點睛設計,從原料到包裝,皆秉持著永續再生、環境友善、天然純淨的原則,推出Re系列永續商品。

Re代表減量(Reduce)、再利用(Reuse)、回收(Recycle),更代表著這項產品的永續再生(Power of Regeneration)。落實的行動包含,瓶身、瓶蓋採用 100% 再生塑料,運輸紙箱採用 FSC 森林環保紙箱等。

(B)食品區:可回收包裝減少食物浪費

食品的包裝,也是生活廢棄物的一大來源。家樂福除了停止使用保麗龍外,更在食品的包裝方法上,採用「貼體包裝」。

以往常見的食材包裝,是將食材放在保麗龍盒上,再以保鮮膜覆蓋,因為保鮮膜並無法完全密合食材本身,保鮮效果有限。而家樂福採用 APET/PE 材質的貼體包裝,結合抽真空原理與加熱技術,讓包材可以貼合食材,形成食材的第二層皮膚,減少與氧氣、微生物的接觸外,更能有效保存食材,減少食物浪費,同時減少保麗龍使用,一年可少用3百萬個保麗龍。

(C) 收納區:減塑收納寶物,再生塑料一級棒

在收納部分,家樂福提供了消費者環保折疊購物袋的新選擇,樣式活潑可愛的環保折疊購物袋,材質為 RPET,是回收寶特瓶材質,每 2.8 個寶特瓶可做 1 個折疊購物袋,不只可供消費者重複使用,且產品本身便已達到循環利用。

另外,居家生活不可或缺的垃圾袋,家樂福也有新實踐!家樂福環保清潔袋,是回收家樂福或各通路的PE膠膜,經過工廠處理、回收篩選、製作成 100% 再生塑膠粒子後添加美國香氛除臭精油製袋,讓以往丟棄的回收膜,經過處理後有了新生命,而且不需添加新塑膠,就能製成接近新料等級的優質產品。

圖三、家樂福賣場的實際行動,以「再生塑膠」的回收再利用達成減塑目標

從今天開始、從 i 開始,和家樂福一起減塑、減廢,愛地球!

為了地球,家樂福不遺餘力。從友善農業、動物福利開始,再從減廢減塑著力。當家樂福自有品牌取消了飲料組裝的收縮膜包裝,策略從賣場及商品包裝減塑,每年約減少 340 噸塑膠,1067 噸的碳排。

塑膠產品的誕生初衷,是為了讓地球、讓人們的生活更好。雖然在過去的消費習慣下,對地球造成了嚴重影響,但是,要愛地球,永遠不嫌晚。從今天開始、從i開始,和家樂福一起減塑、減廢,愛地球吧。

圖四、從 i 開始,和家樂福一起減塑、減廢,用消費發揮影響力
鳥苷三磷酸 (PanSci Promo)_96
184 篇文章 ・ 293 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

14
5

文字

分享

0
14
5
太空種電?不受天氣影響的發電廠登場,人類將迎來能源自由?
PanSci_96
・2023/08/12 ・4585字 ・閱讀時間約 9 分鐘

要核能、綠能、還是天然氣?大家不用吵了,因為讓我隆重介紹,宇宙太陽能準備登場,地球將進入能源自由,人類文明將邁入下一個時代!

雖然只是邁入第一步,但我沒有在開玩笑,美國、日本、歐盟、英國都陸續展開宇宙太陽能計畫,預計在太空中布下大量太陽能板,將取之不盡的能量,不分晝夜、不分天氣地將能量源源不絕的傳回地球。而且第一階段的測試,已經在宇宙中測試成功了!

宇宙太陽能真的可行嗎?我們離能源自由,還有多遠?

為什麼要去太空中進行太陽能發電?地面太陽能的困境

台灣要選擇哪種能源配比,各方論點各有道理。而同樣的問題,不只是台灣,對世界各國來說都是爭論不休的議題。面對這樣的困境,竟然有人提議往太空探索,去太空中進行大規模太陽能發電,並將能量傳回地球,成為宇宙太陽能電廠,一舉解決所有能源問題。可是就算不去太空,在地面上的太陽能近年來成長迅速,安裝量和產量都持續增加,為什麼非得跑到太空中去做一樣的事呢?

