Loading [MathJax]/extensions/tex2jax.js

0

7
5

文字

分享

0
7
5

雲豹的「劍齒」?——從化石解構現生動物

Crystal_96
・2021/06/01 ・3814字 ・閱讀時間約 7 分鐘

  • 作者 / 黃曉君

台灣到底還有沒有雲豹 (Neofelis nebulosa) 一直都眾說紛紜,雖然多年沒有正式紀錄,但牠的名字還保存在我們的保育名錄中;在臺北市立動物園裡,我們也還是可以一睹雲豹神秘的身影。這麼受歡迎的大貓,竟然有比獅子老虎還要兇的犬齒!不過大家知道其實雲豹的犬齒是很像「劍齒」嗎?沒錯,就是印象中兇巴巴的那隻劍齒虎的「劍齒」!

劍齒虎這個名詞應該大家都有聽過,但它實際上是指哪些物種呢?有很多牙齒長長扁扁,外表看起來像大貓的都被叫做「劍齒虎」,但有些其實並不屬於貓科 (Felidae),像是袋劍虎科 (Thylacosmilidae) 是屬於有袋類的,並不是真正的劍齒虎。牠們的劍齒與貓科的劍齒並不是同源,而且使用的方式也可能不一樣。真正屬於貓科的劍齒虎都是劍齒虎亞科 (Machairodontinae) 的成員,其中包括了最有名的斯劍虎 (Smilodon) 和似劍虎 (Homotherium)。而牠們除了外表獨特以外,捕獵的行為模式也跟現生的獅子老虎有所不同。

雲豹。圖/Wikipedia

劍齒虎的捕獵方式與老虎有甚麼不同?

在了解雲豹的犬齒怎麼會像劍齒之前,先來了解一下同屬貓科的劍齒虎是怎麼利用劍齒來獵食的吧。劍齒在我們的印象中,都是長長尖尖的,在嘴巴的兩邊突出來,是劍齒虎最有標誌性的特徵。但其實劍齒可不只是長而已,更重要的是它是扁平狀的,好像從左右兩邊被壓扁了一般,變成像刀一樣的形狀,看起來攻擊力滿分。

但是劍齒虎也不光靠劍齒就可以完成攻擊的哦,還需要不同骨骼與肌肉的配合,才能狠狠地刺到獵物的要害。把劍齒虎跟體型和食性較相近的豹屬 (Panthera) 大貓,像是獅子和老虎相比的話,劍齒虎的頭骨兩側,外耳孔附近的顳骨乳突 (mastoid process) 會比較大而且位置較低。這個乳突連接的是頭前斜肌 (m. obliquus capitis cranialis),這塊肌肉會把頭部連接到第一頸椎,讓頭部可以上下移動。

-----廣告,請繼續往下閱讀-----

因為乳突的位置不一樣,現生豹屬類的大貓,肌肉收縮的時候會把頭往上拉;而劍齒虎則是把上顎往下拉,乳突較大也表示牠們的肌肉更大更強壯。由於這個乳突的結構位置與現生大貓不同,劍齒虎才有辦法把上顎用力往下拉,把犬齒刺進獵物的皮肉,而現生的大貓則沒辦法借用頭前斜肌的力量作強度較高的咬合。

老虎(上)與似劍虎(下)的骨骼和肌肉復原圖,肌肉 6 為頭前斜肌。圖/參考資料 2

劍齒虎捕獵時,會先用上下顎咬住獵物的頸部,頭前斜肌收縮,把上顎往下拉,用力地把劍齒刺進去,就好像把兩把鋒利的刀捅下去一樣。這個捕獵方法叫「canine shear bite」,可以在短時間內對獵物的氣管造成很大的傷害和失血量,快速地把獵物殺死,避免獵物掙扎弄斷牙齒,或獵物被其他掠食者偷走,讓劍齒虎在更新世的激烈資源競爭中更有優勢。而獅子老虎等現生大貓則是用「suffocating bite」來殺死獵物,牠們用力咬住獵物的脖子直到牠們窒息而死,所以需時較久,但牠們的犬齒比較短,在獵物掙扎時被弄斷的風險也比較低,所以「suffocating bite」也是有其優勢的。

已經滅絕的劍齒虎,我們還是可以用化石和現生大貓的骨骼形態,加上肌肉的解剖研究去重現牠們的捕獵模式。那同屬肉食大貓的雲豹,形態和行為模式會像誰呢?

