0

8
4

文字

分享

0
8
4

利用震波幫大屯火山拍「X光照」!找出埋在地下 8 公里的「岩漿牛奶罐」

研之有物│中央研究院_96
・2021/11/22 ・6289字 ・閱讀時間約 13 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文│陳儀珈
  • 美術設計│林洵安

解析大屯火山群的岩漿庫

天哪!原來我家旁邊住了一座活火山?位於臺灣北部的大屯火山群,近年已被地球科學家推斷為活火山,繁華的天母、北投與士林就在它的山腳,距離臺北 101 大樓甚至只有 15 公里。為了評估災害風險,發現活火山還不夠,我們還必須深入了解岩漿庫。「研之有物」專訪中央研究院地球科學研究所黃信樺副研究員,看他如何將地震波當作 X 光,解析大屯火山群的岩漿庫構造。

用震波,幫大屯山拍一張「X 光」照片吧!

自中央研究院於 2016 年證實大屯火山群為活火山以來,科學家不斷試圖了解更多大屯山岩漿庫的資訊,以評估大屯火山群對大臺北地區的災害風險。

今年,中研院地球所黃信樺副研究員利用震波資料,進一步找出宛若圓柱牛奶罐、位於地下 8 公里的岩漿庫,其直徑約 8 公里、高度約 12 公里,論文已於 2021 年 3 月初發表於《科學報告》(Scientific Reports)。

這個藏在地底下 8 公里的岩漿牛奶罐,是怎麼被黃信樺找出來的?

-----廣告,請繼續往下閱讀-----

蛋糕只要一刀切開,就可以把內餡看得一清二楚;然而礙於技術和成本,面對腳下的土地,我們不能像切蛋糕一樣,一下就看清楚地底結構。那科學家是怎麼分析火山的「內餡」呢?

聰明的地球科學家,搬出了「地震波」這個媲美 X 光的好工具!

地球每天都會發生成千上萬的地震,當地震波傳過重重地層、抵達地表測站後,就像是替地底做了一次完整掃瞄,而地球科學家只要蒐集這些地震波,就可以破譯出藏在震波中的地質訊息。

由於地震波可以穿透地底,因此地震波就像是地球科學家的「X 光」,只要蒐集這些地震波,就有機會破解地層下的秘密。受到地質構造與折射的影響,其中 P 波經過液體的內地核會減速,而 S 波無法直接通過液體的內地核。目前我們熟知的地殼、地函、內外地核等分層,也都是藉由這些原理得出的研究成果。圖│報地震-中央氣象局
由於地震波可以穿透地底,因此地震波就像是地球科學家的「X 光」,只要蒐集這些地震波,就有機會破解地層下的秘密。受到地質構造與折射的影響,其中 P 波經過液體的內地核會減速,而 S 波無法直接通過液體的內地核。目前我們熟知的地殼、地函、內外地核等分層,也都是藉由這些原理得出的研究成果。圖/報地震-中央氣象局

對地球科學家來說,每一個地震,就像一個個 X 光的發射器,而發射出的地震波就是 X 光,因此,用地震波去理解地底構造,就像是用 X 光去拍地底的 X 光照片。

-----廣告,請繼續往下閱讀-----

這個技術,就是大名鼎鼎的震波層析成像(Seismic Tomography)。

當地震波經過不同地質條件的地層時,會改變地震波傳遞的速度和性質,例如 P 波經過液體時,速度會下降,而 S 波因為穿不過液體,會直接不見。因此,當地球科學家只要收集到來自四面八方的地震波後,就可以推估出地底構造的幾何形貌。

從黃石公園的超級火山,到「死而復生」的大屯火山群

為什麼一直到了 2021 年,地球科學家才順利解析大屯火山群的岩漿庫?這是因為有了震波層析成像技術還不夠,還要有工具和震波資料才行。

2014 年時,黃信樺正在美國猶他大學進行研究,機緣巧合之下,他參與了黃石公園的計劃,使用震波層析成像技術,在原本已知的大型岩漿庫底下,找到了一個更深、更巨大的岩漿庫。如此意想之外的研究發現,也讓黃信樺的論文成功登上《科學》期刊(Science)。

