0

0
0

文字

分享

0
0
0

五迷們難以達成的願望之一:用正五邊形磁磚鋪地板──《數學好有事》

PanSci_96
・2018/05/10 ・3030字 ・閱讀時間約 6 分鐘 ・SR值 471 ・五年級

如果你打算替浴室鋪瓷磚,顏色的選擇相當多,但瓷磚的形狀可就沒那麼多了。在特力屋絕對能找到正方形和長方形的瓷磚,或許還有六邊形,幸運的話可能找得到三角形瓷磚。不過,如果你最喜歡的數字是5,就沒輒了;因為沒有正五邊形的瓷磚。

方的長的都有,就是……沒有正五邊形的磁磚?source:wikimedia

正五邊形……就是不太合群

原因很簡單:正五邊形無法鋪滿浴室牆面或任何一種平面,因為正五邊形的每個角都是 108 度。

圖/麥田出版

在正多邊形鑲嵌中,幾塊瓷磚可以剛好擺在共同頂點的周圍,因此每個角加起來一定為一圈,也就是 360 度。如果你把三個正五邊形擺在一個頂點的周圍,只有 3× 108=324 度,會留下縫隙。假如拿四個正五邊形來擺看看,就變成 4 × 108=432,超過 360 度,所以會重疊。即使讓正五邊形彼此交疊,角度計算一下很快就會發現行不通。

附帶一提,這也解釋了為什麼沒有超過六邊的正多邊形(所有的邊長及內角都相等)瓷磚。如果一個正多邊形(瓷磚的形狀)適合用來鋪滿平面(能夠緊密擺在一起覆蓋平面而不留下空隙),就必定如剛才看到的,內角能整除 360。由於一定會有至少三塊瓷磚在頂點相交,所以角度不可能大於  = 120,這剛好是正六邊形的內角,可以排出大家熟悉的蜂巢圖樣。但你不妨畫出幾個正多邊形看看,邊數愈多,內角愈大,因此邊數超過六的正多邊形內角會大於 120;這就太大了。

-----廣告,請繼續往下閱讀-----

謹慎起見,你可以用正三角形來排看看,因為正三角形的內角是 60 度。360=6 × 60,在頂點的周圍可以擺六個正三角形;正方形的內角是 90 度,而360=4 × 90,所以頂點的周圍可以擺四個正方形。正方形鋪起來又比長方形容易得多,因此絕大部分的浴室瓷磚是正方形的。

方的長的都有,就是……沒有正五邊形的磁磚?圖/flickr

還有可以無限延續五重對稱性的機會嗎?

難道喜歡數字 5 的人一絲希望都沒有嗎?

正五邊形只是具有五重對稱的許多形狀之一。另一個是五角星,而且還有正十邊形,這兩個形狀在繞中心點轉五分之一圈(72 度)後,看起來都跟原來的形狀一模一樣。說不定你可以混合使用具有五重對稱的形狀來鑲嵌瓷磚?

其實不妨試試看,事實上嘗試的人還不少。許多大數學家,包括 17 世紀的天才約翰尼斯.克卜勒(Johannes Kepler,以三大行星運動定律著稱),都嘗試過五重對稱鑲嵌問題,但所有的人都被考倒了。

圖/wikipedia

克卜勒在 1619 年的著作《宇宙的和諧》(Harmonices Mundi)中,展示了一個著名的鑲嵌圖案,當中用到五邊形、五角星和十邊形,還有一種他稱為「怪物」的形狀,也就是把兩個十邊形的其中一側黏合起來所成的形狀,但他不得不承認這破壞了五重對稱性。目前為止還沒有人想出任何鑲嵌法,能夠無限延續五重對稱性,但也沒有人能證明,這樣的鑲嵌法不存在。所以,鑲嵌浴室瓷磚的單純想望,引導出一個懸而未決的數學問題。

-----廣告,請繼續往下閱讀-----
圖/麥田出版

啊~對稱就是讓人心情舒爽

要避開五重對稱鑲嵌問題,其中一種方法就是鋪其他類型的曲面。在球面上,12個正五邊形可以密合得剛剛好,而在雙曲平面上(第3章介紹過這種平面),可以排出4個正五邊形的鑲嵌,在頂點處都能夠密合。這兩種曲面都是彎曲的,所以5和平坦的面似乎合不來。

