0

0
0

文字

分享

0
0
0

《無限小》新書導讀

賴 以威
・2015/12/06 ・2748字 ・閱讀時間約 5 分鐘 ・SR值 558 ・八年級

「我把這扇門掩上一半,再掩剩下的一半,不斷重複下去,這扇門也永遠不會被關上。」

國中時,老師站在教室前門旁解釋無限的概念。對現在的我來說這不難回答。

「不對,造成永遠的錯覺是『會重複無限次的掩門』,但到後來每次掩門的幅度都是無限小,門最終還是會被關上。」

但我永遠記得當時對老師的這項譬喻有多麼困擾,順著老師的邏輯,彷彿可以看到門就算被關上了,依然存在一道微微的縫隙。在那之前的數學課儘管複雜,可是只要遵循規則,按部就班就能理解。直到無限的出現,是第一次我覺得數學課裏也有「無法理解,只好先記起來」的觀念。

-----廣告,請繼續往下閱讀-----
Eye_of_Horus_square
想知道「1/2 + 1/4 + 1/8 + 1/16 + … = 1」是如何證明的,可以參考wiki

現在,儘管能破解無限的矛盾,能解釋阿基里斯為什麼能追上烏龜,能知道一尺之棰,日取其半,必然有取完的那天。但那樣的理解就好像回答:

「為什麼天空是藍色的?」

「因為空氣折射的緣故。」

只是拿了一個名詞、一套道理來解釋,並沒有真正理解背後的原因。甚至可以說,是因為相處久了,在課本、考卷裏面出現夠多次,就習以為常,覺得無限的概念是理所當然了。

-----廣告,請繼續往下閱讀-----

不是的,無限小點都不理所當然,他是個在歷經了上百年激辯後,才正式被引入的數學概念,背後還牽扯了超出數學之外的宗教、政治糾葛。

《無限小:一個危險的數學理論如何形塑現代世界》這本書從馬丁路德的宗教改革開始,當時羅馬教廷勢力衰退,作為教廷忠誠部屬的耶穌會趁勢興起。以菁英份子組成的耶穌會在各地辦學,他們推崇階級與秩序。在 克里斯多佛•克拉維烏斯(Christopher Klau)的努力下,服膺於邏輯性的數學地位逐漸提高,作為耶穌會宣揚紀律性的強而有力工具。握有數學知識,他們便能宣稱握有真理。

數學也沒辜負他們的期待。

曆法過時一直是古人面臨的問題,西元500年左右,中國有祖沖之與祖恆父子兩代努力,推行大明曆。西元1700年左右,日本有澀川春海改良中國曆法,製成大和曆。曆法的制定需要豐富的天文、量測、以及不可或缺的數學知識。不論是祖氏父子或是澀川春海都是一時的數學名家。在西方,則由耶穌會的克里斯多佛•克 拉維烏斯領銜,協助教廷制定了全新的格里高理曆法。這套曆法相當精確,逼得歐洲各地儘管已經因為宗教改革而與教廷漸行漸遠,甚至反對,但還是得乖乖接受格里高理曆法,變相承認了頒布曆法的教宗權威性。

-----廣告,請繼續往下閱讀-----

數學可以強行讓人接受真理,並擊潰謬誤,建立起取代混亂與困惑的穩固秩序與確定性。

耶穌會以數學做武器,在宗教改革上打了一場漂亮勝戰,從此也更重視數學。正確地說,他們認為數學是個最好的例子,代表一切都該從定理出發,現實生活中的每件事都必須遵循一定的規則。數學提供了一個完美的理性模型,讓人們看清宇宙真理是如何統治世界。

然而,當時的數學世界裡尚未存在能夠解釋無窮小的定理,但數學家們已經從越來越多的地方發現這個無可迴避的概念。於是,數學家想從現實生活的觀察,反過來歸納出一個新的定理。推崇數學的耶穌會卻毫不猶豫地站到了打壓新知的那側。