-----廣告,請繼續往下閱讀-----
黃石公園岩漿庫之模型示意圖。2014 年時,在原本已知的流紋岩岩漿庫之下,大約地下 20 公里至 45 公里處,黃信樺找到了另一個更巨大的玄武岩岩漿庫,登上《科學》期刊。圖│黃信樺
黃石公園岩漿庫之模型示意圖。2014 年時,在原本已知的流紋岩岩漿庫之下,大約地下 20 公里至 45 公里處,黃信樺找到了另一個更巨大的玄武岩岩漿庫,登上《科學》期刊。圖/黃信樺

反觀臺灣,因為不像美國一樣擁有密集、均勻的地震測站,不足以讓學者對大屯火山群做完整的「X 光掃描」,因此在 2014 年時,臺灣學者對於大屯火山的岩漿庫仍然是一知半解。

直到 2016 年,中央研究院林正洪研究員成功找到了大屯火山的岩漿庫,並證實為活火山後,臺灣才開始大力推動進一步的研究計畫,在北部地區逐步設置超高密度的寬頻觀測網——臺灣陣列(Formosa Array ),探索這位危險鄰居的秘密。

臺灣陣列地震站分布圖,圖中約有 140 個測站,安裝有寬頻地震儀並即時蒐集傳送地震資料,此計畫由中央研究院地球科學研究所(IES)與大屯火山觀測站(TVO)共同執行。圖│Formosa Array 臺灣陣列
臺灣陣列地震站分布圖,圖中約有 140 個測站,安裝有寬頻地震儀並即時蒐集傳送地震資料,此計畫由中央研究院地球科學研究所(IES)與大屯火山觀測站(TVO)共同執行。圖/Formosa Array 臺灣陣列

臺灣陣列的地震測站有多密?從 2018 年開始,每間隔 5 公里,研究人員就會設立一個地震測站,站點橫跨山區,目前在臺灣北部設立了相當均勻的測站分布。

無論是遠方的地震,還是臺灣的地震,我全都要!

有了技術,又有了密集的測站,摩拳擦掌的地球科學家,終於可以來一窺岩漿庫的秘密了。

-----廣告,請繼續往下閱讀-----

黃信樺學成歸國後,受到了計畫主持人林正洪的邀請,帶著黃石公園的研究經驗,正式加入了大屯山岩漿庫的研究中,他藉由臺灣陣列取得了遠震震波資料(teleseismic data),並利用氣象局與中研院原有的地震觀測網獲取近震震波資料(local earthquake data),最終為臺灣地球科學界描繪出了大屯火山群岩漿庫的模樣:一個牛奶罐。

為什麼要特別同時使用來自遠方的「遠震」和附近的「近震」資料呢?事實上,這跟解析度也脫不了關係!

受到地震波傳遞路徑的影響,近震的震波只會經過淺層地底,帶來淺層的地質資訊(灰色),而遠震可以帶來深層和淺層的訊息(淺橘色),聯合遠震跟近震就可以加強整體的解析度並得到更完整的訊息(深橘色)。圖│研之有物(資料來源:黃信樺)
受到地震波傳遞路徑的影響,近震的震波只會經過淺層地底,帶來淺層的地質資訊(灰色),而遠震可以帶來深層和淺層的訊息(淺橘色),聯合遠震跟近震就可以加強整體的解析度並得到更完整的訊息(深橘色)。圖/研之有物(資料來源:黃信樺)

從圖中我們可以發現,地震波在地球內部傳遞的路徑是弧線,其中近震的地震波只會經過比較淺層的地底構造(灰色),反之,若使用遠震震波,就會帶來地球深部的訊息(淺橘色),並再次加強淺部的資訊(深橘色)。

因此,如果地球科學家有辦法同時使用遠震、近震的資料來推算的話,就可以讓整體圖像的解析範圍延展到更深處,解析度也更上一層樓!

