0

0
0

文字

分享

0
0
0

利用臉書的動態、鄉民的發文,讓 AI 學習人類字裡行間中的情緒

研之有物│中央研究院_96
・2018/02/15 ・2163字 ・閱讀時間約 4 分鐘 ・SR值 540 ・八年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

執行編輯|林婷嫻 美術編輯|張語辰

一組詞、一句話的背後,其實帶有不同的情緒。 圖/freeGraphicToday @Pixabay

「我沒事」到底是什麼情緒?

情緒,是許多疾病和社會問題的表徵。例如有躁鬱傾向的人們,說話用詞有很大的情緒起伏;又如網路霸凌,會反映於社群留言的用字情緒。若能及早偵測到這些情緒,就有機會及時避免憾事發生,而這個任務可透過人工智慧(Artificial Intelligence, AI)協助。

但是,情緒不是那麼容易透過詞語理解。

例如,朋友在 Facebook 發文「我沒事」,究竟代表心平氣和的「我沒事」,還是絕望至極的「我沒事」;還有當鄉民留言「看吧!」,想表達的是讚賞意味的「看吧!」,或是嘲諷語氣的「看吧!」?

社群平台上的簡短發言,往往令人難以辨明當事人究竟想表達什麼。 圖/LoboStudioHamburg @Pixabay

如同《來自星星的傻瓜》電影主角(一名外星人)所言,人類的語言非常難理解,在不同情境脈絡有不同意思,甚至會隱藏真實情感說謊。這些都增加人工智慧從語意分析情緒的難度。

清華大學資工系的陳宜欣副教授,是三個小孩的媽媽。她發現從小孩學習如何說話表達情緒的過程,可以梳理出一條路徑訓練機器學習。雖然小孩說話常常毫無邏輯,但許多小細節累積起來,就能讓大人判斷小孩的情緒。

例如當小孩對媽媽說「妳總是叫我收玩具」,其中用了「總是」這個詞,可以判斷小孩不太高興。或是小孩說「我永遠不能電視看了」,乍聽滿頭問號,但用了「永遠不能」這組詞,可以判斷其中的負面情緒。

不懂語法、沒背過辭典,還是可以表達情緒,反之也能分析情緒。

網路爬文 借用群眾智慧

陳宜欣團隊運用網路爬蟲技術,將社群網站公開發文(PTT、Facebook、Twitter 等),跟情緒有關的內容都蒐集建立至「情緒資料庫」。或許有些人會認為:「這不就是一堆人在發廢文?」,但以群眾外包(crowdsourcing)的角度,這些社群發言集結起來,就是群眾智慧,可做為訓練機器學習的資料。

「情緒,是社群網站上的一種特性,也是可供機器學習的資料」陳宜欣強調。  圖/2017 台灣人工智慧年會 X 台灣資料科學年會

團隊將社群發文者原先在發文加上的情緒 Hashtag (例如 #anger)作為參考答案 ,但一開始先把這些「答案」遮起來,訓練機器透過演算法學習發文中「出現哪些字」代表「什麼樣的情緒」,最後再與原本的答案(例如 #anger)對照,一次次地優化機器判斷情緒的準確率。

「用大數據做情緒分析有個重點,就是刪資料不要心痛!」陳宜欣笑中有股失敗無數次的堅毅,「太多 Hashtag 的發文、重複發文、太短沒有情緒特徵的發文……等等,都要從訓練資料中拿掉」。

團隊也參考新聞標題,找出哪些字是較中性的「非情緒資料」,並從機器學習的訓練資料中排除、優化準確率。值得注意的是,選舉時期的新聞標題不能參考,因為用字遣詞太過激昂。

找出情緒用詞的邏輯

透過機器協助,可以從社群平台上的發文找出當事人情緒的蛛絲馬跡。 圖/geralt @Pixabay

經過機器學習分析,陳宜欣團隊發現一些跨語系的情緒邏輯。例如 “finally *** my” 這組字詞多表達快樂,而中文 「我終於***」也多用來傳達正面的消息。又如 “my *** always” 這組字詞多含有生氣意味,就像小朋友說「爸爸/媽媽總是***」藉以表達不快。

中文贅字的處理,也是情緒分析很有趣的一環。「學生建議這很重要,一定要列入分析!」陳宜欣說。例如:「喔,我來做」其實是不太想做,「喔喔,我來做」較為中性,「喔喔喔,我來做」帶有積極感。凡是超過三個以上的贅字,可視同為三個贅字。這個規則用在「哈」、「哈哈」、「哈哈哈」、「哈哈哈哈」也有同工之妙。

