天文學家利用赫歇爾太空望遠鏡(Herschel Space Observatory)觀察編號為2M107的特殊棕矮星(brown dwarf),這個棕矮星周圍擁有一個拱星盤(circumstellar disc)以及一個約5倍木星質量的行星級伴星。這是首次利用次毫米波段拍攝2M107系統影像,研究結果指出拱星盤中的物質總質量也相當於數倍木星質量。在年齡已高達1000萬歲的老棕矮星旁發現如此厚實的拱星盤,顯示這個它的行星級伴星應該是直接從拱星盤中形成。這項發現,再度掀起恆星和亞恆星旁巨行星究竟如何形成的爭議。
理論建議:當離中間母天體一段距離外之處,盤分裂形成行星的效率比較好;這個條件與擁有行星級伴星的棕矮星相當,因此很適合用這樣的天體系統來測試哪種形成機制為正確。為此目的,由英國赫福郡大學(University of Hertfordshire)Basmah Riaz領軍的天文學家因而利用赫歇爾太空望遠鏡觀察2M107這個特殊棕矮星系統,希望能解開這個爭議。
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。
其中一種方式便是藉由稱為「托卡馬克」(tokamak)的環形容器產生核融合。透過環磁場線圈及延著環形方向的電漿電流(plasma electric current),在環磁場線圈的內部形成一個扭曲但繞著環磁場線圈的螺旋磁力線(helical magnetic field),讓電漿不斷延著螺旋磁力線移動,被侷限在環磁場線圈形狀的真空腔中但不與真空腔的腔壁接觸。
天文學家利用赫歇爾太空望遠鏡(Herschel Space Observatory)觀察編號為2M107的特殊棕矮星(brown dwarf),這個棕矮星周圍擁有一個拱星盤(circumstellar disc)以及一個約5倍木星質量的行星級伴星。這是首次利用次毫米波段拍攝2M107系統影像,研究結果指出拱星盤中的物質總質量也相當於數倍木星質量。在年齡已高達1000萬歲的老棕矮星旁發現如此厚實的拱星盤,顯示這個它的行星級伴星應該是直接從拱星盤中形成。這項發現,再度掀起恆星和亞恆星旁巨行星究竟如何形成的爭議。
理論建議:當離中間母天體一段距離外之處,盤分裂形成行星的效率比較好;這個條件與擁有行星級伴星的棕矮星相當,因此很適合用這樣的天體系統來測試哪種形成機制為正確。為此目的,由英國赫福郡大學(University of Hertfordshire)Basmah Riaz領軍的天文學家因而利用赫歇爾太空望遠鏡觀察2M107這個特殊棕矮星系統,希望能解開這個爭議。