另外一種方法則是乾脆放下對於5的偏愛,或是別再限制只能用一種瓷磚。譬如在格拉納達的阿爾罕布拉宮或伊斯坦堡的托卡比皇宮所看到的伊斯蘭藝術:豔麗馬賽克。雖然是由各式各樣的形狀拼貼而成,但仍舊極其對稱。就連小朋友都能一眼看出當中的對稱性,就如同顯微鏡下看到的蝴蝶或雪花的對稱性。

伊斯蘭藝術。source:hoomarg

可是若要問究竟什麼是對稱性,小孩子很可能會遲疑一下才回答,即使問成年人也一樣。因為這個問題需要稍微思考一下才答得出來,所謂對稱性是指不會受改變而影響的特性。把正五邊形旋轉72度,看起來跟原來一樣,所以具有五重旋轉對稱性。把蝴蝶對著中心線做鏡射,看起來沒變,所以具有鏡射(或反射)對稱性。住宅區沿街一整排一模一樣的房子,則有平移對稱性;假若有巨人把整排房子一起搬移一棟或多棟的距離,這條街看起來仍然沒變。

這麼一來,圓形就成了最對稱的幾何形狀。你可以把圓形繞著圓心旋轉任意角度,看起來都和原來的形狀一樣。你也可以把圓形對著通過圓心的任意直線做鏡射,形狀還是不會改變。有趣的是,很少人注意到圓形完美的對稱性,大多數人腦袋裡跳出的第一個對稱物件是正方形或蝴蝶。也許吸引人目光的,是對稱性的個別特質。

-----廣告,請繼續往下閱讀-----

若以人和動物為例,我們最容易注意的通常是遭破壞的對稱性:撇嘴一笑,微歪一邊的鼻子,稍微左右高低的眼睛。有些人認為,對稱是美的先決條件。不對稱的身體或臉孔,可能會暴露出人類本能上想要逃避的某種健康或基因缺陷,因為生物都只想繁衍最適者。但另一方面,撇嘴一笑可能非常性感,讓展現笑容的人從平板的眾多對稱臉孔中脫穎而出。由舊傷造成的不對稱,也許會吸引那些希望另一半身經百戰的人。就對稱性與人類的美感而言,或許還沒有一致的看法。

數學家眼中的磁磚與壁紙

理解什麼是對稱(不受改變而影響的特性)之後,就可以回頭談談室內裝潢。

規則的浴室貼磚模式正是數學家所謂的壁紙圖樣(wallpaper pattern),這和一般人常說的壁紙圖樣是一樣的意思。這種圖樣會根據對稱性,在兩個方向上重複出現。唯一的差別是,數學家不在乎圖樣是紙做的還是瓷磚做的。他們看待這類模式的方法,是把所有的對稱寫下來,不去想壁紙上那些玫瑰花、泰迪熊或其他的精細圖案,只把注意力集中在讓圖樣維持不變的變換上,諸如大家熟悉的鏡射、平移及旋轉,還有所謂的滑移鏡射,就是先做鏡射,再沿著平行於鏡射軸的方向平移。沙灘上的足跡,就是一種滑移鏡射變換下對稱的圖樣。

壁紙圖樣有沒有可能具有五重旋轉對稱性呢?既然對貼瓷磚而言5是很難搞的數字,你八成會猜答案是不可能吧,而且你猜得沒錯。但真正令人意外的是,雖說壁紙圖案千變萬化,能夠產生的對稱構形卻有精確的上限:壁紙群(wallpaper group)只有17 種,其中沒有任何一種牽涉到數字5。

-----廣告,請繼續往下閱讀-----
17種壁紙群。Schattschneider, D. (1978). The plane symmetry groups: their recognition and notation. The American Mathematical Monthly, 85(6), 439-450.

