Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

年輕人缺乏競爭力?別說了,我們都不如適應力超強的腸道菌!--《科學月刊》

科學月刊_96
・2017/08/21 ・2563字 ・閱讀時間約 5 分鐘 ・SR值 498 ・六年級

-----廣告,請繼續往下閱讀-----

文/陳俊堯|慈濟大學生命科學系助理教授,熱愛細菌的細菌人,研究領域為微生物生態,對環境微生物社會的興趣遠大於對人類社會的興趣,近年來亦致力於科普寫作的實踐與推廣。

適應力就是競爭力?那細菌肯定是勝利組!

在美國唸書時每隔一陣子總是會想念起臺灣的食物。雖然在國外各大都市都有中國餐館,甚至是台菜料理,但是進了餐館常常端上來的都不是自己想念的那個味道。為了要招攬美國本地人的生意,餐廳裡的師父總是要為他們調整口味,放一些當地有而臺灣沒有的食材。於是同樣掛著中國菜的招牌,在各大都市裡嚐到的味道都混有對新環境的妥協。

圖/By William Murphy @ Flickr, (CC BY-SA 2.0)

生物常常也得做這樣入境隨俗的事。細菌如果想在一個新環境安身立命就要改變自己去適應和使用當地資源。早年紐西蘭的蘭尼(Paul Rainey)教授就用實驗證明了細菌會調整自己適應環境。

他把螢光假單胞菌(Pseudomonas ­uorescens)養在培養液裡等了幾天,當培養基裡的養份耗盡,原本懸浮在液體的細菌開始發生改變。一群突變者沉到試管底部,避開競爭,另一群突變者,分泌多醣跟同伴黏成一片,霸佔氧氣充足的液面。

-----廣告,請繼續往下閱讀-----

在這小小 3 公分高的世界裡,細菌改變自己,利用試管裡不同的物理化學環境,這是生態學裡輻射性適應的經典例子。

想在動物腸道中生活,腸球菌有什麼必備技能?

而最近發表的一篇研究更是精彩,主角是我們腸子裡也有的腸球菌(Enterococcus)。腸球菌是群經常在陸地動物腸子裡出現的細菌,有的時候也會出現在河水泥巴裡。

我們看到八哥、麻雀多半在城市裡,而不在森林裡出現,會猜測這些鳥兒應該是適應了城市裡的生活。那總在動物腸道出現的腸球菌呢?它們也得到了什麼特殊能力,變得比較適應在動物腸道裡的生活,最後變成在腸道生活的專家?如果真的是這樣的話,那到底在腸子裡會需要些什麼樣的生活能力呢?

腸球菌是怎麼跑到腸子裡去的呢?圖/By Pete Wardell, USCDCP @pixnio

這群哈佛大學的研究人員想知道是什麼推動腸球菌演化。他們收集了 24 株各種腸球菌,先進行基因體解序,再由得到的基因來推論細菌在能力上的改變。首先研究人員盤點每株菌的基因,找到了所有腸球菌都有的 1037 個核心基因。接著他們把這些基因與腸球菌的近親徘徊球菌(Vagococcus)比對,發現 126 個徘徊球菌沒有、只在腸球菌這個演化分支才出現的基因。這些基因帶來的新能力區隔開了腸球菌和徘徊球菌。

到底這些基因是做什麼用的呢?經過比對後,發現這些基因負責的功能是修改細胞壁結構、合成嘌呤以及對抗逆境。如果搭配上腸球菌總是在動物腸道裡出現的事實,這結果其實挺合理的,腸道裡的滲透壓比水裡高,還有膽鹽和消化酵素會殺死細菌,因此改造細胞壁的確可能有助於細菌在腸道裡的存活。

腸球菌啊腸球菌,你的祖先哪裡來?

