3

0
0

文字

分享

3
0
0

福島的核電廠輻射塵會不會影響台灣?

futaichuang
・2011/03/14 ・1145字 ・閱讀時間約 2 分鐘 ・SR值 531 ・七年級

本文作者為福泰老師,轉載自 閱讀這個世界 部落格

我想一定很多人關心如果福島核電廠真的發生最糟的狀況,那台灣會不會受到輻射塵的影響?我想我們還是透過比較科學的思考來探討此一問題,考慮汙染擴散基本上要考慮以下四個因素:第一是汙染源的濃度,第二是汙染源釋放的高度,第三是大氣運動的狀態,第四當然就是距離的因素,其中第一個因素還在未定之天,不過基本上台灣和日本的核電廠都有多重圍阻體,這是和車諾比不同之處,所以汙染源釋放的濃度情形不可以拿來對比,這個部分相信日本政府會盡力去控制,我們就替他們加油鼓勵吧!

第二是汙染源釋放的高度,由於核電廠並沒有煙囪,所以高度不高,一般火力電廠或是垃圾焚化爐為了排放廢氣,通常會將煙囪建得很高,以利汙染物擴散與稀釋,以福島核電廠的現場來看高度並不高,所以汙染物擴散並不太會很快就進入到千公尺以上的高空,以大氣水平運動來看,高度越高風力越強,越容易將汙染物擴散開來,所以這個因素不利於當地,當然對台灣來說我們的風險是下降了。

第三是大氣運動的狀態,我們先看今天的地面天氣圖

這時在日本東方海面有一個小型高氣壓,高氣壓為順時針旋轉,這時在日本東北區福島縣附近以偏西風為主要風向,這個季節正好是冬夏交替,比較沒有大型的天氣系統主導天氣趨勢,所以天氣的變化比較快速,不過至少這幾一兩天大致上還是以西風為主,所以,對台灣影響也相對較小,當然我們還要考慮高層大氣的風場,因為要傳送到台灣還是要以高空風場為主要考量,如果汙染物擴散到高空隨著高層大氣擴散容易傳送到很遠的地方,我們來看看3月13日850百帕和700百帕的高空風場圖,這兩張圖顯示在日本高空為西風,這個西風和地球的行星風系有關,一般很少隨季節改變,所以,輻射塵要隨高空風傳送到台灣的機率也不高。


最後就是考量距離了,我們以很簡化的概念來討論此一因素,就是不考慮風速、湍流等因素,只考慮距離,汙染物的擴散是立體的,最簡化的模式是由汙染源向外會擴散成為一個圓錐狀,所以隨著距離越遠擴散的體積越大,汙染物的濃度不是線性比例的下降,而是以對數比例下降,台灣距離福島約2500多公里,以這種距離其汙染物濃度也低到很微量了,何況這個時候台灣也不在下風區,所以這個條件下台灣應該也不用過度擔心。

最後我的結論是,我們在混亂的時代要保持冷靜的心,用更積極的態度去面對問題,而不是亂傳無的放矢的資訊增加大家的恐懼感,唯有冷靜思考並積極作為才是面對重大災難時我們該有的態度,為日本祈禱也為台灣盡一份心力!

相關標籤: 核汙染 福島
文章難易度
所有討論 3
futaichuang
6 篇文章 ・ 0 位粉絲


2

6
0

文字

分享

2
6
0

地球在20年間「亮度」變低了!——地球暖化讓陽光反照率直直落

Mia_96
・2021/10/23 ・2757字 ・閱讀時間約 5 分鐘

地球暖化會造成溫度升高?不稀奇!地球暖化會造成人類生活環境越來越嚴峻?也不稀奇!但你有聽過,因為地球暖化,讓我們的亮度竟然逐年遞減,地球變得越來越暗嗎?

地球亮度的改變並不是近期才出現的新興議題,關於地球亮度的變化,科學家早在 1990 年代前後便提出一種現象「全球黯化」(global dimming)去解釋為何地表獲得的太陽光能量越來越低。

當時透過資料指出,進到地球的太陽能量大幅降低,從 1950 到 1990 年入射至地表的太陽光能量,竟然平均減少 4%! 也就是身處在地球上的人類會覺得地表的亮度似乎逐漸地降低。

但入射地表能量降低的原因並非是太陽發出能量的變化,而是因為近幾年我們最常耳聞的,空污現象! (圖/pixabay

當人類使用石油、煤炭等非再生能源發電時,會在環境中產生許多氣膠微粒,而這些氣膠微粒進入大氣,微粒可以吸收、反射入射到地球的太陽光,使太陽之能量無法進到地球表面,進而造成地球亮度降低。

而全球黯化同時也影響著人們過去對於全球暖化的理解,當全球黯化造成入射到地表的太陽光減少時,代表著地球所獲得的能量並不如過往我們所想像的這麼多。換句話說,全球黯化所造成的冷卻效應竟比不上人們所造成的暖化速度!

知曉地球改變亮度的方法——地照!

近期最新研究更是顯示,1998 年到 2017 年近十年內,地球的反照率逐年下降!除全球黯化造成地表獲得太陽能量減少外,當從外太空看著地球時,地球竟然也越來越暗了!