很早以前就有人發現17種壁紙圖樣了。阿爾罕布拉宮裡已有幾百年歷史的裝飾牆面上,可以找到幾乎所有的圖樣(上一次計算是在西班牙舉行的2006年國際數學家大會上,與會的數學家斷定有14種)。不過,直到1891年才有人證明只有這17種圖樣。

 

 

 

 

本文摘自《數學好有事》,麥田出版

文章難易度
PanSci_96
1226 篇文章 ・ 2337 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
伽羅瓦誕辰|科學史上的今天:10/25
張瑞棋_96
・2015/10/25 ・1300字 ・閱讀時間約 2 分鐘 ・SR值 510 ・六年級

-----廣告,請繼續往下閱讀-----

「別哭,阿弗瑞德!我需要全部的勇氣才能在二十歲死去。」1832年5月31日,伽羅瓦對身旁的弟弟說出最後的遺言後,終因傷重不治死去,結束他短短悲劇性的一生,猶如燦爛奪目的流星劃過天空,與三年前才26歲就病故的阿貝爾一樣,都是人類數學、乃至科學上的重大損失。

伽羅瓦的論文手稿。圖片來源:wikimedia

與阿貝爾一樣,伽羅瓦也是在家接受啟蒙教育,直到中學才入學就讀;也是來了新的數學老師才鍾情於數學(此時阿貝爾正在巴黎;在他短暫停留的半年期間,兩個不世出的天才彼此相距僅數公里卻未相遇,不免令人覺得惋惜)。

伽羅瓦也跟阿貝爾一樣大量閱讀數學經典原著,並且在高中就大膽挑戰五次方程式的公式解。也同樣自行發現解法有錯後,更堅定破解的決心。但是自行鑽研數學的伽羅瓦可能因為不善於按部就班地解題,1828年參加巴黎綜合理工學院的入學考試時,竟在口試項目慘遭滑鐵盧,無法進入這所以自由學風著稱的名校。伽羅瓦準備第二年重考,同時間他再度思考五次方程式的問題。

-----廣告,請繼續往下閱讀-----

阿貝爾雖然證明五次方程式沒有通用的簡單公式解,但這並不表示所有五次方程式都沒有公式解,包括歐拉在內的許多數學家早就找到一些特定型式的公式解。伽羅瓦有更大的雄心:找出判別任一五次方程式是否有公式解的方法。令人咋舌的是,他竟不依循舊有的數學體系,而是自行發明一個全新的概念──「群」。
這概念的關鍵在於對稱性,也就是將方程式之根互相置換後是否結果不變。在伽羅瓦眼中,方程式不再按幾次方來分類,而是根據可以維持對稱性的置換方式有幾種來分類。透過「置換群」、「子群」的運算,伽羅瓦巧妙地解決了五次(以及五次以上)方程式是否有公式解的判別問題。無奈,伽羅瓦竟遭逢與阿貝爾一樣的霉運,先後寄給科學院的兩篇論文都石沉大海。伽羅瓦第二年又逢父喪,還是沒考上巴黎綜合理工學院,只能到管理嚴格的高等師範學院。

不知是否親身經歷的不公不義(兩次入學考試沒過、兩次論文投稿沒下文、自由派的父親被保守派逼到自殺),伽羅瓦成了激進的共和派,屢屢與保守派的校長針鋒相對。1831年初,他被退學後,加入共和派的軍隊,主張革命推翻政權,因而兩度入獄。不過,他並未死於獄中,反而是出獄後與人決鬥,腹部中槍而於第二天身亡。

這場決鬥的起因與對手是誰至今仍是個謎,只知伽羅瓦是極不情願地答應決鬥。而他似乎自知必死,在前一天寫了三封遺書給友人,其中一封附了三篇論文,信中略述論文內容,最後以潦草的字跡寫道:「可是我沒有時間了,而我對那個浩瀚領域還有些不成熟的想法。」

伽羅瓦留給我們的是如今以他為名的「伽羅瓦理論」,後世數學家都對他這宛如天外飛來的創見歎為觀止,認為足以媲美物理中的廣義相對論。事實上,從他的理論衍生出來的群論處理的正是對稱性,因此成為粒子物理標準模型與超弦理論的重要基礎。我們不禁想猜想:倘若他不是20歲就死於非命,他那「不成熟的想法」還會發展出怎樣的深邃見解。

-----廣告,請繼續往下閱讀-----

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

張瑞棋_96
423 篇文章 ・ 998 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

0
0

文字

分享

0
0
0
五迷們難以達成的願望之一:用正五邊形磁磚鋪地板──《數學好有事》
PanSci_96
・2018/05/10 ・3030字 ・閱讀時間約 6 分鐘 ・SR值 471 ・五年級

