0

0
0

文字

分享

0
0
0

五迷們難以達成的願望之一:用正五邊形磁磚鋪地板──《數學好有事》

PanSci_96
・2018/05/10 ・3030字 ・閱讀時間約 6 分鐘 ・SR值 471 ・五年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

如果你打算替浴室鋪瓷磚,顏色的選擇相當多,但瓷磚的形狀可就沒那麼多了。在特力屋絕對能找到正方形和長方形的瓷磚,或許還有六邊形,幸運的話可能找得到三角形瓷磚。不過,如果你最喜歡的數字是5,就沒輒了;因為沒有正五邊形的瓷磚。

方的長的都有,就是……沒有正五邊形的磁磚?source:wikimedia

正五邊形……就是不太合群

原因很簡單:正五邊形無法鋪滿浴室牆面或任何一種平面,因為正五邊形的每個角都是 108 度。

圖/麥田出版

在正多邊形鑲嵌中,幾塊瓷磚可以剛好擺在共同頂點的周圍,因此每個角加起來一定為一圈,也就是 360 度。如果你把三個正五邊形擺在一個頂點的周圍,只有 3× 108=324 度,會留下縫隙。假如拿四個正五邊形來擺看看,就變成 4 × 108=432,超過 360 度,所以會重疊。即使讓正五邊形彼此交疊,角度計算一下很快就會發現行不通。

附帶一提,這也解釋了為什麼沒有超過六邊的正多邊形(所有的邊長及內角都相等)瓷磚。如果一個正多邊形(瓷磚的形狀)適合用來鋪滿平面(能夠緊密擺在一起覆蓋平面而不留下空隙),就必定如剛才看到的,內角能整除 360。由於一定會有至少三塊瓷磚在頂點相交,所以角度不可能大於  = 120,這剛好是正六邊形的內角,可以排出大家熟悉的蜂巢圖樣。但你不妨畫出幾個正多邊形看看,邊數愈多,內角愈大,因此邊數超過六的正多邊形內角會大於 120;這就太大了。

謹慎起見,你可以用正三角形來排看看,因為正三角形的內角是 60 度。360=6 × 60,在頂點的周圍可以擺六個正三角形;正方形的內角是 90 度,而360=4 × 90,所以頂點的周圍可以擺四個正方形。正方形鋪起來又比長方形容易得多,因此絕大部分的浴室瓷磚是正方形的。

方的長的都有,就是……沒有正五邊形的磁磚?圖/flickr

還有可以無限延續五重對稱性的機會嗎?

難道喜歡數字 5 的人一絲希望都沒有嗎?

正五邊形只是具有五重對稱的許多形狀之一。另一個是五角星,而且還有正十邊形,這兩個形狀在繞中心點轉五分之一圈(72 度)後,看起來都跟原來的形狀一模一樣。說不定你可以混合使用具有五重對稱的形狀來鑲嵌瓷磚?

其實不妨試試看,事實上嘗試的人還不少。許多大數學家,包括 17 世紀的天才約翰尼斯.克卜勒(Johannes Kepler,以三大行星運動定律著稱),都嘗試過五重對稱鑲嵌問題,但所有的人都被考倒了。

圖/wikipedia

克卜勒在 1619 年的著作《宇宙的和諧》(Harmonices Mundi)中,展示了一個著名的鑲嵌圖案,當中用到五邊形、五角星和十邊形,還有一種他稱為「怪物」的形狀,也就是把兩個十邊形的其中一側黏合起來所成的形狀,但他不得不承認這破壞了五重對稱性。目前為止還沒有人想出任何鑲嵌法,能夠無限延續五重對稱性,但也沒有人能證明,這樣的鑲嵌法不存在。所以,鑲嵌浴室瓷磚的單純想望,引導出一個懸而未決的數學問題。

圖/麥田出版

啊~對稱就是讓人心情舒爽

要避開五重對稱鑲嵌問題,其中一種方法就是鋪其他類型的曲面。在球面上,12個正五邊形可以密合得剛剛好,而在雙曲平面上(第3章介紹過這種平面),可以排出4個正五邊形的鑲嵌,在頂點處都能夠密合。這兩種曲面都是彎曲的,所以5和平坦的面似乎合不來。

