Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

年輕人缺乏競爭力?別說了,我們都不如適應力超強的腸道菌!--《科學月刊》

科學月刊_96
・2017/08/21 ・2563字 ・閱讀時間約 5 分鐘 ・SR值 498 ・六年級

文/陳俊堯|慈濟大學生命科學系助理教授,熱愛細菌的細菌人,研究領域為微生物生態,對環境微生物社會的興趣遠大於對人類社會的興趣,近年來亦致力於科普寫作的實踐與推廣。

適應力就是競爭力?那細菌肯定是勝利組!

在美國唸書時每隔一陣子總是會想念起臺灣的食物。雖然在國外各大都市都有中國餐館,甚至是台菜料理,但是進了餐館常常端上來的都不是自己想念的那個味道。為了要招攬美國本地人的生意,餐廳裡的師父總是要為他們調整口味,放一些當地有而臺灣沒有的食材。於是同樣掛著中國菜的招牌,在各大都市裡嚐到的味道都混有對新環境的妥協。

圖/By William Murphy @ Flickr, (CC BY-SA 2.0)

生物常常也得做這樣入境隨俗的事。細菌如果想在一個新環境安身立命就要改變自己去適應和使用當地資源。早年紐西蘭的蘭尼(Paul Rainey)教授就用實驗證明了細菌會調整自己適應環境。

他把螢光假單胞菌(Pseudomonas ­uorescens)養在培養液裡等了幾天,當培養基裡的養份耗盡,原本懸浮在液體的細菌開始發生改變。一群突變者沉到試管底部,避開競爭,另一群突變者,分泌多醣跟同伴黏成一片,霸佔氧氣充足的液面。

-----廣告,請繼續往下閱讀-----

在這小小 3 公分高的世界裡,細菌改變自己,利用試管裡不同的物理化學環境,這是生態學裡輻射性適應的經典例子。

想在動物腸道中生活,腸球菌有什麼必備技能?

而最近發表的一篇研究更是精彩,主角是我們腸子裡也有的腸球菌(Enterococcus)。腸球菌是群經常在陸地動物腸子裡出現的細菌,有的時候也會出現在河水泥巴裡。

我們看到八哥、麻雀多半在城市裡,而不在森林裡出現,會猜測這些鳥兒應該是適應了城市裡的生活。那總在動物腸道出現的腸球菌呢?它們也得到了什麼特殊能力,變得比較適應在動物腸道裡的生活,最後變成在腸道生活的專家?如果真的是這樣的話,那到底在腸子裡會需要些什麼樣的生活能力呢?

腸球菌是怎麼跑到腸子裡去的呢?圖/By Pete Wardell, USCDCP @pixnio

這群哈佛大學的研究人員想知道是什麼推動腸球菌演化。他們收集了 24 株各種腸球菌,先進行基因體解序,再由得到的基因來推論細菌在能力上的改變。首先研究人員盤點每株菌的基因,找到了所有腸球菌都有的 1037 個核心基因。接著他們把這些基因與腸球菌的近親徘徊球菌(Vagococcus)比對,發現 126 個徘徊球菌沒有、只在腸球菌這個演化分支才出現的基因。這些基因帶來的新能力區隔開了腸球菌和徘徊球菌。

到底這些基因是做什麼用的呢?經過比對後,發現這些基因負責的功能是修改細胞壁結構、合成嘌呤以及對抗逆境。如果搭配上腸球菌總是在動物腸道裡出現的事實,這結果其實挺合理的,腸道裡的滲透壓比水裡高,還有膽鹽和消化酵素會殺死細菌,因此改造細胞壁的確可能有助於細菌在腸道裡的存活。

腸球菌啊腸球菌,你的祖先哪裡來?