雲豹長長得犬齒是「劍齒」嗎?

雲豹的外觀看起來比較像現生老虎或花豹,事實上,英國人第一次看到並命名雲豹的時候也以為牠們就是老虎的一種。當我們去看雲豹的頭骨時,卻可以看到一個跟其他現生大貓非常不一樣的地方,就是牠們的犬齒很長,比起老虎更像劍齒虎!那牠們的犬齒真的是「劍齒」嗎?

-----廣告,請繼續往下閱讀-----

比較雲豹和其他的現生貓科,尤其是豹屬的成員的上犬齒與牠們頭骨的比例的話,會發現雲豹的上犬齒真的要長很多,與較為原始的劍齒虎的比例非常接近,而完全不像老虎或花豹。

而且,雲豹的嘴能張非常大,上顎和下顎之間可以張開到接近九十度,是在現生食肉目中最大的。這個特徵也是和劍齒虎很相關的,劍齒虎因為上犬齒太長了,嘴必須張大一點才可以利用犬齒獵食,因此牠們的嘴也是可以張開到九十度左右。相反,現生大貓像美洲獅這種掠食者,也只能把嘴張到大槪六十五度而已。

雲豹(左)與美洲獅(右)的頭骨對比,雲豹是肉食目中嘴可以張最大的物種。圖/參考資料 3

這樣看來,雲豹與現生貓科好像格格不入,那牠是劍齒虎的一種嗎?答案是還不算是哦!當劍齒虎的要求可是很高的!上犬齒除了要夠長,還要夠扁。可惜雲豹的上犬齒長是長,卻比較像其他現生大貓,横切面是偏橢圓形的,不夠扁平。而且真正的劍齒虎為了容納變大的上犬齒,下犬齒會變小,有些甚至像門齒一樣。可是,雲豹的下犬齒的大小還是比較接近現生的大貓,比門齒大多了。因此,雲豹要當劍齒虎,還有一段不短的距離。

誰是雲豹的親戚?

雲豹既像劍齒虎,可是有些特徵像現生大貓,那牠們到底跟誰關係比較親近呢?說到底還是跟豹屬大貓比較親近的,豹屬(老虎、獅子、美洲豹、花豹、雪豹)與雲豹都屬於貓亞科 (Felinae),豹屬是雲豹的姊妹群,全部成員與雲豹的親緣關係都是一樣的,沒有誰和雲豹比較親近也沒有誰比較疏遠。

-----廣告,請繼續往下閱讀-----

反觀劍齒虎亞科,在斯劍虎和似劍虎的化石中保留下來的古基因就告訴我們,牠們並不在貓亞科裡面,而是整個貓亞科的姊妹群。根據分析結果,劍齒虎亞科和貓亞科早在大概兩千兩百萬年前就分化出來了,因此劍齒虎與雲豹之間的關係是相對疏遠的。

劍齒虎亞科和現生貓科動物的親緣關係,劍齒虎亞科是貓亞科的姊妹群。圖/參考資料 7

至於豹屬和雲豹,牠們則在約一千八百萬年前才在貓亞科裡分化出來,而雲豹在六百多萬年前又和豹屬分開。從豹屬物種都沒有像劍齒虎的特徵來看,雲豹的這些特徵應該是和豹屬分道揚鑣了以後獨立演化出來的,和劍齒虎並無同源的關係。既然並不是遺傳自劍齒虎,那雲豹長長的牙齒和獨一無二的大嘴,用途會和劍齒虎一樣嗎?

雲豹也可以一擊斃命嗎?

雖然雲豹從各種特徵來說還算不上是劍齒虎,但畢竟也是擁有在現生貓科中最像劍齒的犬齒,那牠可以用劍齒虎的「canine shear bite」去把獵物快速咬死嗎?答案是—還不可以。就如前面提到,劍齒虎殺死獵物並不是只靠犬齒的,還需要用到連接頭骨跟第一頸椎的頭前斜肌。從變大和位置靠下的顳骨乳突可以看出,這個肌肉在劍齒虎中是比現生大貓大而強壯,並可以把上顎往下拉。反觀雲豹的顳骨乳突就比較像現生大貓,沒有增大,位置也沒有下移,頭前斜肌的力量較小而且由於乳突的位置限制,並不能把上顎往下拉。因此,雲豹用犬齒咬下去的時候力量沒有那麼大,並不能像劍齒虎一樣造成大量出血和致命創傷。