另外一種方法則是乾脆放下對於5的偏愛,或是別再限制只能用一種瓷磚。譬如在格拉納達的阿爾罕布拉宮或伊斯坦堡的托卡比皇宮所看到的伊斯蘭藝術:豔麗馬賽克。雖然是由各式各樣的形狀拼貼而成,但仍舊極其對稱。就連小朋友都能一眼看出當中的對稱性,就如同顯微鏡下看到的蝴蝶或雪花的對稱性。

伊斯蘭藝術。source:hoomarg

可是若要問究竟什麼是對稱性,小孩子很可能會遲疑一下才回答,即使問成年人也一樣。因為這個問題需要稍微思考一下才答得出來,所謂對稱性是指不會受改變而影響的特性。把正五邊形旋轉72度,看起來跟原來一樣,所以具有五重旋轉對稱性。把蝴蝶對著中心線做鏡射,看起來沒變,所以具有鏡射(或反射)對稱性。住宅區沿街一整排一模一樣的房子,則有平移對稱性;假若有巨人把整排房子一起搬移一棟或多棟的距離,這條街看起來仍然沒變。

這麼一來,圓形就成了最對稱的幾何形狀。你可以把圓形繞著圓心旋轉任意角度,看起來都和原來的形狀一樣。你也可以把圓形對著通過圓心的任意直線做鏡射,形狀還是不會改變。有趣的是,很少人注意到圓形完美的對稱性,大多數人腦袋裡跳出的第一個對稱物件是正方形或蝴蝶。也許吸引人目光的,是對稱性的個別特質。

若以人和動物為例,我們最容易注意的通常是遭破壞的對稱性:撇嘴一笑,微歪一邊的鼻子,稍微左右高低的眼睛。有些人認為,對稱是美的先決條件。不對稱的身體或臉孔,可能會暴露出人類本能上想要逃避的某種健康或基因缺陷,因為生物都只想繁衍最適者。但另一方面,撇嘴一笑可能非常性感,讓展現笑容的人從平板的眾多對稱臉孔中脫穎而出。由舊傷造成的不對稱,也許會吸引那些希望另一半身經百戰的人。就對稱性與人類的美感而言,或許還沒有一致的看法。

數學家眼中的磁磚與壁紙

理解什麼是對稱(不受改變而影響的特性)之後,就可以回頭談談室內裝潢。

規則的浴室貼磚模式正是數學家所謂的壁紙圖樣(wallpaper pattern),這和一般人常說的壁紙圖樣是一樣的意思。這種圖樣會根據對稱性,在兩個方向上重複出現。唯一的差別是,數學家不在乎圖樣是紙做的還是瓷磚做的。他們看待這類模式的方法,是把所有的對稱寫下來,不去想壁紙上那些玫瑰花、泰迪熊或其他的精細圖案,只把注意力集中在讓圖樣維持不變的變換上,諸如大家熟悉的鏡射、平移及旋轉,還有所謂的滑移鏡射,就是先做鏡射,再沿著平行於鏡射軸的方向平移。沙灘上的足跡,就是一種滑移鏡射變換下對稱的圖樣。

壁紙圖樣有沒有可能具有五重旋轉對稱性呢?既然對貼瓷磚而言5是很難搞的數字,你八成會猜答案是不可能吧,而且你猜得沒錯。但真正令人意外的是,雖說壁紙圖案千變萬化,能夠產生的對稱構形卻有精確的上限:壁紙群(wallpaper group)只有17 種,其中沒有任何一種牽涉到數字5。

17種壁紙群。Schattschneider, D. (1978). The plane symmetry groups: their recognition and notation. The American Mathematical Monthly, 85(6), 439-450.