如果我們能知道腸球菌開始朝向腸道專家演化的時間點,那就更有趣了。細菌沒有化石可以定年,只能利用 DNA 序列上的改變,來推測這些變化發生的時間。

-----廣告,請繼續往下閱讀-----

我們知道粒線體和葉綠體都是共生細菌形成的胞器,前人曾利用它們與其它細菌間的序列差異,推算出大腸桿菌與沙門氏菌分開的時間。如果用他們估算的時間當尺,配合序列上的差異可以推論,腸球菌大約是在 5 億年前自創門派和別的菌種分道揚鑣。

那在這個時間點地球生物圈裡有發生什麼大事嗎?

原來大約 4.25 億年前剛好是脊椎動物上陸地的時間,腸球菌可能搭上了動物的便車,往陸地上去討生活了。少了水的保護細菌想傳播到另一隻宿主身上就困難得多,得讓自己能耐旱、耐餓一段時間才有機會,難怪對抗逆境的基因變得重要了。

當年脊椎動物上陸地時,腸球菌也一起上岸了。圖/By Efraimstochter @pixabay

腸球菌是超強的捉迷藏高手,抗藥性成嚴重隱患

目前腸球菌各菌種分佈在不同的動物腸道裡,有的只愛哺乳類、有的選鳥、有的選昆蟲,各有各的喜好。如果要在不同動物腸道住下來,需要做什麼調整呢?為了回答這個問題,研究人員以這些菌種在演化樹的位置為基礎,追踪每個菌種比祖先多了什麼或少了什麼基因。

結果發現:在改變的基因裡,影響利用醣類能力的基因佔最大宗(佔 37%);影響利用胺基酸能力的基因也佔了 12%,說明了菌種之間最大的差異是改變了養份利用的策略,進入一個新的宿主就丟掉舊棲地需要的基因,換成新棲地需要的基因。這項發現顯示,當它們的生活型態被侷限在腸道裡後,必須善用能取得的養份來存活,才能在新宿主身上住下來,成為地頭蛇。

-----廣告,請繼續往下閱讀-----

如果把估算所得各種腸球菌出現的時間,搭配地球上的動物演化史,可以看到在 4.25 億年前動物上陸地的時間後,腸球菌出現第一波新種發生潮。3 億年前進入古生代二疊紀,腸球菌沉寂了一陣子,沒有增加新成員。接著進入古生代末的大滅絕,2.5 億年前三疊紀時動物多樣性開始上升,這時腸球菌又開始出現新種。整個腸球菌演化史顯然就是跟著動物走,一直把新的動物腸道納入這個屬的勢力範圍。

腸球菌能躲在人的腸子裡,不容易被發現和消除,正開始以多重抗藥性細菌的身份挑戰人類。圖/By 3217138 @ pixabay

過去千百萬年,動物改造了腸球菌的養份攝取策略,而到了人類的時代,我們帶給腸球菌的改變是什麼呢?因為腸球菌能躲在人的腸子裡,不容易被發現和消除,也有本事在乾燥沒養份的床單或地面存活一段時間等待機會。腸球菌帶著先天的生理優勢,能入侵接受抗生素治療的病人腸道,大量複製,再以這個病人為基地擴散到其他病人身上。這讓它們容易在醫院裡擴散,開始以多重抗藥性細菌的身份挑戰人類的存在,我們得小心對付它們。

延伸閱讀

  • Rainey P. B. and Travisano M., Adaptive radiation in a heterogeneous environment, Nature, Vol. 394(6688): 69-72, 1998.
  • Lebreton F. et al., Gilmore MS. Tracing the Enterococci from Paleozoic Origins to the Hospital, Cell, Vol. 169(5): 849-861, 2017.
  • OchmanH.andWilsonA.C., Evolutioninbacteria:evidenceforauniversal substitution rate in cellular genomes, J Mol Evol, Vol. 26(4): 74-86, 1987.

 

 

本文選自《科學月刊》2017 年 8 月號

什麼?!你還不知道《科學月刊》,我們 47 歲囉!

-----廣告,請繼續往下閱讀-----

入不惑之年還是可以當個科青

-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3752 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。