0

0
0

文字

分享

0
0
0

隱馬可夫模型:探索看不到的世界的數學工具

活躍星系核_96
・2013/06/26 ・2460字 ・閱讀時間約 5 分鐘 ・SR值 541 ・八年級
相關標籤: 馬可夫模型 (1)

文 / T.S.Yo

這篇要討論的可不是哲學議題,而是希望以一個「數學工具」的角度來看隱馬可夫模型Hidden Markov Model, HMM)是什麼,它的背後假設、長處與限制,以理解這樣的工具可以拿來做什麼用,而不是只與特定的應用綁在一起。

Hidden Markov Model 是機器學習(Machine Learning)領域中常常用到的理論模型,從語音辨識(Speech Recognition)、手勢辨識(gesture recognition),到生物資訊學(Bioinformatics)裡的種種應用,都可以見到這個工具的身影。

既然名字裡有「馬可夫」,想當然耳的,這又是一個馬可夫模型Markov model)的延伸。之前在介紹 n-gram 的文章裡已經提到過,馬可夫模型所描述的,是一連串事件接續發生的機率:

-----廣告,請繼續往下閱讀-----

馬可夫鏈,用白話說,就是同類型的事件(不同的狀態)依序發生的機率,舉例來說,假設天氣有三種狀態:「晴天」、「陰天」跟「雨天」。如果昨天是雨天,那麼今天是「雨天」的機率,會跟昨天是「晴天」而今天是「雨天」的機率有所不同,這是因為我們相信天氣現象在時間上有某種連續性,前面發生的狀態會影響到後面發生的狀態,而馬可夫模型就是描述這種前後關係的數學語言。

那麼,「隱馬可夫模型」,顧名思義的,約莫就是有什麼東西「隱藏」起來了。我們沿用之前天氣的例子,假設我因為腳受傷,必須住在一個房間裡,看不到外面的天氣(我知道這聽起來不太合理,但是我實在不想把自己關在禁閉室裡,所以請通融一下),但是我可以看到我隔壁房間的室友每天從事的運動:「跑步」、「健身操」或是「游泳」三者之一。

如果把室友每天從事的運動項目記錄下來,就是他「運動」這個事件的馬可夫鏈,這是我可以觀察的到的現象。然後,我又依照過去的經驗,知悉在每種天氣狀況下,他從事各項運動的機率,那麼我是不是可以透過我的觀察和知識,去推測每天的天氣?

在這個例子裡,有兩個事件的序列:一個是我觀察得到的,室友每天所從事的運動項目;另一個是我看不到的,也就是對我來說是隱藏的,外面每天的天氣。由於我知悉這兩個馬可夫鏈之間的關係,所以我便可以由其中一個馬可夫鏈的狀態,去預測另一個馬可夫鏈的狀態。而「隱馬可夫模型」,便是描述這樣的兩個序列的關係的統計模型。

-----廣告,請繼續往下閱讀-----

簡單的說,「隱馬可夫模型」提供了一套數學的理論以及工具,讓我們可以利用「看得到的」連續現象去探究、預測另一個「看不到的」連續現象。

當然,這裡的「看不到」並不表示真的無從觀察,以前面所舉的例子來說,我在腳沒受傷的時候,還是可以到外面去觀察天氣的,只是在某個特定的條件之下,天氣對我來說被隱藏起來了。

文章的附圖,講的是柏拉圖的洞穴預言Allegory of Cave),講的是「我們看到的世界」跟「真實的世界」的關係,或許恰好可以用來比喻一下隱馬可夫模型的作用。

我們還可以進一步用「語音辨識」當做例子,來說明 HMM 的用處。

-----廣告,請繼續往下閱讀-----

在語言學上,我們可以把人說話發出的聲音分成各種音節syllable),所以理論上,我們如果有一段錄音,只要能分辨每一個音節發的音是哪些母音與子音,就能夠把這個人講的話辨識成文字。

任何「理論上」可行的事情,必然伴隨著實務上的困難。

這種「音節對應」的工作看似容易,但是實際上會遇到很多「模稜兩可」的情況。以中文為例,兩個三聲的字連著念,前面的會讀成二聲,加上同音字、破聲字,同字的語音與讀音…等等,都增加了這個「分辨」過程的難度。

那麼,HMM 是怎麼跑進來的呢?試想,「語音」,是一連串的「音節」,而我們想要辨識成的文字,則是一連串的「字」;對語音辨識系統而言,語音這個「音節序列」是看得到的訊號,而系統想要做的是推測出與其相對應的,看不到的「文字序列」,所以正好是 HMM 所模擬的狀況。隱馬可夫模型在語音辨識的的應用,大抵始於1970年代晚期的 IBM 計畫(Jelinek),時至今日,我們生活中可以看到的各種語音辨識系統,例如 Apple 的 siriGoogle 的 voice search,微軟前不久在北京展示的中英同步口譯,背後都是以 HMM 作為基礎技術。至於技術的細節,有興趣可以參考 MIT 的教材,這裡就不討論了。

-----廣告,請繼續往下閱讀-----

生物資訊學(bioinformatics)是另一個大量使用到 HMM 的領域,從 DNA 序列的比對到演化歷程的推論,只要是跟基因序列有關的,幾乎都看得到 HMM 的應用。以DNA定序為例,一段採集到的DNA序列,包含了「外顯子」(exon)和「內隱子」(intron)兩種段落,兩者在細胞複製上有不同的功能,但都是由眾多的基因(gene,有A, T, C, G 四種)排列成的序列,因此在一串看得到的基因序列中,要如何標記出哪一段是「外顯子」,哪一段又是「內隱子」,這些看不到的段落,也是 HMM 可以發揮作用之處。簡單的說,「外顯子」和「內隱子」各自包含 A,T,C,G基因的比例不同,於是我們可以利用 HMM 相關的演算法,找出哪一個基因是「外顯子」和「內隱子」的起點或終點。

現實中,股票的價格變化也是一個「序列」,這是另一個充滿經濟誘因的預測標的,想當然耳的,也有不少人把 HMM 運用在預測股價的狀態上,不過文獻就不如前述兩個領域那麼豐富了。

隱馬可夫模型當然也有它使用上的限制。例如,觀測與模擬的現象必須是「序列」(或者該說是馬可夫鏈),兩個序列之間的關係要夠明確等等,否則很容易就變成用十字螺絲起子去轉六角螺絲:或許可以運作,但是結果不盡然是原本想要的。

如果有這樣的數學工具,你會想要用來預測什麼看不到的現象呢?

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 127 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia