由新到舊 由舊到新 日期篩選

・2011/12/08
在蜘蛛星雲這個恆星搖籃所孕育的眾多明亮恆星中,Dufton等人發現其中一顆光譜型為O型、編號為VFTS 102的恆星(右上圖中央箭頭所指處),自轉速度高達每秒500公里以上,甚至可達每秒600公里,相當於1秒內可從臺灣最北點通過臺灣最南點到巴士海峽中,這個速度約比太陽自轉速度快了300倍以上,瀕臨因離心力造成星體潰解的邊緣,是迄今已知自轉速度最快的一般恆星。
・2011/11/07
GRB是宇宙中最明亮的爆發事件。最早是由在地球上空環繞的觀測衛星偵測到這些強烈而短暫的爆發事件。在其位置定出後,天文學家會立即用地面大型望遠鏡,以可見光波段和紅外波段追蹤觀測爆發後數小時到數日的餘暉變化情形。其中一個GRB,編號為GRB 090323,最初由NASA的費米伽瑪射線太空望遠鏡(Fermi Gamma-ray Space Telescope)在2009年3月23日偵測到,之後天文學家迅及用史威福X射線觀測衛星(Swift)和位在智利的2.2米MPF/ESO望遠鏡的GOUND系統及VLT望遠鏡研究爆發後一天的細節。
・2011/10/27
幾週前頒發的 2011 年的諾貝爾物理學獎,獎落 Type 1a 超新星光線的研究,那證明宇宙正以某種加速率膨脹中。源自於那些觀測的知名問題是:這種膨脹進行的似乎比所有已知能量形態所允許的還要快。雖然提出來的解釋不曾短缺 -- 從暗能量到修正重力理論(MOG)-- 不過對於超新星資料本身的詮釋卻不常見到有誰在質疑。
・2011/10/18
G299.2-2.9是個銀河系中的超新星殘骸(supernova remnant,SNR),距離地球約16,000光年,位在南天的蒼蠅座方向。觀測證據顯示它是Ia型超新星的殘骸,且其年齡約4500年,比絕大部分已知的Ia型超新星還老,因此可讓天文學家用來檢視Ia型超新星隨時間演化的狀況,也可讓天文學家瞭解Ia型超新星爆炸後會形成什麼樣的結構。
・2011/10/12
我們的宇宙約在137億年前經由大霹靂誕生,當時主要製造出氫與氦元素,以及極少量的鋰元素。此後經一代代恆星演化、超新星爆炸等過程,才讓氫與氦以外的其他重元素(或稱「金屬元素」)愈來愈豐富。瞭解化學元素的演化史,等於瞭解宇宙演化史,也才能瞭解人類組成的來源。
・2011/10/11
超新星已經成為天文物理學中不可或缺的重要工具,他們是天然的元素工廠,基本上,元素週期表中比氧還重的元素,幾乎都是經由超新星爆炸之前或爆炸當時的核融合反應過程產生的,然後拋擲到太空中,成為下一代恆星、或甚至像地球這樣的行星製作的材料,我們人體中骨骼中的鈣或血液中的鐵也都是超新星的產物。
・2011/10/07
所謂的高質量恆星是指質量在8倍太陽質量以上的恆星。這些恆星在星系中具有重要的關鍵地位,因為在它們短短一生中所釋放出的能量非常多,可能影響星系的演化。但不幸的是,由於高質量恆星通常很遠,而且常常被大量氣體塵埃遮蔽而難以觀測,所以所知甚少。NGC 281裡的星團是個特例,因為它距離地球僅約9,200光年,與銀盤的垂直距離則約1,000光年左右,遠離塵埃匯聚的銀盤,因此天文學家幾乎可以不受影響地觀察星團中的恆星形成狀況。
・2011/10/03
天文學家利用歐南天文台(ESO)超大望遠鏡(Very Large Telescope,VLT)拍到一個很特別的星雲,外觀像是可口的荷包蛋一般,十分有趣,所以天文學家都暱稱它為荷包蛋星雲(Fried Egg Nebula)。
・2011/09/07
宇宙論學者相信氫和氦這兩種最輕的化學元素,以及極少量的鋰,是大霹靂之後短暫時間內產生的,除此之外的其他元素幾乎都是經由恆星核心核融合反應而形成的;而超新星爆炸則負責製造鐵以上的重元素,並在爆炸過程中,將這些恆星物質拋向四周的星際介質中,增加重元素的豐度;下一代從這些星際介質中誕生的恆星所擁有的金屬豐度,自然會比老一代的恆星還多。因此,通常從恆星金屬豐度多寡,就可得知恆星到底有多老。
・2011/09/06
這顆超新星是利用帕洛瑪天文台(Palomar Observatory)1.2米Oschin史密特望遠鏡(Oschin Schmidt Telescope)發現的;這座望遠鏡的極限星等約20.6等,近年來積極投入亮度變化快速的瞬變事件(transient event)搜尋工作,即所謂的Palomar Transient Facility (PTF),成效斐然