-----廣告,請繼續往下閱讀-----

看圖說故事的功力,取決於你對這塊土地的了解

費盡千辛萬苦,有了技術、有了工具和震波資料後,地球科學家終於得到了地底「掃瞄圖」,但這一場大屯山岩漿庫探索之旅,仍然還沒有停歇!

比如說,當我們拿到一張涵蓋整張嘴巴的全口 X 光照片,一般人只看得懂黑色是軟組織、白色是硬組織,並猜測出骨頭和牙齒的位置。然而,對一位經過 6 年訓練、擁有專業醫學知識的牙醫師而言,卻可以一眼看出你的蛀牙、發炎、阻生齒、牙周病等等資訊。

P 波在臺灣北部不同地底深度的傳播速度分布。圖│黃信樺
P 波在臺灣北部不同地底深度的傳播速度分布。圖/黃信樺

震波層析成像也是如此!以上面這張論文中的圖片為例,P 波速度較低的紅色,代表該區的地質構造比較「軟」,反之波速高的藍色則為較「硬」的區域。

但,這到底代表什麼意思?啊岩漿庫又在哪裡?此時,地球科學家者對這塊土地的了解和專業知識,就派上用場了!

-----廣告,請繼續往下閱讀-----

以 2 公里深為例(上圖 a),可以看到大面積的紅色、藍色對比,其中藍色代表中央山脈,也就是很硬的變質岩;而紅色是西部麓山帶,屬於較軟的沉積岩,並包含林口臺地(很厚的紅土層)、臺北盆地(沉積物)等明顯的地質構造特徵;東方小塊的紅色,則代表宜蘭平原的沉積物。

承上,圖 a 大屯火山群的位置為白色,沒有明顯特徵;然而到了 8 公里深(圖 b)和 16 公里深(圖 c)時,黃信樺卻發現,大屯火山群底下從白色變成紅橘色。

火山下方突然出現一塊軟軟的紅橘色,P 波的速度甚至降低到 19% 這麼多,這意味著什麼?主要有兩種可能:含水,或是有岩漿。然而,地底 8 公里深的壓力過大,地下水較難以滲透,「含水」這個理由並不可行,因此,黃信樺結合了地球化學、地質學的研究和數據後,認為目前最合理的解釋是:它就是大屯火山群的岩漿庫!

大屯火山群(綠色三角形)地貌剖面的 P 波波速變化。可看到從 8 公里深開始,隱約存在一個紅橘色的圓柱體,該區 P 波速度大幅下降,岩漿庫是最合理的解釋。其中:Topo為地表高度,Depth為地底深度,綠色三角形為大屯火山群的主要火山口與噴氣孔,紅色三角形為其他北臺灣火山位置。圖|黃信樺
大屯火山群(綠色三角形)地貌剖面的 P 波波速變化。可看到從 8 公里深開始,隱約存在一個紅橘色的圓柱體,該區 P 波速度大幅下降,岩漿庫是最合理的解釋。其中:Topo 為地表高度,Depth 為地底深度,綠色三角形為大屯火山群的主要火山口與噴氣孔,紅色三角形為其他北臺灣火山位置。圖/黃信樺

這個岩漿牛奶罐,究竟從何而來?