很早以前就有人發現17種壁紙圖樣了。阿爾罕布拉宮裡已有幾百年歷史的裝飾牆面上,可以找到幾乎所有的圖樣(上一次計算是在西班牙舉行的2006年國際數學家大會上,與會的數學家斷定有14種)。不過,直到1891年才有人證明只有這17種圖樣。

 

 

 

 

本文摘自《數學好有事》,麥田出版

文章難易度
PanSci_96
1017 篇文章 ・ 1253 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!防疫新解方:長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2874字 ・閱讀時間約 5 分鐘

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022年歐盟、英、法、澳等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示針對台灣主流病毒株 BA.5 及 BA.2.75 具保護力。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
倍拉維
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
161 篇文章 ・ 270 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
伽羅瓦誕辰|科學史上的今天:10/25
張瑞棋_96
・2015/10/25 ・1300字 ・閱讀時間約 2 分鐘 ・SR值 510 ・六年級

「別哭,阿弗瑞德!我需要全部的勇氣才能在二十歲死去。」1832年5月31日,伽羅瓦對身旁的弟弟說出最後的遺言後,終因傷重不治死去,結束他短短悲劇性的一生,猶如燦爛奪目的流星劃過天空,與三年前才26歲就病故的阿貝爾一樣,都是人類數學、乃至科學上的重大損失。

伽羅瓦的論文手稿。圖片來源:wikimedia

與阿貝爾一樣,伽羅瓦也是在家接受啟蒙教育,直到中學才入學就讀;也是來了新的數學老師才鍾情於數學(此時阿貝爾正在巴黎;在他短暫停留的半年期間,兩個不世出的天才彼此相距僅數公里卻未相遇,不免令人覺得惋惜)。

伽羅瓦也跟阿貝爾一樣大量閱讀數學經典原著,並且在高中就大膽挑戰五次方程式的公式解。也同樣自行發現解法有錯後,更堅定破解的決心。但是自行鑽研數學的伽羅瓦可能因為不善於按部就班地解題,1828年參加巴黎綜合理工學院的入學考試時,竟在口試項目慘遭滑鐵盧,無法進入這所以自由學風著稱的名校。伽羅瓦準備第二年重考,同時間他再度思考五次方程式的問題。

阿貝爾雖然證明五次方程式沒有通用的簡單公式解,但這並不表示所有五次方程式都沒有公式解,包括歐拉在內的許多數學家早就找到一些特定型式的公式解。伽羅瓦有更大的雄心:找出判別任一五次方程式是否有公式解的方法。令人咋舌的是,他竟不依循舊有的數學體系,而是自行發明一個全新的概念──「群」。
這概念的關鍵在於對稱性,也就是將方程式之根互相置換後是否結果不變。在伽羅瓦眼中,方程式不再按幾次方來分類,而是根據可以維持對稱性的置換方式有幾種來分類。透過「置換群」、「子群」的運算,伽羅瓦巧妙地解決了五次(以及五次以上)方程式是否有公式解的判別問題。無奈,伽羅瓦竟遭逢與阿貝爾一樣的霉運,先後寄給科學院的兩篇論文都石沉大海。伽羅瓦第二年又逢父喪,還是沒考上巴黎綜合理工學院,只能到管理嚴格的高等師範學院。

不知是否親身經歷的不公不義(兩次入學考試沒過、兩次論文投稿沒下文、自由派的父親被保守派逼到自殺),伽羅瓦成了激進的共和派,屢屢與保守派的校長針鋒相對。1831年初,他被退學後,加入共和派的軍隊,主張革命推翻政權,因而兩度入獄。不過,他並未死於獄中,反而是出獄後與人決鬥,腹部中槍而於第二天身亡。

這場決鬥的起因與對手是誰至今仍是個謎,只知伽羅瓦是極不情願地答應決鬥。而他似乎自知必死,在前一天寫了三封遺書給友人,其中一封附了三篇論文,信中略述論文內容,最後以潦草的字跡寫道:「可是我沒有時間了,而我對那個浩瀚領域還有些不成熟的想法。」

伽羅瓦留給我們的是如今以他為名的「伽羅瓦理論」,後世數學家都對他這宛如天外飛來的創見歎為觀止,認為足以媲美物理中的廣義相對論。事實上,從他的理論衍生出來的群論處理的正是對稱性,因此成為粒子物理標準模型與超弦理論的重要基礎。我們不禁想猜想:倘若他不是20歲就死於非命,他那「不成熟的想法」還會發展出怎樣的深邃見解。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

張瑞棋_96
423 篇文章 ・ 665 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。