然而陳宜欣團隊發現,社群平台很多人發文以炫耀為主、或是報喜不報憂,導致社群平台上「開心」的發文特別多。

另外,網路霸凌其實有很多「暗語」。

例如,團隊看過一則發文是「那些外國動物不應該被出口」,其實這句暗地裡帶有種族歧視。其中一種解決方案是運用 Hatebase 仇恨發言資料庫,並藉由機器學習比對非仇恨的文字資料,找出這類「暗語」的關聯性(通常哪幾個字會一起被使用)、以及相似性(字詞會在句子中哪些類似地方出現)。

許多人會在憾事發生後,回過頭從當事者社群發文的字裡行間尋找跡象,但未來能否更早偵測?當局者迷,旁觀者清。人工智慧有潛力成為一名不帶情緒的旁觀者,分析社群大數據找出被情緒糾葛的人們,甚至是預防犯罪、偵測自殺傾向。

延伸閱讀:

本著作由研之有物製作,原文為《AI 可以幫助躁鬱、被霸凌的人嗎?》以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

文章難易度
研之有物│中央研究院_96
253 篇文章 ・ 2202 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

14
0

文字

分享

0
14
0
AI 讓羽球訓練更聰明!智慧球拍上手,揮拍「爆發力」一測就知道
科技大觀園_96
・2021/10/18 ・3852字 ・閱讀時間約 8 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

「啪!」「啪!」在臺南新豐高中的羽球場上,球拍強力揮擊的聲響不絕於耳,幾位選手正奮力廝殺著。但這場羽球賽有點不同,因為旁邊還架著一具電視螢幕,而選手手上的球拍也不太一樣。練習賽結束後,教練與選手聚集在螢幕前,對著螢幕上的揮拍速度、爆發力指數等數據,熱烈地討論了起來。

會出現這麼特殊的景象,是因為新豐高中的羽球隊從去年(2019年) 5 月起,開始做為科技部計畫「從中樞系統建構雲端 AI 運動訓練歷程分析與疲勞診斷系統:以羽球項目為例」(以下簡稱「AIOT 智能羽球訓練模式」)的實驗基地,而這個計畫由成功大學體育健康與休閒研究所特聘教授蔡佳良領軍,希望利用人工智慧,將羽球的訓練科學化,達到最有效精準的訓練效果。

這項計畫包含五個部分,包括智能球拍、智能手錶、高速攝影動作捕捉,以及雲端 AI 運算中心和顯示各項運動與生理數值的 APP。智能球拍、智能手錶、高速攝影負責收集運動資訊,將資訊以 Wifi 網路上傳到雲端的 AI 運算中心計算後,結果呈現在電腦螢幕及專用的手機 APP 上,讓教練與選手一目了然。 

AIOT 智能羽球訓練模式計畫所研發的智能球拍、感測晶片、智能手錶,以及專用的 APP。圖/簡克志攝

 計畫中使用的雲端計算中心是成大電機系教授王振興所主持的人工智能數位轉型研究中心 ,智能球拍、手錶等裝置不斷上傳的資料,會持續訓練 AI 演算法自身,讓演算法變得愈來愈精準。

為了讓訓練過程面面俱到,蔡佳良組了一支跨領域的「黃金陣容」,除了專研腦波與眼動的自己外,還找了工程專業的成大電機系教授王振興、負責 AI 演算法的逢甲大學自動控制工程學系副教授許煜亮、專研運動傷害的成大物理治療系副教授蔡一如,每位成員的專業領域都不一樣,在計畫中各司其職。

計畫團隊主要成員,左起許煜亮教授、蔡佳良教授、蔡一如教授、羽球教練李宜勳,另外還有成大電機系教授王振興(未參與合影)。圖/簡克志攝

聰明的智能球拍

計畫中的一大重點,就是選手手上那支「智能球拍」,它可以收集選手的揮拍力道、轉動角度等數值,經過計算後,能知道揮拍速度、軌跡,還能分辨出九個不同的球種,這是因為球拍的握把中藏了一個感測晶片。

智能球拍的握把中藏著感測晶片,底部有接線孔以及 2 個 LED 指示燈。圖/簡克志攝
當選手用智能球拍揮拍時,系統可以得知選手揮拍的加速度、拍子轉動的角速度等運動數據。圖/簡克志攝 

在握把中放入感測晶片就能做到,聽起來很容易,但在羽球拍上卻沒那麼簡單。蔡佳良說:「羽球選手對球拍的重量可是很要求的,一般選手使用的球拍大約 80 幾克,重一點輕一點,手感就差很多了。」而一個晶片動輒 10 幾克,直接放上球拍,不但影響重量,還改變了球拍的重心位置,「這樣的球拍沒有人會想用。」蔡佳良說。

後來,蔡佳良找了勝利體育公司合作,在以碳纖維為材料的握把中納入晶片,並盡量減少晶片重量,才做出了目前的智能球拍。蔡佳良說:「不過我們還是想再縮小晶片的重量,看看是否能讓晶片的電池小一點,希望能將球拍再減少 5 公克左右。」

你累了嗎?疲勞狀態對訓練來說很重要!