找到岩漿庫的位置後,黃信樺開始思索,這一個體積約 600 萬立方公里的岩漿庫從哪裡來?透過震波反演出的圖像中,我們也可以窺得一絲的線索。

-----廣告,請繼續往下閱讀-----
北臺灣的 P 波波速(Vp)模擬結果,以 C-C’ 切面為例,圖 b 為 P 波速度擾動強度分布圖,而圖 c 為 P 波速度絕對值的分布。<br />圖│黃信樺
北臺灣的 P 波波速(Vp)模擬結果,以 C-C’ 切面為例,圖 b 為 P 波速度擾動強度分布圖,而圖 c 為 P 波速度絕對值的分布。圖/黃信樺

關於「岩漿」的由來,我們第一個想到的,或許就是因為板塊隱沒、部分熔融產生的岩漿。

而在上圖(b)中,我們可以從紫色的小圓圈的分布看出菲律賓板塊隱沒產生的地震帶,以及隱沒後出現的部分熔融區(紅橘色的 L2)。

然而黃信樺卻發現,在大屯火山岩漿庫(紅橘色的 L1)、板塊隱沒產生的部分熔融(紅橘色的 L2)之間,有著一大段很遠的距離,也沒有出現相連的通道,因此,黃信樺猜測,大屯火山岩漿庫應該與板塊隱沒帶沒有直接的關係。

不是板塊隱沒,那會是什麼呢?另外一種可能,就是後碰撞時期的弧後張裂。

目前臺灣東北部的地震,大多都是來自琉球島弧後方沖繩海槽(Okinawa Trough)的張裂環境,根據論文的反演結果,黃信樺也認為,大屯火山群、基隆火山群等北部火山,比較有可能是由此機制而生。

但請大家注意,以上對於大屯火山岩漿庫的成因的討論,僅僅還在「推論」的程度,我們尚且無法證實大屯火山就是由此而來,未來仍然需要更多相關研究的佐證。

「所以,它就像一個裝滿岩漿的牛奶罐嗎?

大錯特錯啊!雖然前文都將這個岩漿庫形容像牛奶罐一樣,然而,如果你覺得它是一個裝了滿滿液體岩漿的牛奶罐,那可就不對了。

黃信樺笑著說,「如果它真的是一個空空的牛奶罐,我馬上就會搬家!不騙你啦!」。

事實上,岩漿庫更像是一個海綿,一個有孔隙、吸附著岩漿的海綿

海綿的孔隙率有多少、岩漿的性質是什麼、地震波會降多少速,都可以透過地震和地質資料算出來,例如論文中的「P 波波速下降 19%」,就是從已知的安山岩數據相互推論而來。

此外,雖然論文結果看起來是一個牛奶罐的形狀,但事實上圓柱狀的岩漿庫並不常見,反之,大部分的岩漿庫都和黃石公園一樣,是屬於扁平狀的,因此黃信樺認為背後可能仍然有解析度的問題。

這次黃信樺是用最容易取得、最精準的 P 波來反演,未來他可能就會用 S 波、雷利波、洛夫波等震波資料來彼此檢驗,找出更精確的岩漿庫訊息。

這次大屯火山的岩漿庫解析,黃信樺採用容易取得且精準的 P 波來反演,未來他將用 S 波、雷利波、洛夫波等其他震波資料交互檢驗,讓岩漿庫資訊更精確。圖│研之有物
這次大屯火山的岩漿庫解析,黃信樺採用容易取得且精準的 P 波來反演,未來他將用 S 波、雷利波、洛夫波等其他震波資料交互檢驗,讓岩漿庫資訊更精確。圖/研之有物

從「岩漿庫變淺 22 公里」,一窺大屯火山的研究展望

在 2016 年林正洪「起死回生」的大屯火山研究中,乃是透過兩個近震資料,保守的推算出岩漿庫的位置落在 30 公里深左右,這一次,黃信樺透過解析度更高的反演結果,推斷出岩漿庫的深度其實只有 8 公里。

五年內,岩漿庫的深度從 30 公里變成 8 公里,雖然變淺了很多,但黃信樺表示,一般火山岩漿庫的深度大都落在 5~15 公里之間,大屯火山的 8~20 公里其實已經相對比較深了。那些很活躍的、頻繁噴氣的火山岩漿庫,深度甚至只有 3~5 公里,例如黃石公園就在 4~12 公里的位置。因此,我們並不需要因為這 22 公里的差距而感到焦慮或慌張。