從不同教派的宗教之爭,在一方執起數學獲得勝利後,手中的數學卻反噬主人,展開了另一場數學之爭。

許多耳熟能詳的科學家、數學家都參加了這場數學之爭,被尊為現代科學之父的伽利略(Galileo Galilei)帶領他的兩位徒弟卡瓦列里(Bonaventura Cavalieri)與托里切利(Evangelista Torricelli),前仆後繼地提出對無限小、不可分量的詮釋。課本裡的托里切利是以發明了氣壓計而聞名,在這本書裡我們看到了他另一個偉大的貢獻, 他發表了一篇「拋物線面積(De dimensione parabola)」,裡面極其華麗地用上了21種不同方式去證明拋物線與一條直線相夾的面積,其中有10種用上了不可分量的概念。

-----廣告,請繼續往下閱讀-----

這篇論文的重點根本不在拋物線面積,而是在介紹不可分量、無限小。

儘管數學家看到了無限小的廣泛用途(有一半以上的證明需要靠引入無限小的概念才能完成),但耶穌會堅決反對。他們設立了「總校訂(Revisors General)」這個最高地位的學術審查機構,扮演著類似那個時代的「金盾」腳色,把所有對教會帶來混亂與不安的知識排除在耶穌會主導的教育機構之外, 無限小是數學界的新概念,他甚至推翻了一些傳統幾何的想法;從這個角度來看,他就像數學界的宗教改革,耶穌會無論如何都要將他的聲浪壓下來。

Index_Librorum_Prohibitorum_2
當時所有的出版品,都要接受耶穌會「總效訂」的審核,圖為羅馬教廷所製作的《禁書目錄》(已廢除)。 Source: Wiki

這次對決中,耶穌會佔了上風,哪怕面對的是伽利略與銳眼協會(L’Accademia Nazionale dei Lincei,現今的義大利國家科學院),那個時代最強的宗教團體成功地馴服了數學,讓數學依然作為宗教秩序而存在。

然而,如果把格局拉大,這場數學的戰爭還沒結束,只是換了一個戰場,到英國重新開始。在差不多的時間,英國也上演了一場關於無限小的學術論戰,場上的選手 更是赫赫有名。站在否定無限小那方的是政治哲學名著《巨靈論》的作者托馬斯•霍布斯(Thomas Hobbes)。身為那個時代最有名的哲學家之一,他在過世前的自傳裡認為自己最偉大的成就竟然是解開了一題經典數學難題--化圓為方,畫出一個和圓一樣 面積大小的正方形。

-----廣告,請繼續往下閱讀-----

可惜的是,他解錯了。

連同這條錯誤的解答,他否定無限小的立場遭受到英國皇家學會(Royal Society)創辦人之一,約翰•沃利斯(John Wallis)的猛烈抨擊。當時英國學術界在培根的倡行下,實驗是驗證、發現科學知識的重要途徑。也因為這種想法,從現實狀況觀察到的無限小概念,自然能 較被接受,並且透過歸納法,成為了數學領域新的一份子。在沃利斯發明了「∞」的無限符號後,這個符號被他的晚輩牛頓(Isaac Newton)開花結果,建立出了微積分,成為現代許多科學、科技的基礎。

當然,在微積分的身上同樣少不了戰爭,屬於牛頓跟萊布尼茲(Gottfried Wilhelm Leibniz)的發明人之爭,不過那又是另一件故事了。

我想,這本書其實就很像托里切利的21道拋物線面積證明,名為介紹拋物線,實則宣揚無限小概念;名為介紹數學概念,實則介紹了整個中世紀錯綜複雜的學術、 宗教、信念之爭。我們現今認為很多理所當然的觀念,其實背後往往都有一長串故事,一群遠比我們聰明的人在努力。我有時候會想,如果說我們覺得課本裡的數學 無趣,那很可能不是知識本身的問題,而是我們學習的方法,將前人所有的努力濃縮成一行結果、一條式子,讓知識失去了靈魂,只剩下冰冷的軀殼。