雲豹與其他貓科動物的顳骨乳突(mp)對比,雲豹的乳突比較像現生貓科,劍齒虎的乳突較大及位置靠下。A:美洲豹貓,B:獵豹,C:獅子,D:老虎,E:雲豹,F:斯劍虎。圖/參考資料 3

由此可以推斷,雲豹並不可以使用跟劍齒虎一樣的手段去狩獵。那牠們會是像現生豹屬大貓一樣,咬住獵物讓獵物窒息而死嗎?有可能!可是,雲豹的犬齒和張嘴的角度,又跟其他現生肉食性的大貓很不一樣,所以牠們也許會有不同的狩獵策略。其中一個可能性就是牠們正在往劍齒虎的方向去演化,或者是牠們既不像豹屬大貓,也不像劍齒虎,而是佔據了一個獨一無二的生態區位。

-----廣告,請繼續往下閱讀-----

可是,雲豹又沒有滅絕,為甚麼我們不直接去觀察活生生的雲豹怎樣去捕獵呢?這是因為雲豹的數量本來就稀少,牠們又比較神秘,喜歡躲起來,導致牠們的行為模式,包括用甚麼策略捕獵都還沒有詳細的觀察紀錄和充分的研究。在動物園裡,牠們通常都是被喂食像松鼠這類體型比較小的動物;但在野外,牠們應該是可以捕食體型與牠們差不多大的獵物的。因此牠們是如何捕獵的,還需要更多野外的觀察去解答。

從化石解構現生動物

從雲豹的個案中,我們可以看到古生物的研究如何跟現生的物種息息相關:如果只看現生的大貓,我們或許沒辦法找到與雲豹的犬齒相似的物種,可是當我們去看化石紀錄時,就會發現原來這種長長的犬齒在以前也曾經被演化出來過,繼而再去討論雲豹可能有的生態區位。因此,並不是只有現生動物的研究可以幫助我們理解已經滅絕的物種;反過來,化石物種也可以協助我們對現生動物的研究和詮釋。

而不論雲豹到底是用甚麼方式去捕獵,牠們都代表了一個獨一無二的演化譜系,唯一一個擁有與已經完全滅絕的劍齒虎亞科相似特徵的物種,只有好好保育牠們,我們才可以更好的去研究牠們的行為模式,也才可以在未來看到牠們到底會演化出甚麼樣的形態和捕獵策略。

  1. 臺灣物種名錄
  2. Anton, M., Salesa, M. J., Pastor, J. F., Sanchez, I. M., Fraile, S., Morales, J. 2004. Implications of the mastoid anatomy of larger extant felids for the evolution and predatory behavior of sabertoothed cats (Mammalia, Carnivora, Felidae). Zoological Journal of the Linnean Society 140: 207-221.
  3. Christiansen, P. 2006. Sabertooth characters in the clouded leopard (Neofelis nebulosa Griffiths 1821). Journal of Morphology 267: 1186-1198.
  4. Christiansen, P. 2008. Evolutionary convergences of primitive sabertooth craniomandibular morphology: the clouded leopard (Neofelis nebulosa) and Paramachairodus Ogygia compared. Journal of Mammalian Evolution 15: 155-179.
  5. Christiansen, P. 2013. Phylogeny of the sabertoothed felids (Carnivora: Felidae: Machairodontinae). Cladistics 29: 543-559.
  6. Christiansen, P., Kitchener, A. 2011. A neotype of the clouded leopard (Neofelis nebulosa Griffith 1821). 2011. Mammalian Biology 76: 325-331.
  7. Westbury, M. V., Barnett, R., Sandoval-Velasco, M., Gower, G., Vieira, F. G., Manueal, M. D., Hansen, A. J., Yamagucji, N., Werdelin, L., Marques-Bonet, T., Gilbert, M. T. P., Lorenzen, E. D. 2021. A genomic exploration of the early evolution of extant cats and their sabre-toothed relatives. Open Research Europe 1: 25.
-----廣告,請繼續往下閱讀-----
文章難易度
Crystal_96
2 篇文章 ・ 2 位粉絲
我是國立臺灣大學的碩士生,目前在做古生物相關的研究,我的ig (@purpletiger_viovora) 也有古生物相關的插畫和科普哦,歡迎來追蹤交流!