話雖如此,我們仍須正視大屯火山這個距離臺北 101 不到 20 公里的活火山,畢竟大臺北地區的居民數量超過 700 萬,旁邊甚至還有兩座核電廠,面對這一位風險不明的火山鄰居,我們絕對不能視而不見。

今年(2021 年)八月初,有一篇發表在《自然通訊》(Nature Communications)的評論指出,過去以來,人們都只關注那些大規模的火山噴發,卻忽視了即使是小規模的火山噴發,也有嚴重危害全球經濟的風險,並把臺灣大屯火山列入全世界 7 個最關鍵的要點之中。

評論的作者表示,臺灣是台積電(TSMC)的所在地,而台積電負責供應全球高達 90% 最先進的晶片和節點,也是全世界技術與汽車行業的主要供應商,一旦大屯火山爆發,嚴重的火山灰和沉積物將會破壞全球的科技業與金融市場,帶來驚人且可怕的連鎖反應。

面對大屯火山的眾多未解之謎與潛在風險,黃信樺認為,震波層析成像只能給我們空間的資訊,既然我們已經確認大屯火山底下擁有岩漿庫了,接下來,科學家必須更進一步認識這位熟悉又陌生的朋友,像是岩漿庫的特性、火山的定年、噴發週期、模擬噴發形式,甚至是防災的疏散方案與宣導,都是我們需要努力的未來。

延伸閱讀:

  • 古國廷(2019)。〈大屯火山群不可怕,可怕來自不懂它 — 專訪林正洪〉,《研之有物》。
  • Huang, H. H., Lin, F. C., Schmandt, B., Farrell, J., Smith, R. B., & Tsai, V. C. (2015). The Yellowstone magmatic system from the mantle plume to the upper crust. Science348(6236), 773-776.
  • Huang, H. H., Wu, E. S., Lin, C. H., Ko, J. T., Shih, M. H., & Koulakov, I. (2021). Unveiling Tatun volcanic plumbing structure induced by post-collisional extension of Taiwan mountain belt. Scientific reports11(1), 1-10.
  • Lin, C. H. (2016). Evidence for a magma reservoir beneath the Taipei metropolis of Taiwan from both S-wave shadows and P-wave delays. Scientific reports6(1), 1-9.
  • Mani, L., Tzachor, A., & Cole, P. (2021). Global catastrophic risk from lower magnitude volcanic eruptions. Nature Communications12(1), 1-5.
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3415 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

4
3

文字

分享

0
4
3
除了蚯蚓、地震魚和民間達人,那些常見的臺灣地震預測謠言
鳥苷三磷酸 (PanSci Promo)_96
・2024/02/29 ・2747字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

災害性大地震在臺灣留下無數淚水和難以抹滅的傷痕,921 大地震甚至直接奪走了 2,400 人的生命。既有這等末日級的災難記憶,又位處於板塊交界處的地震帶,「大地震!」三個字,總是能挑動臺灣人最脆弱又敏感的神經。

因此,當我們發現臺灣被各式各樣的地震傳說壟罩,像是地震魚、地震雲、蚯蚓警兆、下雨地震說,甚至民間地震預測達人,似乎也是合情合理的現象?

今日,我們就要來破解這些常見的地震預測謠言。

-----廣告,請繼續往下閱讀-----

漁民捕獲罕見的深海皇帶魚,恐有大地震?

說到在坊間訛傳的地震謠言,許多人第一個想到的,可能是盛行於日本、臺灣的「地震魚」傳說。

在亞熱帶海域中,漁民將「皇帶魚」暱稱為地震魚,由於皇帶魚身型較為扁平,生活於深海中,魚形特殊且捕獲量稀少,因此流傳著,是因為海底的地形改變,才驚擾了棲息在深海的皇帶魚,並因此游上淺水讓人們得以看見。

皇帶魚。圖/wikimedia

因此,民間盛傳,若漁民捕撈到這種極為稀罕的深海魚類,就是大型地震即將發生的警兆。

然而,日本科學家認真蒐集了目擊深海魚類的相關新聞和學術報告,他們想知道,這種看似異常的動物行為,究竟有沒有機會拿來當作災前的預警,抑或只是無稽之談?