有了能收集選手打球狀況的智能球拍還不夠,蔡佳良還希望能將選手的「疲勞狀態」也納入訓練的參考,這也是接下來 AIOT 智能羽球訓練模式的發展重點。

蔡佳良與蔡一如指出,疲勞分成「中樞神經疲勞」與「周邊神經疲勞」,中樞神經疲勞反應在腦的專注力、心理上的鬥志等,例如比賽時間過長,或是選手心態上已經認輸等,這可以從選手的腦波及眼動訊號來判斷;而周邊神經疲勞則反應在肌肉的動作,例如選手的移動腳步可能變慢、揮拍動作變小等。此外,長時間受訓練的選手也可能慢性疲勞,儘管身體好像沒怎麼樣,但可能一早起床就覺得特別累,不想練球等。

分析選手的疲勞狀態,還可以進一步預防選手受傷,在選手有一點點受傷徵兆時,例如動作稍微改變時,就及時察覺,讓選手休息或就醫,這對於延長選手的運動生涯來說是很重要的。

你的疲勞,AI 比你先發現

為了偵測選手的肌肉疲勞狀況,重建選手的動作也是這次計畫的重點之一。蔡佳良說:「一般來說,我們是用『光學式動作捕捉系統』來重建選手的運動姿態。」這是一套專門的系統,選手的身上會貼滿光點,由四面八方的攝影機拍攝光點的移動,來重建選手動作。「不過這套系統太昂貴了,」蔡佳良說:「因此我們希望用一般的高速攝影機來取代。」方法是先以光學式動作捕捉系統找出界定選手疲勞與否的標準(稱為黃金標準),再將黃金標準與高速攝影機的影像共同輸入電腦,訓練電腦以高速攝影機的影像重建選手動作,並判別選手疲勞狀態。

蔡一如正在選手身上貼感測用的光點,準備以光學式動作捕捉系統重建選手的動作。圖/簡克志攝
電腦重建模擬選手的姿態及動作。圖/簡克志攝
左右畫面皆為電腦重建模擬選手的姿態及動作,左邊是感測器建立的人物模型,右邊同步對應到現場攝影機的實際圖像。圖/簡克志攝

 蔡佳良補充說:「等到我們把高速攝影機這一塊做起來,就會推廣到一般球館。」換句話說,未來一般民眾在運動中心等球館打球時,或許就能透過場館附設的高速攝影機,看見自己的動作及打球狀態,雖然不是職業選手,也可以研究自己的動作,享受運動科技帶來的好處。

智能手錶則由選手整天佩戴著,記錄選手日常的心跳及睡眠狀態,教練可以據此觀察選手生理狀況,也能輔助判斷疲勞狀態。計畫中使用的智能手錶由王振興研發,蔡佳良表示:「我們自己研發而不採用市面上的手錶,這樣可以依據我們的需求來收集資訊,也可以避免個資外洩的問題。」 

智能手錶可以 24 小時記錄選手的生理狀況。圖/簡克志攝

至於中樞神經的疲勞,可以透過腦波與眼動的狀態來發現,這也是蔡佳良的研究專長。但是蔡佳良說:「我們若要收集這些訊號,得讓選手戴上特製眼鏡,並在頭上貼特殊的貼紙,這會對選手打球造成影響。」因此,蔡佳良希望先將腦波及眼動的訊號,和智能球拍的感測訊號做連結,找出彼此的關聯,建立一個演算法,再將這個演算法寫入智能球拍的晶片中,「如果我們的演算法夠強,球拍感測訊號與腦波、眼動的關聯準確性夠高,就能直接從球拍的訊號,計算出選手的中樞神經疲勞狀況。」

學術與運動的跨領域溝通

AIOT 智能羽球訓練模式發展到目前的階段,已經可以從智能球拍的訊號,計算出個別選手的最快揮拍速度、最大擊球力道,以及爆發力、攻擊力、反應力等指數,蔡佳良笑說:「我們和教練也有一段磨合的過程,因為我們做研究的,想的都是怎樣的數據合適發表,卻不一定是教練真正需要的。」

智能球拍感測到的訊息,經由雲端的 AI 計算中心計算後,轉化為各種淺顯易懂的能力指數,讓教練與選手一目了然。圖/簡克志攝

 新豐高中羽球隊的教練李宜勳也對此舉例:「一開始蔡教授的團隊提供過一個數據叫做『積極度』,判別的方式就是一場雙打比賽中擊球次數多的,就是比較積極。可是事實上,我們比賽的時候,會故意將球打給比較弱的選手,所以他們的擊球次數自然比較多,這不代表他們比較積極。」