-----廣告,請繼續往下閱讀-----

這本書重新替無限符號「∞」注入了靈魂。

本篇轉自:賴以威老師FB

getImage《無限小:一個危險的數學理論如何形塑現代世界》。Amir Alexander著,商周出版。

-----廣告,請繼續往下閱讀-----
文章難易度
賴 以威
32 篇文章 ・ 10 位粉絲
數學作家、譯者,作品散見於聯合報、未來少年、國語日報,與各家網路媒體。師大附中,台大電機畢業。 我深信數學大師約翰·馮·諾伊曼的名言「If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is」。為了讓各位跟我一樣相信這句話,我們得先從數學有多簡單來說起,聊聊數學,也用數學說故事。 歡迎加入我與太太廖珮妤一起創辦的: 數感實驗室

0

0
0

文字

分享

0
0
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3286字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
【Gene思書齋】無限小如何形塑現代世界?
Gene Ng_96
・2016/11/22 ・3647字 ・閱讀時間約 7 分鐘 ・SR值 558 ・八年級

我是數學白痴,真的。很多人以為唸理科的,數學一定很好,才怪。因為我數學不好,所以才選擇唸生命科學,只是唸了才發現,原來還是要面對不少數學,如生物統計、計算生物學、生態學、族群遺傳學、分子演化,都用了不少數學,更甭提大一大二還得要上的微積分、物理和物理化學。

https://www.youtube.com/watch?v=VjeHabZDWMk

2016 年有部電影《天才無限家》(The Man Who Knew Infinity),很值得看,連一個我超愛的說書脫口秀節目《一千零一夜》主持梁文道這位文人(請參見〈一千零一夜個經典〉),也在推薦了這部關於印度天才數學家斯里尼瓦瑟‧拉馬努金(Srinivasa Ramanujan,1887—1920)的電影,也談了《費馬最後定理》(Fermat’s Last Theorem)這本書,以及數學是什麼。

 

我就自不量力,來談本和數學有關的歷史書吧,就是這本《無限小:一個危險的數學理論如何形塑現代世界》(Infinitesimal:How a Dangerous Mathematic Theory Shaped the Modern World)。即使是外行,還是會覺得數學是極為優雅的,可是歷史學家與數學家艾米爾‧亞歷山大(Amir Alexander),卻要告訴我們,數學也有過混亂,中間涉及的不僅只有數學家,還有宗教家。

-----廣告,請繼續往下閱讀-----

ba8006

無限小》的故事,主要是發生在十六、十七世紀,爭論的是直線、平面圖形和固體,是否由無限的不可分量所構成?《無限小》中的各種爭論,要追溯到古希臘時期。公元前六世紀,畢達哥拉斯(Πυθαγόρας,約前580-前500)和追隨者,認為數學可以解釋世界上的一切事物,對數字癡迷到幾近崇拜,同時認為一切真理都可以用比例、平方及直角三角形去反映和證實。從他開始,希臘哲學開始產生了數學的傳統。

那些古代數學中的黑暗面

希帕索斯。圖/Public Domain
希帕索斯。圖/Public Domain

相傳無理數最早由畢達哥拉斯學派弟子希帕索斯(Ἵππασος)發現。他以幾何方法證明√2,無法用整數及分數表示,並引發了第一次數學危機。而畢達哥拉斯深信任意數均可用整數及分數表示,不相信無理數的存在。希帕索斯發現不可公度量(incommensurability),推論不同的量(magnitube)不是由獨立的微小原子,亦即無限小所構成。畢達哥拉斯派同道將其淹死滅口,然後他就死掉了。所以這批人,玩數學是超認真的,會鬧出人命的。