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
1

文字

分享

0
2
1
從一片荒蕪到綠色星球:細菌與光合作用如何重塑地球——《你的身體怎麼來的?》
商周出版_96
・2025/01/27 ・3861字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

喜出望外

海中糟粕化為盎然綠意

這個星球現在仰仗光合作用運轉。

──史緹耶可.戈盧比奇(Stjepko Golubic)

四十億年前,地球的陸塊相當單調,黑色、褐色、灰色的岩石上一片荒蕪,火山朝著無氧的大氣噴發毒素,人類乘坐時光機回到那時間點會立刻窒息。當時地球上僅有的生命形態是細菌,以及比英文句號還小得多的單細胞生物。然而若往前快轉幾十億年,來到距今僅三億五千萬年前後,會發現大氣中氧含量接近人類已經習慣了的百分之二十一,這是個很奢華的數字。

那個年代,海洋中滿是巨大生物四處洄游,植物入侵陸地並為人類的演化鋪路。地球從無法居住的荒土蛻變為藍綠色的生命樂園,這麼戲劇性的轉折是什麼力量在背後推動?

種種因素之中有一項特別醒目:直到一九六〇年代人類才開始意識到光合作用的力量不下於各種地質學事件,改造這顆星球的手段神祕且驚奇,非常難以想像。

地球從荒土到生命樂園的蛻變,歸功於光合作用的出現。圖 / unsplash

改造過程中,光合作用或許曾經引發大規模生物滅絕。科學家一度認為其威力能夠與核戰浩劫相提並論,使這顆行星被寒冰覆蓋化作巨型雪球。但同時光合作用又輔助、甚至促成「不可能」的演化捷徑,進而提高生命多樣性,最終使植物甚至人類得以存在。科學家如何研究太古時代的自然變動?而光合作用又如何將地球鬧得天翻地覆?

-----廣告,請繼續往下閱讀-----

疊層石背後的生命故事

十九世紀末期,有人找到能夠追溯光合作用悠久歷史的第一條線索。那時候沒有任何證據指向距今大約五億五千萬年的寒武紀之前有生命存在,然而一八八二年冬天美國大峽谷深處名叫查爾斯.沃爾科特(Charles Walcott)的岩石收藏家改變了一切,後來還當上史密森尼學會的主席。

沃爾科特的故鄉是化石天堂紐約州由提卡市(Utica)。小時候他生得瘦瘦高高,喜歡在父母的農場以及附近未來岳父擁有的採石場內找化石,十八歲離開校園之後先去五金行當店員,卻自己閱讀教科書、研究化石並撰寫論文、與著名地質學家通信來維繫心中熱情。他曾經蒐集古代海洋生物三葉蟲的化石標本,品質在全世界而言也是數一數二,後來慷慨出售給了哈佛大學。

沃爾科特的勘探技巧十分高明,也藉此就職於新成立的美國地質調查局。一八八二年十一月,地質調查局局長、同時自己也是探險家的約翰.威斯利.鮑威爾(John Wesley Powell)要求沃爾科特勘測迄今為止無法進入的大峽谷深處。

鮑威爾之前嘗試過,但只能乘坐小木舟趁漂流時稍微觀察最底層岩石,後來他就在偶爾有「刺骨寒霧、雪花飛旋」的地方紮營監督,帶人修建一條從峽谷邊緣延伸到下方三千英尺(約九百一十四公尺)處溫暖地帶的陡峭馬徑,並且讓時年三十三歲的沃爾科特帶著三名工人和足夠支撐三個月的食物、九匹上鞍的騾子沿著那條臨時小徑進入谷底。

-----廣告,請繼續往下閱讀-----

「高原之後就會積滿雪,」鮑威爾告訴他:「春天之前你和搬運工無法離開峽谷。希望這段時間裡,你能好好研究地層序列,盡量收集化石。祝好運!」

對沃爾科特而言,這是千載難逢的機會。他已經發現一些已知的最古老化石,例如神似甲殼類但奇形怪狀的三葉蟲。此外,達爾文發表《物種起源》不過四十年前,但因為缺乏最原始的動植物或細菌化石而遭到很多抨擊。批評者仗著沒有化石這點堅稱所有物種都是神造,懷疑論者也要求達爾文證明古代有過更單純的生物,可惜他只能委婉表示若生物體很小就不容易留下化石,希望有朝一日會出現。