如果我們能知道腸球菌開始朝向腸道專家演化的時間點,那就更有趣了。細菌沒有化石可以定年,只能利用 DNA 序列上的改變,來推測這些變化發生的時間。

-----廣告,請繼續往下閱讀-----

我們知道粒線體和葉綠體都是共生細菌形成的胞器,前人曾利用它們與其它細菌間的序列差異,推算出大腸桿菌與沙門氏菌分開的時間。如果用他們估算的時間當尺,配合序列上的差異可以推論,腸球菌大約是在 5 億年前自創門派和別的菌種分道揚鑣。

那在這個時間點地球生物圈裡有發生什麼大事嗎?

原來大約 4.25 億年前剛好是脊椎動物上陸地的時間,腸球菌可能搭上了動物的便車,往陸地上去討生活了。少了水的保護細菌想傳播到另一隻宿主身上就困難得多,得讓自己能耐旱、耐餓一段時間才有機會,難怪對抗逆境的基因變得重要了。

當年脊椎動物上陸地時,腸球菌也一起上岸了。圖/By Efraimstochter @pixabay

腸球菌是超強的捉迷藏高手,抗藥性成嚴重隱患

目前腸球菌各菌種分佈在不同的動物腸道裡,有的只愛哺乳類、有的選鳥、有的選昆蟲,各有各的喜好。如果要在不同動物腸道住下來,需要做什麼調整呢?為了回答這個問題,研究人員以這些菌種在演化樹的位置為基礎,追踪每個菌種比祖先多了什麼或少了什麼基因。

結果發現:在改變的基因裡,影響利用醣類能力的基因佔最大宗(佔 37%);影響利用胺基酸能力的基因也佔了 12%,說明了菌種之間最大的差異是改變了養份利用的策略,進入一個新的宿主就丟掉舊棲地需要的基因,換成新棲地需要的基因。這項發現顯示,當它們的生活型態被侷限在腸道裡後,必須善用能取得的養份來存活,才能在新宿主身上住下來,成為地頭蛇。

-----廣告,請繼續往下閱讀-----

如果把估算所得各種腸球菌出現的時間,搭配地球上的動物演化史,可以看到在 4.25 億年前動物上陸地的時間後,腸球菌出現第一波新種發生潮。3 億年前進入古生代二疊紀,腸球菌沉寂了一陣子,沒有增加新成員。接著進入古生代末的大滅絕,2.5 億年前三疊紀時動物多樣性開始上升,這時腸球菌又開始出現新種。整個腸球菌演化史顯然就是跟著動物走,一直把新的動物腸道納入這個屬的勢力範圍。

腸球菌能躲在人的腸子裡,不容易被發現和消除,正開始以多重抗藥性細菌的身份挑戰人類。圖/By 3217138 @ pixabay

過去千百萬年,動物改造了腸球菌的養份攝取策略,而到了人類的時代,我們帶給腸球菌的改變是什麼呢?因為腸球菌能躲在人的腸子裡,不容易被發現和消除,也有本事在乾燥沒養份的床單或地面存活一段時間等待機會。腸球菌帶著先天的生理優勢,能入侵接受抗生素治療的病人腸道,大量複製,再以這個病人為基地擴散到其他病人身上。這讓它們容易在醫院裡擴散,開始以多重抗藥性細菌的身份挑戰人類的存在,我們得小心對付它們。

延伸閱讀

  • Rainey P. B. and Travisano M., Adaptive radiation in a heterogeneous environment, Nature, Vol. 394(6688): 69-72, 1998.
  • Lebreton F. et al., Gilmore MS. Tracing the Enterococci from Paleozoic Origins to the Hospital, Cell, Vol. 169(5): 849-861, 2017.
  • OchmanH.andWilsonA.C., Evolutioninbacteria:evidenceforauniversal substitution rate in cellular genomes, J Mol Evol, Vol. 26(4): 74-86, 1987.

 

 

本文選自《科學月刊》2017 年 8 月號

什麼?!你還不知道《科學月刊》,我們 47 歲囉!

-----廣告,請繼續往下閱讀-----

入不惑之年還是可以當個科青

-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3735 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。