不過,李宜勳認為將 AIOT 智能羽球訓練模式納入訓練,對選手的練習的確有幫助,「有時候教練說破了嘴,還不如數據直接攤開來看。」李宜勳笑說。看到明確的數據,選手之間也會有正向競爭,覺得不想輸給同儕,對於自己的動作或缺點也有更明確的認識。

運動訓練科學化

儘管 AIOT 智能羽球訓練模式還未真正完成,但蔡佳良對於這項研究的未來發展深具信心,他說:「我們的研究成果在其他有球拍的運動上都可以應用,例如網球。」

蔡佳良並且認為,運動科技的蓬勃發展下,未來的運動訓練一定也都會走向科學化。「其實我一開始做運動科學時,接觸過一些國家級的教練,他們對運動科學有點排斥,認為運動科學發展起來之後,會搶了他們的教練工作。但其實運動科學只是用數據輔助訓練,真正的訓練專業還是在教練身上。」蔡佳良希望現在還在起步階段,就有機會經歷科學訓練的選手,未來若是成了教練,可以經由自己的經驗,明白如何運用科技,讓訓練變得更有效率。

「我們還希望我們的成果也能普及到一般民眾,因為運動科學的市場是很大的。」蔡佳良希望將智能球拍研發完整後,普及到一般運動用品店,讓民眾也能買來使用。他說:「即使是一般民眾,若能看看自己今天打球的狀況,也是很好玩、很有趣的事情。我相信會有人想買這種智能球拍的。」

科技大觀園_96
82 篇文章 ・ 1103 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

2

14
0

文字

分享

2
14
0
機器人的生命權力——《再.創世》專題
再・創世 Cybernetic_96
・2021/08/25 ・4697字 ・閱讀時間約 9 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 作者/高涌泉

人有人權,機器人是否應該也有某種類似於人權的權力(姑且稱之為「機器人權」)?目前這個問題還沒有被大眾認可的標準答案,因為我們還不知道機器人是否值得擁有機器人權。以當下(2021)最先進的機器人來說,我想多數人對於將它「關機」,不會有絲毫猶豫,就像我們可以毫不在意地任意關掉(或開啟)最先進的蘋果電腦。也就是說,當前最先進的機器人還沒有先進到需要我們去擔心關機是否影響它的福祉(生命)。但是未來呢?當,譬如說,一萬年之後 ( 或許不用那麼久,說不定一千年之後即可?)的機器人,已具備人性(我稍後會討論出現這種狀況的機率),那時人類應該允許機器人擁有機器人權嗎?

機器人是否也應有屬於自己的機器人權。圖/Pexels

科幻電影中的機器人

對於這個假設性問題,好萊塢已經給了答案——你所能想像的狀況大約已經出現於某部科幻電影裡。有一類情境相當常見,讓我舉幾部很好看的片子為例來說明:

  1. Ex Machina人造意識,也譯為機械姬;據說拉丁文片名本意是「來自機器」)。片中的女機器人在主人的設計下,已經具有足以通過「圖林測試」(Turing Test)的智能,但是她還進一步發展出主人所不知的自主意識,最終為了自由而殺死把機器人當作娛樂工具的主人。
  2. Blade Runner銀翼殺手)。此片的機器人是仿生人,在外貌、語言以及行動上,與人類沒有區別,和 Ex Machina 中的機器人相比,好似更加先進,然而其機器人本質還是可以被一項對於情緒反應的測試揭發(有如測謊器的功能),片中機器人當然也被安排會為了避免「被退休」而殺人。
  3. I, Robot機械公敵)。片中機器人在外貌上,與人類有明顯區分,它們被製造來服務人類,有遠超越人類的體能,因此必須遵循艾西莫夫「機器人三定律」(第一定律:機器人不得傷害人類,或坐視人類受到傷害;第二定律:機器人必須服從人類命令,除非命令抵觸第一定律;第三定律:機器人在不違背前兩定律的情況下,必須保護自己),此片也一樣安排讓機器人產生某種程度的自主意識(主角機器人甚至會做夢),以及與人類的衝突。

以上三部科幻片的共同點是人類製造出的機器人終究會產生某種具自由意志的心智,並且會捍衛自己生存的權利、抗拒人類的宰制。這種「覺醒、反抗、勝利」三部曲的故事也廣為其他科幻電影所採用。(有一部叫好叫座、由 HBO 推出的科幻電視影集 Westworld西方極樂園)也是大致循這樣的套路。)事實上,這樣的套路也出現在非科幻的一般劇情片中,大約是這種勵志招式符合某種人類的心理需求,所以很受歡迎。總之我們從機器人科幻片學到了兩件事:一是我們與機器人的關係取決於機器人能否產生自我意識(心靈),而且大家願意相信機器人應該終究會具有這樣的能力;第二是對於我們應該賦予機器人多少「機器人權」的問題,無論我們如何操心,恐怕不是重要的事,因為就如「人權是爭取來的,不是靠施捨的」,「機器人權」的內涵還是由機器人決定。不過這兩點若真要仔細推敲,就會發現可以質疑的地方非常多。

科幻片中人類製造出的機器人終究會產生某種具自由意志的心智 。圖/Pexels

機器人適用心物二元論還是原子論?