充滿驚喜的山谷

沃爾科特深知達爾文的窘境。他沿著陡峭原始小徑下降到幾乎沒有生命跡象的大峽谷谷底,然後用心觀察周遭環境。山谷、懸崖,除了石頭還是石頭,但這一隅紅色天地很得他喜愛,不過同行的化石收集家、廚師和馱獸管理員就未必能夠分享那份悸動了。

他們沿著八百英尺(約兩百四十四公尺)峭壁吃力前行,其中一段就是現在的南科維山徑(NankoweapTrail),一般認為是大峽谷裡最危險的路線,河流地形坡陡水急即使沿岸也難以行走,有時候不得不自己開路以求深入。後來一頭騾子死亡、另外兩頭受傷。旅程中至少一次,沃爾科特筆中的墨水結凍了,但又必須在篝火邊融冰為水給騾子飲用。但最可怕的其實是死寂與孤獨,才三個星期就導致那位化石收集家夥伴憂鬱求去。但沃爾科特不同,能來到谷底他太興奮了,堅持了七十二天才踏上歸途。

-----廣告,請繼續往下閱讀-----

有一天他爬上爬下,對部分岩石中層層線條感到好奇,乍看很像切開的包心菜。這些圖案極不尋常,所以沃爾科特認定是生物,後來將其命名為藍綠菌(最初曾視為藻類)。他還聯想到自己在紐約州看過來自寒武紀時期的類似化石,取「隱含生命」的含義命名為隱藻化石(Cryptozoön)。然而大峽谷的情況有點不同,這些化石明顯可見,卻又位於更古老的岩層內,因此歷史比任何其他已發現的化石都久遠。

沃爾科特在大峽谷的古老岩層中發現了類似藍綠菌的化石,命名為隱藻化石,揭示比已知更古老的生命存在。圖 / unsplash

沃爾科特後來在蒙大拿州等地持續發現同樣古老的隱藻化石,接著其他古生物學家也在前寒武紀岩石內察覺到疑似化石的特殊圖案,種種線索指向最原始生命形式的證據可能保存在寒武紀前的石頭裡。即便如此懷疑論調不斷,尤其某個長期存在爭議的標本被證明了並非化石,而是火山石灰岩經過壓力和高溫形成獨特的礦物沉積。

隱藻化石的爭議:解鎖前寒武紀生命的證據

一九三〇年代,沃爾科特去世的四年後,劍橋大學最具影響力的古植物學家蘇厄德(Albert Charles Seward)決定加入辯論,卻在後來被古生物學家肖普夫(William Schopf)形容是「讓煮熟的鴨子飛了」。蘇厄德在史稱「隱藻化石爭議」的事件中嚴格審視前寒武紀化石證據,得出結論認為這完全是一廂情願,所謂的化石與現存物種之間沒有明顯關係,大型結構並未顯示出由較小細胞組成的特徵。

他主張沃爾科特在隱藻化石找到的環狀圖案可能是海底富含鈣質的淤泥沉積,人類本來就不該期望細菌這樣微小的生物會被保存在化石,最後又語重心長告誡科學家:有些尋找化石的人太過一頭熱,他們宣稱找到特別古老的標本時不能輕信。

-----廣告,請繼續往下閱讀-----

地位如此卓著的人物提出警告,導致地質學家不願再從岩石尋找距今約五億年以上的化石,畢竟找到的機率幾乎等於零。久而久之許多人認定了生命在地球上的歷史很短,這顆星球的前面四十億年、其歷史的九成之中根本沒有生命存在。微生物學家史緹耶可.戈盧比奇指出許多科學家以「前寒武紀」一詞指稱生命尚未問世的太古時期,其實這是陷入「現有工具檢測不到就代表不存在」的思考偏誤,將缺乏證據直接視為否定證據了。

時間來到二十年後的一九五〇年代中期,澳洲年輕研究生布萊恩.洛根(Brian Logan)隨地質學教授菲利普.普萊福德(Philip Playford)探索了位置偏遠的鯊魚灣,也就是澳洲西北海岸一片孤立的鹹水潟湖。站在這兒的海灘,淺藍色海水退潮時會露出如夢似幻的奇景:數百顆三英尺(約九十一公分)高的圓柱狀岩石林立,彼此間距很小,彷彿堅硬粗糙如石塊的蘑菇聚集叢生。

兩人詳細調查了這片怪異石陣,然後意識到理解沃爾科特隱藻化石的關鍵。眼前這些不僅是活化石,還能回答一個經典謎語:什麼東西既死又活?石頭表面曾經活著,是藍綠菌累積起來形成網罩般的構造。海水進出時,這層菌網會捕捉沉積物。而藍綠菌死亡後,沉積物固定在原位如海綿狀的石塔,於是又有新的細菌附著其上、形成新的一層網罩。