-----廣告,請繼續往下閱讀-----

如果你打算替浴室鋪瓷磚,顏色的選擇相當多,但瓷磚的形狀可就沒那麼多了。在特力屋絕對能找到正方形和長方形的瓷磚,或許還有六邊形,幸運的話可能找得到三角形瓷磚。不過,如果你最喜歡的數字是5,就沒輒了;因為沒有正五邊形的瓷磚。

方的長的都有,就是……沒有正五邊形的磁磚?source:wikimedia

正五邊形……就是不太合群

原因很簡單:正五邊形無法鋪滿浴室牆面或任何一種平面,因為正五邊形的每個角都是 108 度。

圖/麥田出版

-----廣告,請繼續往下閱讀-----

在正多邊形鑲嵌中,幾塊瓷磚可以剛好擺在共同頂點的周圍,因此每個角加起來一定為一圈,也就是 360 度。如果你把三個正五邊形擺在一個頂點的周圍,只有 3× 108=324 度,會留下縫隙。假如拿四個正五邊形來擺看看,就變成 4 × 108=432,超過 360 度,所以會重疊。即使讓正五邊形彼此交疊,角度計算一下很快就會發現行不通。

附帶一提,這也解釋了為什麼沒有超過六邊的正多邊形(所有的邊長及內角都相等)瓷磚。如果一個正多邊形(瓷磚的形狀)適合用來鋪滿平面(能夠緊密擺在一起覆蓋平面而不留下空隙),就必定如剛才看到的,內角能整除 360。由於一定會有至少三塊瓷磚在頂點相交,所以角度不可能大於  = 120,這剛好是正六邊形的內角,可以排出大家熟悉的蜂巢圖樣。但你不妨畫出幾個正多邊形看看,邊數愈多,內角愈大,因此邊數超過六的正多邊形內角會大於 120;這就太大了。

謹慎起見,你可以用正三角形來排看看,因為正三角形的內角是 60 度。360=6 × 60,在頂點的周圍可以擺六個正三角形;正方形的內角是 90 度,而360=4 × 90,所以頂點的周圍可以擺四個正方形。正方形鋪起來又比長方形容易得多,因此絕大部分的浴室瓷磚是正方形的。

方的長的都有,就是……沒有正五邊形的磁磚?圖/flickr

-----廣告,請繼續往下閱讀-----

還有可以無限延續五重對稱性的機會嗎?

難道喜歡數字 5 的人一絲希望都沒有嗎?

正五邊形只是具有五重對稱的許多形狀之一。另一個是五角星,而且還有正十邊形,這兩個形狀在繞中心點轉五分之一圈(72 度)後,看起來都跟原來的形狀一模一樣。說不定你可以混合使用具有五重對稱的形狀來鑲嵌瓷磚?

其實不妨試試看,事實上嘗試的人還不少。許多大數學家,包括 17 世紀的天才約翰尼斯.克卜勒(Johannes Kepler,以三大行星運動定律著稱),都嘗試過五重對稱鑲嵌問題,但所有的人都被考倒了。

圖/wikipedia

克卜勒在 1619 年的著作《宇宙的和諧》(Harmonices Mundi)中,展示了一個著名的鑲嵌圖案,當中用到五邊形、五角星和十邊形,還有一種他稱為「怪物」的形狀,也就是把兩個十邊形的其中一側黏合起來所成的形狀,但他不得不承認這破壞了五重對稱性。目前為止還沒有人想出任何鑲嵌法,能夠無限延續五重對稱性,但也沒有人能證明,這樣的鑲嵌法不存在。所以,鑲嵌浴室瓷磚的單純想望,引導出一個懸而未決的數學問題。

-----廣告,請繼續往下閱讀-----

圖/麥田出版

啊~對稱就是讓人心情舒爽

要避開五重對稱鑲嵌問題,其中一種方法就是鋪其他類型的曲面。在球面上,12個正五邊形可以密合得剛剛好,而在雙曲平面上(第3章介紹過這種平面),可以排出4個正五邊形的鑲嵌,在頂點處都能夠密合。這兩種曲面都是彎曲的,所以5和平坦的面似乎合不來。