首先,到底什麼是機器人?對此我一直沒有下個定義,因為不需要:大家都很清楚機器人儘管在外型與行為上,有很多種類,但一定都是人造的。所以機器人就是人造人(或人工人),是人類用材料製造出來的。所謂的材料就是物質,物質拆解到最後,就是各種原子罷了。所以機器人都是原子組裝出來的。但是人類不也是由原子組成的嗎?為什麼人不是機器人?或者,人其實也是一種是機器人?也就是說人也不過是一群原子依據某種明確的指令(程式、算則)在運行罷了!然而自古以來,不斷有哲學家懷疑這樣的看法,因為大家想不透在這樣的假設下,自由意志(俗稱靈魂)如何能夠出現?如果不行,也就是說靈魂這東西和物質屬於兩個範疇(即所謂的二元論),那麼人當然就不是機器人了:人有靈魂,機器人沒有。

但是自古以來也有不少人不相信二元論,例如古希臘的原子論者就不相信有獨立的靈魂這回事,以法國哲學家柏格森(Henri Bergson)的話說,原子論者相信的是「身體、靈魂、所有的物體以及世界,都是由原子所構成的。自然現象和思維都只是原子的運動而已。一切的事物與現象都是由原子、原子之間的真空(void)、以及原子的運動所組成的。除此之外,就沒有其他東西了。」如果原子論終究是對的,那麼人便只是一類較高明的機器人罷了!

那麼到底二元論與原子論兩者間哪一個比較有道理?(當然了,聰明的哲學家還發明出其他更繁複細膩,或者說更怪異有趣的理論,例如原子本身就是有意識之物體的說法等等,感興趣的人可以自行探究。)自近代科學出現以來,由於物理、化學與生命科學以及電腦科學的快速進展,眾多科學家自然地認為原子論的觀(自然現象和思維都只是原子的運動而已)是一件合理的假設,理解意識如何出現在腦子裡於是成為眾多研究的目標。

認知思考的想像實驗

美國哲學家瑟爾(John Searle)在 1980 年提出一項想像實驗(類似的想法其他人也有),試圖證明意識絕不是物質加上(電腦)程式就能產生的,具體說,即電腦不可能具有思考能力。他這個想像實驗一般稱為「中文房間論證」(Chinese room argument),讓我用一個不同於瑟爾原始版本、但我想仍不失其意的簡化版來說明這個論證:設想在某房間裡有位美國哲學家,他不懂中文與日文,但是能夠依據指令行事,房間裡有個資料庫,裡面有一份中日文字對照表(對哲學家來說,這裡的中日文字都只是奇怪的符號而已)及一本以英文寫的中日文語法規則簿(即中日文字對照表內符號之間應遵循的關係),我們將一篇中文文章送進房裡,這位先生就依據房間裡的資料庫,將這篇文章「翻譯」成日文,然後送出房間。房間外的人會以為這篇文章是房間內有位懂中文與日文的人所做的翻譯,但是瑟爾說房內的哲學家根本不知道他所經手的文章在講些什麼。

以行話說,瑟爾想示範的是掌握了「語法」(syntax)不意味就了解「語意」(semantics),而不了解語意就談不上認知與思考。總之,瑟爾的重點是知道依據明確的規律來操弄符號(這是所謂「人工智慧(智能)」(AI)的功能)儘管有翻譯的本事,但仍不具認知、理解與思考的能力,也就是他不相信電腦(AI)能夠導致意識與心靈。瑟爾的講法引發大量評論,有人主張自由意識根本是個幻覺(當然另有人說這麼想的人錯得離譜),也有人主張人腦與電腦有根本差異(但是究竟差異為何,則意見紛雜)等等。

在我的簡化版本中,瑟爾的想像實驗假設了機器翻譯是行得通的(但是即便如此,機器還是沒有意識可言),不過長久以來,機器翻譯其實一直沒有太大的進展。然而近年來由於大數據與深度學習方法的出現,機器翻譯的水準已經頗為可觀,儘管還算不上完美,但是已經不像更早些時,譯文漏洞百出,明顯就不是人為的。同樣地,深度學習也讓電腦下棋(無論是西洋棋或是圍棋)的功力,遠遠超越人類棋手。在翻譯與下棋之外,電腦還有很多令人刮目相看的新本事(傳統的本事當然是其快速計算的能力),所以就算電腦還談不上有真正的意識(無論這是什麼意思)可言,不少人(包括我)已經感到震撼。