細菌以同樣方式在太古海洋中創造出沃爾科特的隱藻化石,現在稱為疊層石,語源是希臘文stroma(層)和lithos(岩)。目前只有鯊魚灣等少數幾個地方能找到疊層石,環境對其他多數生物過於鹹澀無法生存。但另一方面,已經化石化的古老疊層石則在世界各地皆有發現。

-----廣告,請繼續往下閱讀-----

澳洲地質學家偶然發現還活著的疊層石,同時美國兩位地質學家史坦利.泰勒(Stanley Tyler)和埃爾索.巴洪(Elso Barghoorn)也宣布找到了蘇厄德口中不存在的化石標本,其中微生物有單細胞也有多細胞,藍綠菌絲也包括在內,而且這些化石都有大約二十億年歷史。「許多人很震驚的,」戈盧比奇表示:「原本以為生命在寒武紀才爆發,之前什麼都沒有。寒武紀應該是起點才對。」但現在普遍接受最古老的疊層石化石上微生物活在三十五億年前,依舊是地球誕生的十億年之後。達爾文和沃爾科特應該很欣慰。

哪種細菌造出最古老的疊層石?無法確定是已經會行光合作用的藍綠菌,抑或是它們的祖先。不過藍綠菌至少二十四億年前已經存在於海洋。

——本文摘自《你的身體怎麼來的?從大霹靂到昨日晚餐,解密人體原子的故事》,2025 年 01 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

1
0

文字

分享

0
1
0
台灣有恐龍嗎?化石學家帶你探索島嶼的古老秘密——《好久・不見》
麥田出版_96
・2024/11/02 ・2579字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

台灣的地理位置與化石形成

台灣也有化石嗎?台灣也有恐龍嗎?

世界地圖攤開一看,台灣陸地上的面積看來是不大,但其面對的太平洋,不只在我的想像中、在我多年搭著飛機到世界各地檢視相關的標本,試著拼湊出鯨魚們在數千萬年間演化歷程的經驗中,我知道也相信台灣的地底下,必定蘊涵著能跟我們講出帶有全球視野的化石標本。

同時,台灣除了被海洋包圍之外,那平均深度只有六、七十公尺深的台灣海峽,也清楚的意味著,當更新世的冰河時期讓海平面下降幅度來到或超過這個臨界點時,台灣就會成為歐亞大陸最東南邊的一角。

相信在台灣的不少人都常聽過,台灣在冰河時期會和中國大陸連在一起,但我在跟大家解釋這樣的環境變遷與古生物演化時,總是會特別強調我不想泛政治化,但世界地圖清楚的標示出台灣的地理位置應該是可以、也該要放在更大的版圖:歐亞大陸的板塊底下來討論,而不是只有限縮在與中國大陸連結的關係。

畢竟,當我們像是讚嘆著非洲地區的陸生大型哺乳動物,能在以年為單位的時間軸來進行長距離的移動時,基本上是用「萬年」以上的尺度來探討生物演化、移動的古生物學,處於歐亞大陸東岸的台灣上的大型脊椎動物,要橫跨歐亞大陸到西邊、或是反方向的來到台灣,大概都會是稀鬆平常的移動距離。

-----廣告,請繼續往下閱讀-----

建立起這樣的思維模式後,當然就是需要有最直接的化石證據來驗證這樣的想法,或深入討論其化石標本的背後,隱藏了怎樣的大尺度演化事件。

大型脊椎動物跨越歐亞大陸到台灣,在古生物學的長時尺度下是平常現象。圖/envato

早坂一郎的開創性研究與犀牛化石

二○一八年一月底從日本的筑波搬到台北後,一邊重新改造所接手的退休丘臺生教授的實驗室、一邊開始準備新學期的上課內容;除此之外,很重要、也是主要的工作內容,就是要開始到野外和各個單位的收藏庫裡尋找、檢視相關的化石標本,試著解讀其背後所帶有的古生物學、演化學上的意義。

有趣、但不令人意外的是,知道我開始要在台灣從事大型脊椎動物化石研究的人,第一個反應通常都會是:台灣也有化石嗎?台灣也有恐龍嗎?這樣之類的疑問。

要回答台灣有沒有化石紀錄的出現,我在日本的工作經驗,和剛好不小心娶了日本太太,讓我能從搬到日本工作前還不會五十音的狀態,到現在能有一定用日文溝通和閱讀日文文獻的基礎能力,幫了很大的忙。