-----廣告,請繼續往下閱讀-----

可惜的是,科學家認為,地震魚與地震並沒有明顯的關聯。當日本媒體報導捕撈深海魚的 10 天內,均沒有發生規模大於 6 的地震,規模 7 的地震前後,甚至完全沒有深海魚出現的紀錄!

所以,在科學家眼中,地震魚僅僅是一種流傳於民間的「迷信」(superstition)。

透過動物來推斷地震消息的風俗並不新穎,美國地質調查局(USGS)指出,早在西元前 373 年的古希臘,就有透過動物異常行為來猜測地震的紀錄!

人們普遍認為,比起遲鈍的人類,敏感的動物可以偵測到更多來自大自然的訊號,因此在大地震來臨前,會「舉家遷徙」逃離原本的棲息地。

-----廣告,請繼續往下閱讀-----

當臺灣 1999 年發生集集大地震前後,由於部分地區出現了大量蚯蚓,因此,臺灣也盛傳著「蚯蚓」是地震警訊的說法。

20101023 聯合報 B2 版 南投竹山竄出蚯蚓群爬滿路上。

新聞年年報的「蚯蚓」上街,真的是地震警訊嗎?

​當街道上出現一大群蚯蚓時,密密麻麻的畫面,不只讓人嚇一跳,也往往讓人感到困惑:為何牠們接連地湧向地表?難道,這真的是動物們在向我們預警天災嗎?動物們看似不尋常的行為,總是能引發人們的好奇與不安情緒。

如此怵目驚心的畫面,也經常成為新聞界的熱門素材,每年幾乎都會看到類似的標題:「蚯蚓大軍又出沒 網友憂:要地震了嗎」,甚至直接將蚯蚓與剛發生的地震連結起來,發布成快訊「昨突竄大量蚯蚓!台東今早地牛翻身…最大震度4級」,讓人留下蚯蚓預言成功的錯覺。

然而,這些蚯蚓大軍,真的與即將來臨的天災有直接關聯嗎?

-----廣告,請繼續往下閱讀-----

蚯蚓與地震有關的傳聞,被學者認為起源於 1999 年的 921 大地震後,在此前,臺灣少有流傳地震與蚯蚓之間的相關報導。

雖然曾有日本學者研究模擬出,與地震相關的電流有機會刺激蚯蚓離開洞穴,但在現實環境中,有太多因素都會影響蚯蚓的行為了,而造成蚯蚓大軍浮現地表的原因,往往都是氣象因素,像是溫度、濕度、日照時間、氣壓等等,都可能促使蚯蚓爬出地表。

大家不妨觀察看看,白日蚯蚓大軍的新聞,比較常出現在天氣剛轉涼的秋季。

因此,下次若再看到蚯蚓大軍湧現地表的現象,請先別慌張呀!

-----廣告,請繼續往下閱讀-----

事實上,除了地震魚和蚯蚓外,鳥類、老鼠、黃鼠狼、蛇、蜈蚣、昆蟲、貓咪到我們最熟悉的小狗,都曾經被流傳為地震預測的動物專家。

但可惜的是,會影響動物行為的因素實在是太多了,科學家仍然沒有找到動物異常行為和地震之間的關聯或機制。

遍地開花的地震預測粉專和社團

這座每天發生超過 100 次地震的小島上,擁有破萬成員的地震討論臉書社團、隨處可見的地震預測粉專或 IG 帳號,似乎並不奇怪。

國內有許多「憂國憂民」的神通大師,這些號稱能夠預測地震的奇妙人士,有些人會用身體感應,有人熱愛分析雲層畫面,有的人甚至號稱自行建製科學儀器,購買到比氣象署更精密的機械,偵測到更準確的地震。