另外一種方法則是乾脆放下對於5的偏愛,或是別再限制只能用一種瓷磚。譬如在格拉納達的阿爾罕布拉宮或伊斯坦堡的托卡比皇宮所看到的伊斯蘭藝術:豔麗馬賽克。雖然是由各式各樣的形狀拼貼而成,但仍舊極其對稱。就連小朋友都能一眼看出當中的對稱性,就如同顯微鏡下看到的蝴蝶或雪花的對稱性。

伊斯蘭藝術。source:hoomarg

-----廣告,請繼續往下閱讀-----

可是若要問究竟什麼是對稱性,小孩子很可能會遲疑一下才回答,即使問成年人也一樣。因為這個問題需要稍微思考一下才答得出來,所謂對稱性是指不會受改變而影響的特性。把正五邊形旋轉72度,看起來跟原來一樣,所以具有五重旋轉對稱性。把蝴蝶對著中心線做鏡射,看起來沒變,所以具有鏡射(或反射)對稱性。住宅區沿街一整排一模一樣的房子,則有平移對稱性;假若有巨人把整排房子一起搬移一棟或多棟的距離,這條街看起來仍然沒變。

這麼一來,圓形就成了最對稱的幾何形狀。你可以把圓形繞著圓心旋轉任意角度,看起來都和原來的形狀一樣。你也可以把圓形對著通過圓心的任意直線做鏡射,形狀還是不會改變。有趣的是,很少人注意到圓形完美的對稱性,大多數人腦袋裡跳出的第一個對稱物件是正方形或蝴蝶。也許吸引人目光的,是對稱性的個別特質。

若以人和動物為例,我們最容易注意的通常是遭破壞的對稱性:撇嘴一笑,微歪一邊的鼻子,稍微左右高低的眼睛。有些人認為,對稱是美的先決條件。不對稱的身體或臉孔,可能會暴露出人類本能上想要逃避的某種健康或基因缺陷,因為生物都只想繁衍最適者。但另一方面,撇嘴一笑可能非常性感,讓展現笑容的人從平板的眾多對稱臉孔中脫穎而出。由舊傷造成的不對稱,也許會吸引那些希望另一半身經百戰的人。就對稱性與人類的美感而言,或許還沒有一致的看法。

數學家眼中的磁磚與壁紙

理解什麼是對稱(不受改變而影響的特性)之後,就可以回頭談談室內裝潢。

-----廣告,請繼續往下閱讀-----

規則的浴室貼磚模式正是數學家所謂的壁紙圖樣(wallpaper pattern),這和一般人常說的壁紙圖樣是一樣的意思。這種圖樣會根據對稱性,在兩個方向上重複出現。唯一的差別是,數學家不在乎圖樣是紙做的還是瓷磚做的。他們看待這類模式的方法,是把所有的對稱寫下來,不去想壁紙上那些玫瑰花、泰迪熊或其他的精細圖案,只把注意力集中在讓圖樣維持不變的變換上,諸如大家熟悉的鏡射、平移及旋轉,還有所謂的滑移鏡射,就是先做鏡射,再沿著平行於鏡射軸的方向平移。沙灘上的足跡,就是一種滑移鏡射變換下對稱的圖樣。

壁紙圖樣有沒有可能具有五重旋轉對稱性呢?既然對貼瓷磚而言5是很難搞的數字,你八成會猜答案是不可能吧,而且你猜得沒錯。但真正令人意外的是,雖說壁紙圖案千變萬化,能夠產生的對稱構形卻有精確的上限:壁紙群(wallpaper group)只有17 種,其中沒有任何一種牽涉到數字5。

17種壁紙群。Schattschneider, D. (1978). The plane symmetry groups: their recognition and notation. The American Mathematical Monthly, 85(6), 439-450.

很早以前就有人發現17種壁紙圖樣了。阿爾罕布拉宮裡已有幾百年歷史的裝飾牆面上,可以找到幾乎所有的圖樣(上一次計算是在西班牙舉行的2006年國際數學家大會上,與會的數學家斷定有14種)。不過,直到1891年才有人證明只有這17種圖樣。

-----廣告,請繼續往下閱讀-----

 

 

 

 

本文摘自《數學好有事》,麥田出版

文章難易度
PanSci_96
1226 篇文章 ・ 2337 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。