-----廣告,請繼續往下閱讀-----

因為,台灣的古生物研究歷史,基本上就是從日治時期展開並奠下根基。也因此,有一定的日文能力和在日本古生物學界中遊走的經驗,確實是對於一些細微的狀況,更能推敲或掌握。

舉例來說,我目前所服務的台灣大學於一九二八年創立時的前身:日治時期的台北帝國大學,一開始創校時就加入的早坂一郎教授,可以說就是在研究台灣大型脊椎動物化石的先驅,也就不意外為什麼一九八四年在台灣所發現、並被命名為一個新亞種的犀牛化石,會以早坂為名(犀牛的故事書寫在第四話)。

延伸閱讀:從放牛學生到震驚世界:左鎮犀牛化石背後的傳奇——《好久・不見》

台灣有化石的出沒,對生物多樣性、生命演化等議題有些敏感度的人來說,大概不會太意外。但台灣有沒有令許多人為之瘋狂的恐龍,聽起來就是一個棘手許多的疑問。

或許出乎大多數人的意外,台灣不只有貨真價實的恐龍,還有台灣才有的特有種恐龍!

-----廣告,請繼續往下閱讀-----

一九九三年上映的《侏羅紀公園》(Jurassic Park),可以說是徹底的激發了全世界對於恐龍的狂熱與追逐。即使到了二○二四年的今天,恐龍的形象,對於大多數的人來說,似乎就是古生物學研究的全部了。

《侏羅紀公園》激發全球恐龍熱潮,至今在大眾心中恐龍仍象徵著古生物學。圖/wikimedia

但恐龍有如此的代表性,可不是只有形象般的讓人摸不著邊際,而是有全世界各地的古生物學家用一生的精力,和政府、私人所挹注的大量資源,來試著一點一滴揭開恐龍那引人入勝的演化歷程。

舉一個比較可以讓大多數人理解到我們對於恐龍知識是如何持續的累積、建構起來的例子:我正在書寫這段文字的當下是二○二○年的五月中旬,這年從一月一日到這個時間點,已經有二十種,先前完全未知、生存於中生代的恐龍們被古生物學家發現,並且正式的命名為新物種、發表在國際間相關的古生物學研究期刊中—平均不到一個禮拜,全世界就又會多了一種中生代的恐龍在我們的知識體系中!

台灣的鳥類恐龍故事:恐龍演化新視角

藉由這樣的研究能量,我們現在不只清楚的知道所有現生鳥類都是貨真價實的恐龍,連我上課在談論恐龍演化所使用的教科書,所提到恐龍定義裡的其中一個主角,即有我們幾乎每天都會見到面的麻雀:

-----廣告,請繼續往下閱讀-----

恐龍包含了滅絕的三角龍和現生的麻雀最近的共同祖先,以及從這共同祖先開始的所有後代,都是恐龍。沒有被包含在三角龍和麻雀最近的共同祖先裡的後代,都不是恐龍。

大部分隨口問我台灣到底有沒有恐龍的人,我基本上都很難有足夠的時間用上述簡短的內容來說明,因為可以感覺得出來,大部分的人,真的都只是隨口問問,大概也沒有打算真的想要了解恐龍、或是古生物學的研究工作到底是怎麼一回事,背後又有什麼重要的意涵。所以我一般都只會簡短的回應著像是,台灣當然有恐龍,因為所有的鳥類都是恐龍,不只如此,我們每天也都在吃著貨真價實的恐龍肉!

——本文摘自《好久・不見:露脊鯨、劍齒虎、古菱齒象、鱷魚公主、鳥類恐龍⋯⋯跟著「古生物偵探」重返遠古台灣,尋訪神祕化石,訴說在地生命的演化故事》,2024 年 9 月,麥田出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

麥田出版_96
27 篇文章 ・ 15 位粉絲
1992,麥田裡播下了種籽…… 耕耘多年,麥田在摸索中成長,然後努力使自己成為一個以人文精神為主軸的出版體。從第一本文學小說到人文、歷史、軍事、生活。麥田繼續生存、繼續成長,希圖得到眾多讀者對麥田出版的堅持認同,並成為讀者閱讀生活裡的一個重要部分。