公元前五世紀,來自古希臘愛琴海北部海岸的自然派哲學家德謨克利特(Δημόκριτος,前460—前370或前356)利用無限小,計算圓錐體與圓筒體的體積。然而,伊利亞的芝諾(Ζήνων,約前490-前430),提出幾個矛盾問題,指出無限小引發的衝突,從此無限小遭到古代數學家規避。

-----廣告,請繼續往下閱讀-----

古希臘數學家,被稱為「幾何學之父」,亞歷山卓的歐幾里得(Ευκλειδης,前325—前265),在經典巨著《幾何原本》(Elements)中,謹慎地避開無限小。《幾何原本》一直是西方兩千年來的範本。但後來的古希臘數學家阿基米德(Αρχιμήδης,公元前287—公元前212),卻用無限小實驗,在幾何圖形的面積和體積上卓有成就。

宗教戰爭燒到數學的「無限小」

後來希臘被羅馬滅了,而羅馬因異族入侵和宗教愚昧而進入中世紀。《無限小》的故事開場,是文藝復興時的宗教戰爭。1517 年,德國基督教神學家,宗教改革運動的主要發起人,基督教新教信義宗教會(即路德宗)的開創者馬丁•路德(Martin Luther,1483-1546)在當地教會的門上貼出布告九十五條論綱,列出反對贖罪券的九十五條論點,徵求學術的辯論,拉開了天主教和新教長達兩世紀鬥爭的序幕。

1540 年,耶穌會(Societas Iesu)創建在一個天主教開始沒落的時代,羅耀拉的依納爵(San Ignacio de Loyola,1491-1556)和他的弟子們展開一連串復興天主教的行動,但其中最耀眼的成就,卻是在各地區建立的教育學院。

耶穌會的教育體系中,原本並不特別注重數學,但在克拉維烏斯神父(Christopher Clavius,1538-1612)持續努力下,終於成為耶穌會的教育重心。耶穌會重視數學,因為數學是一種以邏輯步驟說出真理、無人能否定其證明結果的學科,但這時的數學,仍以歐幾里得數學理論為主。

-----廣告,請繼續往下閱讀-----

1544 年,阿基米德作品的拉丁文版在瑞士巴賽爾出版,學者接觸到他對無限小的研究。十六世紀末至十七世紀初,歐洲數學家對無限小的興趣死灰復燃。

然而,耶穌會中負責裁決理論的「總校訂」(Revisors General)室,發表了一連串針對無限小的公開譴責。他們認為這個概念危險又具顛覆性,對世界是一個有秩序的地方,而且由一套嚴格而不變的規定所治理的這個信仰有威脅。如果接受了無限小,耶穌會害怕整個世界都將墮入混沌。

虔誠的教徒伽利略(Galileo Galilei,1564-1642),也是當時最偉大的科學家。他提出對無限小、不可分量的詮釋,槓上了耶穌會和教廷。伽利略的老友當上教宗烏爾班八世(Pope Urban VIII,1568-1644),他公開支持伽利略及其追隨者,1623-31年是伽利略在羅馬如魚得水的自由時期。然而1631年,瑞典新教國王古斯塔夫•阿道夫二世(Gustav II Adolf,1594-1632),與神聖羅馬帝國相爭開戰,節節獲勝,改變了歐洲勢力平衡。

在傳統主義者的節節進逼之下,烏爾班八世一改初衷,不再支持伽利略。耶穌會總校訂室,禁止了無限小的概念,宣布永遠不能教授這個理論,甚至連提都不准提。伽利略最終被送進宗教審判所,人生最後十幾年都在軟禁中度過。

-----廣告,請繼續往下閱讀-----

伽利略的弟子卡瓦列里(Bonaventura Francesco Cavalieri,1598- 1647)與托里切利(Evangelista Torricelli,1608-1647)持續提出不可分量和無限小的理論證明,更持續增強耶穌會想要壓制這個矛盾理論的決心,耶穌會和支持伽利略的銳眼學會(Accademia dei Lincei)之間,為了維持歐幾里得幾何學理論或迎接新的無限小方式而開戰。