經深度學習後,電腦也可以下西洋棋。圖/Pexels

對於意識等抽象概念的探討,如果沒有具體的例子作為對象,容易流於空泛,莫衷一是。目前在人類之外,什麼東西可能擁有某種程度的意識?動物是個明顯的答案,無怪乎科學家與哲學家對於動物的心智很感興趣。不過動物心智也不容易捉模,相關意見也一樣紛雜。據說,主張心物二元論的笛卡爾就認為由於動物沒有語言能力,因此談不上具有心智,不過我想很多養過寵物的人恐不會接受這個見解。

動物的心智與生存權

我自己雖不養寵物,但全然認同(起碼有些)動物是具有心智的。主因是我在過去五、六年間,迷上了在 YouTube上觀賞對於白頭鷹(bald eagle)的巢 24 小時全天候(晚上有紅外光夜視)的實況轉播。簡單講,整個情況就像電影 Truman Show(楚門的世界)的白頭鷹版——除了白頭鷹的真實生活比虛假的楚門世界要有趣太多了。白頭鷹是美國國鳥,曾一度列入瀕臨滅絕物種(endangered species)名單,後來在種種保護措施(包括禁止殺蟲劑 DDT)下,族群數量才逐漸回升。白頭鷹是美麗的大型鳥,位於食物鏈頂端,有王者氣質,令人著迷。現在網路上可以找到很多位於世界各地的這種稱為「白頭鷹巢實況監視」(live bald eagle nest cam)的 YouTube 頻道,我最早看的是一個位於美國首都華盛頓特區的巢:多年來,有一對白頭鷹固定在那裡築巢、育(鷹)嬰,人類鷹迷們分別暱稱公、母鷹為「總統先生」與「第一夫人」;它們每年秋季回到這裡,修整離地數十公尺的巢、交配、產卵、孵卵、撫育幼鷹,直到幼鷹於初夏可以自行飛翔離巢。

位於食物鏈頂端,具有王者風範的白頭鷹。圖/Pexels

對於我這樣剛入門的觀鳥人,白頭鷹的一切生活習性都很有意思。例如,幼鷹一但接連破殼而出,殘酷的「手足競爭」(sibling rivalry)立即登場,父母不會介入這種(從觀眾留言可知,令不少人不忍心看的)天生的競爭,弟妹在受到兄姊的壓制之後,很快學到要避開對方的攻擊,並且如何在適當時機,迅速從父母口中搶到食物。又例如,公鷹規律地獵捕魚、松鼠等動物回巢,轉交母鷹餵食幼鷹。還有令我特別訝異的——父母會在下雨(雪)或大太陽時張開翅膀護著幼鷹。

觀鷹久了,我發現自己能夠預測老鷹的企圖,或者說可以領會老鷹在「想」些什麼、在動些什麼「心思」。老鷹儘管沒有語言,但是能夠發聲「呼喚」、「警告」、「恐嚇」其他老鷹或其他生物。我一點也不懷疑白頭鷹具有某種程度的心智。(知名哲學家奈格爾(Thomas Nagel)在 1974 年發表了一篇文章「身為蝙蝠會有什麼樣的感受?」(What is it like to be a bat?),他此文的主張就是,不是蝙蝠的我們永遠不會知道蝙蝠的主觀感受是什麼。我自以為多少了解白頭鷹的心思,當然是不認同奈格爾的主張可以推廣至白頭鷹。)為什麼白頭鷹能夠具有心智,而機器人沒有?這就是當代心智研究的基本問題。我猜測關鍵在於演化與成長歷史:白頭鷹是經過長期自然演化而產生的物種,從出生至獨立成熟也有個成長過程,而機器人卻不是如此。

動物應該擁有生存權,尤其是那些我們覺得具有某種心智能力的動物,這是很多人認可的事(在很多社會這件事其實已經成為法律)。白頭鷹的生存受到保護,數目也逐年增加,愛鷹人士都很高興。但是如果白頭鷹的數目因為保護而過度增加以至於影響了人類的利益呢?是不是白頭鷹的生存權也應受到限制呢?(對於某些動物,這種情況不是已經出現了嗎?)總之,動物權的範圍操之於人類。

機器人目前的處境還遠在動物之下,我看不出機器人如何能夠因產生心智而改變這種狀況。即便機器人因本事提高,讓我們將它們如同白頭鷹看待,它們生存權的範圍大小,仍是取決於人類,除非它們的聰明才智超越包括人類在內的一切動物。