反照率是一種常用於亮度表示的方式之一,其指的是太陽電磁波段入射至地表的總量質,除以被地表反射的量值所得出的數字。不同的地表特性即有不一樣的反射量質。因此,透過反照率的升降,科學家也可以推估氣候變遷對環境所產生的變化與影響。

計算反照率的方式十分特別,在科學中我們將其稱為「地照」!

地照現象指的為當太陽光照射到地表,地表會反射部分太陽光,而當地表反射太陽光至月球未被太陽照到的地方時,月球又會將地表所反射至月面的光線反射回地球。

看似應該沒有被太陽光照射到的月球表面,其實也會因為地球反射之陽光而產生微弱的光。而最適合觀測地照的時間通常為弦月時分。 (圖/Wikipedia

地照的變化與地表的改變息息相關。例如冰雪的反射率較高,當地表溫度較低,累積較多冰雪時,地照數據便可能會上升;而洋面的反照率較低,當地表溫度較高,造成冰雪融化成海洋,則地照數據便可能會下降。

透過地照反射的光線強弱,可以推測地球反照率的變化,進而推測地表本身變化。 (圖/Wikipedia

除了利用地照觀測地球反照率外,為使觀測更加精確,科學家利用於 2000 年發射的 CERES 儀器(Clouds and the Earth’s Radiant Energy System)觀測大氣至地表的太陽光輻射與地表放出之輻射,並進一步分析對影響地球溫度的重要因子──雲,和太陽輻射的交互關係。

CERES 主要希望可以解答雲在氣候變遷中所扮演的角色與造成的影響,是美國國家航空暨太空總署地球觀測系統(EOS)計畫中的一部分。 圖/Wikipedia

研究結果分析發現,從 2000 年到 2015 年,地球反照率曲線一直維持接近平坦的狀態,但近年,地球反照率的衰退卻日益明顯,如下圖表示:

(圖/參考資料 1

橫軸座標為年度,縱軸座標為地照反照率之異常改變(單位為每瓦/平方公尺),黑色為地照異常之數據,藍色為 CERES 觀測到異常之數據,而灰色陰影區域則為誤差範圍。從圖中可以看出,地照反照率在這幾年下降約 0.5 W/m2,而 CERES 之數據則是下降約 1.5 W/m2

十年一變──太平洋年季震盪

科學家推測,改變反照率的原因,是週期性發生在太平洋的氣候變化──太平洋年季震盪。

太平洋年季震盪指的為太平洋的海水溫度會以十年為週期尺度產生變化:當北太平洋和熱帶太平洋間的海水溫度較高時,稱作暖相位;而當北太平洋和熱帶太平洋間海水溫度較低時,稱作冷相位。

而地球亮度改變的原因,正是因為太平洋年季震盪到了暖相位,造成海面低雲減少,反照率降低!

低雲較為溫暖,其主要成分是由水滴組成,當太陽輻射照射水滴時,較多太陽反射至太空,地球的反照率較高,也造成地表溫度降低;而高雲主要成分由冰晶組成,透光性較佳,再加上高雲通常體積較低雲薄,故太陽輻射可以順利進入地表,地球反照率相對降低。

當北太平洋與熱帶太平洋間海水溫度升高時,洋面上空氣需達到飽和的水氣量相對增加,氣塊達到飽和條件較高,低層雲較難生成。(其實背後原因極其複雜,作者僅是以最簡單的方式嘗試解釋。)當低層雲減少時,反射率降低,造成較少太陽輻射至太空,地球亮度因此變得越來越暗。

雲在地球輻射能量中一直扮演著重要的角色,低雲反射太陽輻射的能力較強,高雲吸收地球輻射的能力較強,因此較多的低雲往往造成地表降溫,而較多的高雲則會造成地表增溫。 (圖/pixabay

交織纏繞的反饋機制

看完整篇文章也別急著下結論!其實地球上的現象不僅環環相扣,影響因素更是族繁不及備載,從海溫改變的原因、高低雲量多寡的變化、反照率升降的主因……,我們都很難用單純或是絕對的一段話去完整解釋自然界的現象。

科學家所能做到的,是透過原因推導、盡力的去解釋現象,所以關於地球反照率下降的趨勢原因,除了太平洋年季震盪、海溫升高、低雲變化等,或許也還有科學家尚未清楚的其他可能性。

但同時,令科學家擔心的事情是,因全球暖化造成地表的反照率降低,代表地表接收到的能量、進到地表之能量相對增加,而吸收的能量又加速全球暖化的速度,地球或許會因為這樣的回饋機制持續升溫,造成更加嚴重的溫室效應。如何去因應溫度上升造成的種種問題,也將會是我們需要不斷去思考問題。

參考資料

  1. AGU AdvancesEarth’s Albedo 1998–2017 as Measured From Earthshine
  2. science alert,《Two Decades of Data Show That Earth Is ‘Dimming’ as The Planet Warms Up
  3. Wikipedia,《Clouds and the Earth’s Radiant Energy System
  4. Wikipedia,《行星照

所有討論 2
Mia_96
156 篇文章 ・ 375 位粉絲
喜歡教育又喜歡地科,最後變成文理科混雜出生的地科老師
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策