-----廣告,請繼續往下閱讀-----

然而,若認真想一想就會發現,臺灣地震頻率極高,約 2 天多就會發生 1 次規模 4.0 至 5.0 的地震, 2 星期多就可能出現一次規模 5.0 至 6.0 的地震,若是有心想要捏造地震預言,真的不難。 

在學界,一個真正的地震預測必須包含地震三要素:明確的時間、 地點和規模,預測結果也必須來自學界認可的觀測資料。然而這些坊間貼文的預測資訊不僅空泛,也並未交代統計數據或訊號來源。

作為閱聽者,看到如此毫無科學根據的預測言論,請先冷靜下來,不要留言也不要分享,不妨先上網搜尋相關資料和事實查核。切勿輕信,更不要隨意散播,以免造成社會大眾的不安。

此外,大家也千萬不要隨意發表地震預測、觀測的資訊,若號稱有科學根據或使用相關資料,不僅違反氣象法,也有違反社會秩序之相關法令之虞唷!

-----廣告,請繼續往下閱讀-----

​地震預測行不行?還差得遠呢!

由於地底的環境太過複雜未知,即使科學家們已經致力於研究地震前兆和地震之間的關聯,目前地球科學界,仍然無法發展出成熟的地震預測技術。

與其奢望能提前 3 天知道地震的預告,不如日常就做好各種地震災害的防範,購買符合防震規範的家宅、固定好家具,做好防震防災演練。在國家級警報響起來時,熟練地執行避震保命三步驟「趴下、掩護、穩住」,才是身為臺灣人最關鍵的保命之策。

延伸閱讀

討論功能關閉中。

0

9
3

文字

分享

0
9
3
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

討論功能關閉中。

0

2
1

文字

分享

0
2
1
地震前兆研究的另一條路:慢地震
鳥苷三磷酸 (PanSci Promo)_96
・2023/12/19 ・1906字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/何其恩

大家印象中的地震是什麼樣子呢?是災難電影中,地震來了就是天搖地動、山崩地裂?還是曾經在新聞上看到路面裂開、房屋損壞?

其實地震可以根據不同區域、產生原因等分成許多種類。像是火山地震、隕石地震、冰川地震⋯⋯等。如果我們用物理特性來分類,可以把地震分為快地震及慢地震。

什麼是慢地震訊號?

一個斷層存在著接近脆性變形(可以想像這時地層像餅乾一樣,受到壓力會破碎)的孕震區,當應力累積到極限時,就會發生破裂產生地震;隨著溫度及壓力改變,會慢慢接近韌性變形(這時地層比較像黏土,受到壓力不會破碎,而是直接變形,難以累積應力)的穩定滑移區。

-----廣告,請繼續往下閱讀-----

當然也存在介於兩個性質之間的區域,就是慢地震常發生的地方,累積應力到一定程度時破裂,但又緩慢回彈,形成維持時間長但瞬時能量不大的一種地震,稱為「慢地震」。

在 21 世紀前,地球科學家們就有共識,斷層依照破裂方式可大約分成兩個種類:一種是會被鎖定一段時間,發生錯動產生地震的黏滑斷層(stick-slip faults);另一種則是持續穩定滑移的潛移斷層。

慢地震的發現,讓我們了解並驗證斷層的錯動方式,有介於上述兩者之間的模式,可以像黏滑斷層一樣累積應力,錯動的方式卻類似潛移斷層。

慢地震的發現

慢地震分成非常多種,像是長微震(Tremor)、低頻事件(LFT)、超低頻事件(VLF)、慢滑移事件(SSE)⋯⋯等。有些名字很早就被拿去火山地區使用,因為岩漿等流體造成的震動,也會有長微震、低頻事件出現。2002 年,日本學者首次發現非火山區的板塊交界帶出現了長微震,臺灣則是在 2008 年開始出現相關研究。現在學界會特別區分這些微震是屬於火山區(volcanic )還是非火山區(non-volcanic)。