雖然太陽能板的設置成本近年來降低很多,能不能穩定發電卻要看老天臉色,而且需要的佔地面積廣大。世界上只有少數幅員廣大,日照充足的國家可以打造 GW 等級的太陽能發電廠,像是印度,中國,以及中東地區。許多地方例如台灣,多以民間業者小規模發展為主,很難建設大規模的太陽能發電廠,如果要大規模使用農地、魚塭、屋頂種電,也有許多問題等待解決。

不過只要把太陽能搬到外太空,就可以大喊:「解開束縛、重生吧!太陽能,我還你原型!」

首先,太空中可以接收到更多的陽光。由於太空中沒有夜晚,所以軌道上的衛星幾乎可以 24 小時暴露在陽光之下。此外,太空中的陽光不會像地面上的冬天或傍晚,有傾斜入射的問題。太陽能板可以隨時指向太陽的方向,和太陽光的方向保持垂直,接受百分之百的陽光照射。根據計算,同一塊太陽能板放在太空中可以接受到的陽光量至少是地表的三倍以上。

地球上陽光傾斜入射的問題示意圖。圖/PanSci YouTube

另外,地球的大氣其實幫我們阻隔了許多陽光,保護地表上的我們不會被瞬間曬傷。就算是晴朗無雲的日子,大氣層還是會散射掉許多的陽光。太空中的太陽輻射比地表強上不少,大約多了 40% 左右。

綜合前面所說的,只要把現有的光電材料放到衛星軌道上,就可以輕鬆獲得約四倍的發電量。此外還不需要任何占地,不會對環境生態帶來負面影響。

太空種出的電要怎麼運回地球?

你可能會好奇,在太空中收穫這麼多太陽能,要怎麼運回地球給大家使用呢?難道要存在電池裡再回收嗎?科幻大師艾西莫夫早在 1941 年就想過這個問題了。在他的短篇小說《理性》中,各個太空站會再收集太陽能之後,用微波光束將能量傳送至不同行星,也就是遠距無線傳輸能量。

雖然這種技術在當時屬於科幻情節,但現在的我們知道這樣的技術在原理上可能辦到的。在我們介紹無線獵能手環那集,我們有提到電磁波傳遞能量的問題,就是能量會以波源為中心向外發散,並且能量隨著距離快速衰減。想要高效率傳輸能量,如果不想接條線,就必須使用指向性的波源,將能源都集中到一點。

現在,我們使用多個天線組成陣列,並調整他們的相位,讓各個天線發出的微波產生干涉,形成筆直前進的單方向微波束,將能量精準發射到遠處的一個點。除此之外,因為選擇的電磁波頻段是微波,就像手機訊號可以穿過牆壁到你的手機一樣,特定頻率的微波也能穿透大氣層或雲層的阻擋。即使地球上的我們是下雨天,宇宙太陽能仍能透過微波將能量傳至地表,大幅降低天氣造成的影響。

所以,只要把所有太陽能板發射到地球同步軌道上,讓它們在軌道中展開,組裝成大還要更大,邊長長達數公里的超大太陽能板。這樣空中太陽能發電廠就會一直維持在天空中的某一點,地面的我們,只要蓋個微波接收站就可以了。當然要將所有設備發射到地球同步軌道上所費不貲,較可行的做法是先用火箭將衛星射入高度較低的低地球軌道中,再利用衛星本身的離子噴射等方式把自己慢慢推到地球同步軌道。

太空太陽能發電廠概念圖。圖/Space.com

這個主意,在 1968 年工程師 Peter Glaser 就在 Science 期刊上提出,還向美國政府申請了專利。當時,美國能源局和 NASA 也覺得這個概念挺「有趣」的,針對宇宙太陽能做了一系列的調查並提出了正式的可行性報告。不過當時各方面的技術未成熟,無法進行測試。最重要的是,要把一整個太陽能發電廠射到太空,實在要花太多錢,產出的電根本就不敷成本。

好消息是,太空運輸成本近年來已經降低很多。SpaceX 的獵鷹九號火箭將每公斤物質運到低地球軌道的成本,只需要約三千美元,是過去使用太空梭運載的二十分之一。這讓宇宙太陽能的可能性,從僅只於科幻,搖身一變成為潛力無窮的未來能源。

宇宙太陽能離我們有多遠?

從美國、英國、歐盟到日本,都已經放話要加入這場全新的太空能源競賽。領跑者之一是日本的太空機構,宇宙航空研究開發機構 JAXA,預計在 2025 年前後展開從太空向地面送電的實驗,並在 2030 年左右開始試運轉宇宙太陽能機組,是有生之年就能看到的成果!

從宇宙航空研究開發機構 JAXA,預計在 2025 年前後展開從太空向地面送電的實驗,並在 2030 年左右開始試運轉宇宙太陽能機組。圖/PanSci YouTube

這個時程也不是信口開河,日本在 1980 年代左右便開啟了宇宙太陽能計畫。經過數十年的規劃與研發, JAXA 已在 2015 年進行地面測試,成功將電能傳輸到 55 公尺外的接收天線,驗證遠距傳輸能量的可行性。這個實驗相當重要,因為在發射成本的問題解決之後,宇宙太陽能要面對的下一個難題,就是如何有效地從外太空軌道遠距送電。雖然我們已經知道可以透過干涉的方法,讓微波束直線前進,但實際運作時,還是會有一個很小的發散角,不會完全平行。