支持歐幾里得幾何學論點的耶穌會數學家,與支持無限小與不可分量學說的耶穌教團,雙方舌戰和筆戰不休。表面上是數學論戰,實際上耶穌會數學家還為了護衛神學上的論點。《無限小》揭示了這種禁令背後的深刻背景,通過耶穌會和銳眼學會之間交戰的驚心動魄故事,說明耶穌會如何拼命努力帶領飽受戰爭蹂躪的歐洲回到維穩和諧和天主教專制秩序,可是卻犠牲了義大利的藝術、數學和科學發展。

英國的崛起

由於耶穌會成功地禁止在義大利教授無窮小的概念,《無限小》的故事舞台,轉到原本比義大利落後的英國去。《無限小》指出,在義大利,無限小的挫敗預告了這個國家主導歐洲文化的朝代已經結束;而在英國,無限小的勝利則幫助了這個原本落後的島國走向了世界首個現代國家之路。

英國內戰和空位期當時的民不聊生與內部動亂,令卡文迪許家族的家臣,威權主義的十七世紀的哲學家霍布斯(Thomas Hobbes,1588-1679),寫下哲學傑作《巨靈論》(Leviathan),是法律、秩序的有力倡導者。和天主教神權專制不同的,霍布斯的解決空位無政府狀態的方法,是要人民交出權力給專制君主,來保護他們免受戰爭和混亂。但與天主教的專制相同的,霍布斯的目標是維穩和諧以維護和平。無論霍布斯和耶穌,都把自己的政治理想訴諸歐幾里得幾何,試圖以其有序的演繹證明產生絕對真理。

-----廣告,請繼續往下閱讀-----

但在數學家瓦里斯(John Wallis,1616-1703)的眼中,數學毫無貴族氣息,徹頭徹尾就是一個得到有用結果的實用工具。瓦里斯是第一個使用 ∞ 這個符號的數學家。也因如此,他和「隱形大學」的夥伴使用數學的方式與霍布斯大相逕庭。「隱形大學」後來收到英王查理二世的許可狀,成為聲譽卓越非凡的「皇家學會」(Royal Society)。

《無限小》指出,歸納法和實驗數學,讓皇家學會的會員與英國菁英分子逐漸將這種開放討論與有彈性的態度應用到學術與政治立場上,無限小的理論終於成為微積分與許多現代數學、現在科學理論與科技的基礎。英國邁上君主立憲之途,各種科學研究和科技也不斷開花結果,於是英國成為歐洲最先現代化的國家。

4726717261_d45960733f_z
無限小的理論終於成為微積分與許多現代數學、現在科學理論與科技的基礎。圖 / By fdecomite @ flickr

牛頓(Sir Isaac Newton,1643-1727)以無限小的理論做實驗,發展出微積分的技法,和萊布尼茲(Gottfried Wilhelm Leibniz,1646-1716)共同創立了微積分。牛頓出版了《自然哲學的數學原理》(Philosophiæ Naturalis Principia Mathematica),徹底改變了物理學的樣貌,也從此讓所有理科生飽受微積分的折磨。剛讀《無限小》時,我壓根兒忘光了微積分和無限小的關係,只有讀到後來才依稀想起老師提到的「極限」等等。

-----廣告,請繼續往下閱讀-----

雖然,我還是讀不懂《無限小》裡的數學,可是《無限小》仍是本很具啟發性的好書,從中可見我們人類在認識自然時,那些偏見與固執,是何等強大。政治師和宗教為了維穩及和諧干預學術發展,只能取得一時的和平,然後換來長久的落後。還有,科學的發展中,常常是柳暗花明又一村,保持一個開闊的心胸是多麼困難但重要的。

本文原刊登於閱讀‧最前線【GENE思書軒】,並同步刊登於The Sky of Gene

-----廣告,請繼續往下閱讀-----
Gene Ng_96
295 篇文章 ・ 32 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