-----廣告,請繼續往下閱讀-----

臺灣的慢地震:中央山脈南段底下的長微震

在臺灣,非火山長微震主要位於中央山脈南段下方的地震空區。那裡有高 Vp/Vs 值、高地熱梯度、低電阻⋯⋯等特性,說明了在隱沒過程中,脫水產生的流體在此富集。往北方經歷更多碰撞作用時,應力在深部呈現局部集中,孔隙壓劇烈變化產生了長微震訊號。

臺灣發現的長微震比其他國家的更短、更微弱。根據文章的描述,2007 年至 2012 年中在臺灣搜尋到的長微震,最長僅約半小時左右。

此外,臺灣的慢地震有明顯的年週期性:長微震數量多時,氣壓較低、潮位較高、降水量較低,地下水位也較低。這跟我們說明了,地下水位變化帶來的應力擾動和潮汐力一樣重要,其綜合效應可能有效加速慢地震的活動性。

開啟地震前兆研究的另一條路

為什麼近年來慢地震開始受到地震前兆研究關注呢?因為研究發現,這些微震對應力的變化非常敏感,甚至潮汐力的改變都有可能影響長微震的發生率。那是不是有個可能,地震發生前的應力改變,也會反映到長微震身上呢?

-----廣告,請繼續往下閱讀-----

一篇 2017 年發表在《美國地球物理研究期刊》的論文,就以 2010 年甲仙地震(規模 6.4)為目標,研究團隊分析地震發生前的長微震發生率。結果顯示在甲仙地震發生的 2 個月前以及 3 週前都看到長微震發生率的顯著變化!另一方面,研究團隊也比較了 GPS 地表位移場的資料,同樣發現在這兩個時間點出現了異常變化。

除了主震之外,團隊還研究了比較大的餘震。同樣在 2011 年 1 月一場規模 4.2 的餘震也看到類似的異常現象。不過,並不是所有餘震都能觀察到,像是 2010 年 7 月規模 5.7 的餘震就沒有觀察到任何異常變化。研究團隊表示,可能是主震造成長微震的影響還在,所以沒辦法觀測到顯著的變化。

這也說明了,利用長微震異常作為地震預測的手段還是存在許多限制。但這份研究的確為地震前兆開啟新的可能,觀察到顯著的關聯並提出可能的物理機制,為地震前兆研究注入一股新的力量!

延伸閱讀

  • Kato, K. Obara, T. Igarashi, H. Tsuruoka, S. Nakagawa, N. Hirata, Propagation of Slow Slip Leading Up to the 2011 Mw 9.0 Tohoku-Oki Earthquake, Science, vol335, 705 (2012)
  • Chao, K., Z. Peng, Y.-J. Hsu, K. Obara, C. Wu, K.-E. Ching, S. van der Lee, H.-C. Pu, P.-L. Leu, and A. Wech (2017), Temporal Variation of Tectonic Tremor Activity in Southern Taiwan Around the 2010 ML6.4 Jiashian Earthquake, J. Geophys. Res. Solid Earth, 122, 5417-5434, DOI:10.1002/2016JB013925.
  • 慢地震 Slow Earthquake https://academic-accelerator.com/encyclopedia/zh/slow-earthquake#google_vignette
  • Yoshihiro Ito, Ryota Hino, Motoyuki Kido, Hiromi Fujimoto, Yukihito Osada, Daisuke Inazu, Yusaku Ohta, Takeshi Iinuma, Mako Ohzono, Satoshi Miura, Masaaki Mishina, Kensuke Suzuki, Takeshi Tsuji, Juichiro Ashi,
    Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake,
    Tectonophysics, Volume 600, 2013, Pages 14-26, ISSN 0040-1951, https://doi.org/10.1016/j.tecto.2012.08.022

討論功能關閉中。