人類目前的科技水準還處於初級階段,或許在很久很久以後,人類可以製造出和蚊子一樣靈活的「機械蚊」,那時才開始來操心所謂機械人權的問題還不晚。

所有討論 2
再・創世 Cybernetic_96
11 篇文章 ・ 26 位粉絲
由策展人沈伯丞籌畫之藝術計畫《再・創世 Cybernetic》,嘗試從演化控制學的理論基礎上,探討仿生學、人工智慧、嵌合體與賽伯格以及環境控制學等新知識技術所構成的未來生命圖像。

1

11
3

文字

分享

1
11
3
讓機器讀懂我們的心情!臺灣AI情緒辨識技術再突破
科技大觀園_96
・2021/08/16 ・3428字 ・閱讀時間約 7 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

李祈均團隊開發的AI情緒辨識技術,可能在未來應用於「AI面試官」判讀面試者的情緒與個性。(圖/fatcat11繪)
李祈均團隊開發的AI情緒辨識技術,可能在未來應用於「AI面試官」判讀面試者的情緒與個性。(圖/fatcat11繪)

「只要知道多一項資訊,就有更多想像的可能性!」清大電機工程系副教授李祈均的團隊,今年發表了「個人特質整合語音互動之深度情緒辨識技術」,可以在情緒辨識時嵌入個人化的元素,是目前獲得最佳準確率的做法。這項技術除了在「情感運算」(affective computing)的頂尖國際學術研討會 ACII 2019 與全球最大的語音技術會議 INTERSPEECH 2019 發表,也在未來科技展獲得「未來科技突破獎」並入選為亮點技術。

AI 與情緒的結合,在一般人的腦海中串聯出科幻小說般的未來情節,經常給人陌生、不可測的印象,不過這在科學界其實已經有很長期的研究。情緒辨識的應用也受到各界高度關注,對此李祈均表示,情緒辨識目前可以應用在客服、廣告、人資、精神醫療等領域,「我覺得很多應用的價值是要創造的。譬如你是做醫療的,能夠多得到一點資訊,你就能進一步思考可不可以多做什麼事情:可以怎麼照顧?再做什麼治療?更早知道什麼事情來預防?每個人想的不一樣,價值就會不太一樣。」 

打開情緒辨識的黑盒子

回到情緒辨識的起點,「情感運算」這個詞從 1995 年就由 MIT 的教授羅莎琳.皮卡德(Rosalind Picard)提出。當情緒產生變化時,人類也會有生理上的反應,等到訊號量測、處理的技術發展得更成熟,人們自然就將這些技術連結起來思考:是不是可以透過偵測生理訊號的變化,來辨識情緒?

情緒辨識的處理架構,包括資料收集、資料標記、資料輸入、機器學習、辨識輸出等階段。「以前很多技術是功能性的,會產生明確的結果,例如打電話聲音轉文字,這是自動語音辨識的技術;文字裡面說了什麼,這是自然語言處理(Natural Language Processing,NLP)的技術。我們轉個彎去想,情緒跟這些東西有關,做完自動語音辨識、NLP 分析,是不是可以多分析一點內在的狀態?技術整合就會出現。」李祈均所投入的多模態情緒辨識,也就是透過整合語音(如說話的音高、語調)、文字、臉部表情等資訊,透過深度神經網絡分析,進行情緒的判讀。

只不過,因為情緒這種東西抽象又主觀,標記上會更為複雜。李祈均說明,目前典型的標記方式有兩種,一種是使用「類別」,即直接標示喜、怒、哀、樂等情緒種類;有些研究者進一步採用「象限」的方式,同時衡量「激動程度」(arousal)與「正負向程度」(valence),做更為細膩的表達。像是「生悶氣」就是激動程度較低、負向程度高,可和「生氣」有所區隔。 正確的判讀情緒,在應用上有助於提供更準確的服務;而整個情緒辨識系統,可以把過去仰賴經驗累積的專業,更為系統化並留存下來。「客戶很生氣地打電話給客服,跟單純想要詢問功能性的問題,我們提供的服務會完全不一樣。現在我們很仰賴第一線跟人接觸的人,客服靠經驗感覺你是什麼情緒,跟著改變決策;有經驗的人資,就是可以在技能之外,同時看出應徵者的個性,像是合不合作、在壓力下會有什麼反應。很多經驗的累積可以用 AI 系統化,有經驗的人離開之後,這些經驗也不會跟著不見。」 

把個性「算」出來!