JAXA 已在 2015 年進行地面測試,成功將電能傳輸到 55 公尺外的接收天線,驗證遠距傳輸能量的可行性。圖/PanSci YouTube

失之毫釐。差之千里。地球同步軌道離地表可是有三萬六千公里,小小的發散角到地面就會嚴重發散,地面的接收天線尺寸也不可能無限擴張。這任務的難度差不多等於要從操場的一端用雷射筆打到另一端的蚊子,非常困難。JAXA 的天線雖然目前還未達到需要的準度,但是發散角已經能控制在 0.15 度左右,足以從較低的低地球軌道傳輸能量回地球,做初步的測試。

從還處在規劃階段的日本,瞬間移動到地球的另一端,美國的研究團隊,在這個月已經宣布取得重大突破。加州理工學院的宇宙太陽能計畫在今年初,成功讓一個小型測試模組,乘著 SpaceX 的獵鷹 9 號前進低地球軌道,進行太空中的實際測試。這個小型模組包含三個小實驗。第一個實驗是測試宇宙太陽能板的結構、封裝、以及展開並組裝的程序。第二個實驗則是要在 32 種不同的光電材料中,找出哪種在太空中效果最好。第三則是要測試微波傳輸能量在太空中的可行性。

測試宇宙太陽能板的結構、封裝、以及展開並組裝的程序。圖/caltech.edu

就在今年的 6 月 1 號,團隊宣布他們設計的可彎曲天線陣列,在太空中成功傳送能量到三十公分外的接收天線,點亮了 LED 燈。雖然距離只有短短的 30 公分,但是整個實驗暴露在外太空的環境中進行,證明他們的設計可以承受最嚴苛的環境條件。做為測試,他們也嘗試讓天線發射能量到遠在地球表面,大學實驗室的屋頂上。並且,還真的被他們量測到了數值。儘管規模不大,但這是宇宙太陽能第一次的軌道測試,結果相當振奮人心。

可彎曲天線陣列。圖/PanSci YouTube
右方為可彎曲天線陣列(發射端),左邊為接收端的 LED 燈泡。圖/caltech.edu

如此看來,技術的發展似乎相當樂觀。可是要用於民生發電,成本是很大的重點。宇宙太陽能真的符合經濟效益嗎?或是我們該把資源留給其他選項呢?

宇宙發電廠符合經濟效益嗎?

根據美國能源情報署 EIA 的資料,1GW 發電容量的發電廠,傳統燃煤發電廠的初期建設成本,大約是一千億台幣,核電廠大約是兩千億台幣。那宇宙太陽能呢?每 1kW 的發電需要二十公斤的材料,1GW 就需要兩萬公噸。目前 SpaceX 獵鷹重型火箭運送每公斤材料進入軌道,需要三萬台幣。也就是說,光是將設備全部送上太空的運輸成本,就需要六千億的驚人花費。再加上太陽能板與相關設備的建置成本,以地面型太陽能發電廠為參考的話,大概還要多花500億台幣。而 JAXA 方面的預估,打造第一座 1GW 宇宙太陽能至少需要一兆兩千億日圓,雖然比我們用獵鷹重型火箭預估的還要低,但仍是一筆龐大費用。

各種發電方式的成本與性能表現。圖/美國能源情報署 EIA

那宇宙太陽能真的只是將鈔票往太空撒,空有理想的計畫嗎?當然不是,有兩個讓科學家不放棄的理由——首先是未來建造成本一定會下修。太空的發射成本相比 50 年前,已經少了兩個零,在 SpaceX 的發展下,還在持續地快速減少。另一方面,太陽能材料的輕量化工程也持續在進行,每 kW 發電重量只有十公斤或以下的太陽能材料已經不是虛構。新式的太陽能材料,我們未來也會陸續介紹。這兩個因素加乘在一起,一兆兩千億日圓的成本,很有機會在幾年內就減少為十分之一或更少。

發射火箭的成本逐年降低。圖/futuretimeline.net

更重要的是,宇宙太陽能一但建置完成,就會成為可做為基載能源的再生能源,減少對石化燃料的依賴。甚至因為主要設備都在太空,地面只需要建設接收站,可能將解決許多偏遠地區的能源問題,一舉改變全世界的能源型態。而且與許多八字還沒一撇的發電方式相比,宇宙太陽能已經算是距離現實很接近的選項,也難怪各個國家紛紛搶著要發展這塊領域。不過雖說是永續能源,還是有許多方面值得深入研究。例如要把幾萬公噸的材料射到軌道中,需要排放多少的火箭廢氣?一但規模化,這些巨大的宇宙太陽能板是否會成為小行星的標靶,或在一次的太陽風暴過後,讓軌道中堆滿太空垃圾?

宇宙太陽能究竟能不能成為可靠的新興未來能源,從想都不敢想,到開始精算成本,相信我們很快就會知道答案。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1208 篇文章 ・ 1898 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。