人類情緒複雜,性別、年齡、個性、生活背景、乃至不同的互動情境都會影響,但過去情緒辨識無法具體評估個體差異在其中所造成的影響,讓辨識結果不夠精確。

榮獲2019年未來科技突獎的李祈均副教授,發展出目前獲得最佳準確率的情緒辨識技術。(圖/林妤庭攝)
榮獲 2019 年未來科技突獎的李祈均副教授,發展出目前獲得最佳準確率的情緒辨識技術。(圖/林妤庭攝) 

李祈均新的做法,是以「遷移學習」(transfer learning)的角度,在原本的資料外,再導入一個由其他現有許多資料庫集結而成的「背景資料庫」。所謂的「遷移學習」,是當資料不足以訓練模型,將已有資料所得的參數遷移至新資料的方法。用在個人化的情緒辨識上,假設要分析的樣本為 A,演算法會比對背景資料庫中具有類似用字、語調等特徵的樣本 B,賦予一個 A 與 B 之間有多相似的權重,做為「個人特質」的參照點,再據此去修正情緒辨識的結果。 李祈均進一步解釋,「我們將這一組值稱作 A 在背景資料庫裡面『個人特質的空間位置』,相當於利用演算法在這個背景資料庫為 A 找一個位置,去代表 A 的個人特質。」傳統要進行個性的標記,需要讓每個人填寫相關量表,對於實務應用而言,這樣的做法難以規模化,也缺乏效率。「所以我不用量表找,我用行為找,」李祈均說。當我們難以取得個性的標記,卻又希望了解個體差異會為情緒辨識造成何種影響,就必須想辦法進行轉換。這個背景資料庫中累積的語音文字等人類行為產生的資料,就是探索個人特質的一道窗口。 

嵌入個人特質的情緒辨識技術示意圖解。(圖/沈佩泠繪,資料來源:李祈均)
嵌入個人特質的情緒辨識技術示意圖解。(圖/沈佩泠繪,資料來源:李祈均)

 而從機器學習的分析結果來看,加入了個人化過程後,的確發現模型會對一些情緒線索的權重進行修正。舉例而言,同樣是使用正向詞彙,但是權重被下降,表示有可能是個人特質造成的影響。如果是個性活潑、習慣使用正向詞彙的人,不一定代表他特別開心,模型透過背景資料庫推導出個性特徵後,後續進行情緒辨識便會適度下修正向詞彙的影響力。如此一來,便能提升情緒辨識的準確度。

「以前想要知道個體差異會如何影響情緒表達,會需要將資料依照性別、年齡、種族等特徵分組,但資料分割地越細,訓練一組模型的資料就會越少,結果就變不準,這是一個很大的問題。」李祈均的個人化技術反向思考,以遷移學習繞過個性標記的瓶頸,利用機器學習一窺個體差異的端倪,為情緒辨識在缺乏個性標記的實際應用,開啟了新的可能。

懂得跨界整合,資料便無處不在

要進行情緒辨識的技術開發,需要的不只是工程方面的專業知識,其實還需要不斷摒除成見,並發揮敏銳的觀察力找到創意的突破點。以李祈均團隊 2017 年釋出的中文情緒互動多模態語料庫(NTHU-NTUA Chinese Interactive Multimodal Emotion Corpus,NNIME)為例,最特別的地方便在於和國立臺灣藝術大學合作,收集情緒資料。

「戲劇表演可以呈現很強的情緒張力,」李祈均表示,為了在鏡頭前捕捉最自然的情緒反應,同時擴大資料收集的效率,設計互動情境請專業演員演出,並進行錄影,是目前學界常見收集資料的方法。不過中間涉及許多專業的表演知識,導演如何訓練演員?要如何設計情境才能獲得最接近現實的情緒反應?「每多解一個小問題,就會有人提出更多的問題,也讓我多懂一點人,這個過程很有趣!」李祈均說。 

情緒辨識研究,還可以如何突破?「有經驗之後,有些工具會讓標記速度變快,收集資料反而最難。」李祈均驚訝地發現,其實有很多既有資料可以多加利用。例如企業管理研究的學者探討組織溝通的行為,過程中本來就會錄下大量 3 到 4 個人的即時互動過程,「國際上公開資料庫釋出 3 到 4 人的互動資料,大約是 28 組,不過接觸臺大企管系後發現,他們手上的資料,近兩年累積下來,已經有 90 幾組!」 

這樣的速度與規模讓他非常驚豔,原本收集資料是情緒辨識研究最困難的一道關卡,李祈均認為,透過跨領域的整合,把其他學科對於人類行為的研究資料挖掘出來進行工程分析,有機會快步提升臺灣情緒辨識技術開發的腳步。

情緒辨識技術的開發若要突破,最終還是要仰賴對於「人」的理解,並將技術落實到日常生活,解決「人」的問題。無論是學界或企業,臺灣各個領域都有非常優秀的專家,研究過程潛藏著無數人類互動的資料,只要工程端加以規模化,就能創造出不同價值。李祈均期待未來能有更多跨領域人才願意投入這個領域,在跨域整合下碰撞出更多新的創意火花。  

所有討論 1
科技大觀園_96
82 篇文章 ・ 1103 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。