0

0
1

文字

分享

0
0
1

人工智慧如何持續變聰明,又將怎樣影響未來呢?──《知識大圖解》

知識大圖解_96
・2018/02/27 ・3073字 ・閱讀時間約 6 分鐘 ・SR值 565 ・九年級

說到人工智慧,你腦中浮現的是「它」嗎? 圖/《魔鬼終結者》劇照

對多數人來說,人工智慧(AI)這個詞會讓人立刻聯想到末日般的畫面。畢竟在電影中,我們早看過當人類發展超出掌控時的不變下場。只要有人打造出能真正思考的機器──有感知能力的「覺醒」機種──那麼人類就玩完了。(延伸閱讀:迎接人工智慧時代,你我都該上的 30堂必修課

如果這個聰明的機器不喜歡我們行事的方法,那該怎麼辦?若它有其他想法,又該如何處理?

多年來,這類猜想催生出眾多科幻作品,儘管《魔鬼終結者》片中對 AI 的刻劃十分嚇人,但 AI 其實較可能幫助人類,而非加以傷害。不過,由於史蒂芬.霍金(Stephen William Hawking)和伊隆.馬斯克(Elon Musk)等頂尖科學家和技術專家一再警告 AI 的潛在危險,因此你若對 AI 仍有疑慮,也屬情有可原。

為了充分瞭解 AI 的驚人潛力,我們得先釐清關於它的諸多誤解。首先,應考慮如何能使機器擁有智能,以及它們怎麼進行思考。AI 一詞於 1956 年出現,可用來代表計算能力領域的多項技術。科技公司在展示新品時,常會用到該詞彙,但這些產品所觸及的「智慧」層面卻大相逕庭。

請點擊看大圖。圖/《知識大圖解》提供

AI 為什麼學習力驚人?它們能幫人類做什麼?

在多數情況下,AI 已成為行銷昂貴電腦程式的誘人說詞;然而,有些電腦是真的具有學習能力。其中最複雜的目前僅適用於股市、科研領域,以及日漸複雜的電玩世界。你可能會認為,預測公司淨值、用遺傳密碼建構模型,以及稱霸遊戲世界得採用完全不同的 AI 才行,但它們其實都能以相同的基本架構來實現。

真正的 AI 仰賴機器學習原理來運行;本專題將進一步探討不同的機器學習類型。透過機器學習來運行的電腦程式與其他多數程式差別甚鉅,因為你毋須告訴程式該如何做事──而是展示給它看。假設你想要一個能從腦部掃描中發現異常的電腦程式,若使用傳統程式,你得編寫極為嚴密詳實的規則供程式使用;如使用機器學習程式,你只須給程式各看數千張正常與異常的腦部掃描圖,然後讓程式教會自己識別異常。

比起傳統程式,機器學習法顯然更占優勢,因在執行指定任務的成效上,電腦很可能比程式工程師更優異。而最令人興奮的是,科學家正著手打造這樣的程式。

請點擊看大圖。圖/《知識大圖解》提供

不過,這些能幫助我們打理日常生活的 AI 並非全是明日科技。事實上,我們已能享受它們所帶來的好處。

從微軟的 Cortana  語音助理,到 Google 和 Facebook 提供的大型服務,背後都有智能程序在運作,好引領我們穿梭於網路中。它們瞭解我們的興趣與好惡,並為每個人量身打造合適的廣告和建議。然而,儘管會做的事情很多,但它們仍屬於所謂的「弱人工智慧」(narrow AI)──完成特定任務的能力遠勝於人類,但卻無法執行任務以外的事情。

人工智慧的下一步是創建「通用 AI」。在 AI 領域中,此部分究竟是最令人興奮,抑或最為嚇人,至今仍眾說紛紜。通用 AI 將比現行的 AI 系統更接近人類智能,因為它能學習解決各種問題,並應用於不同的任務。距離實現上述夢想的日子尚遠,但 Google DeepMind 的 AlphaGo 是目前最接近的例子。透過深層類神經網路,AlphaGo 擊敗了世上最強的圍棋選手:李世乭。眾人認為這是 AI 歷史性的一刻,因圍棋中有數萬兆種走法,要將之全部編入電腦中是不可能的。相反地,AlphaGo 天資聰穎,可多次與自己下棋,並從中反思自己的錯誤。在數百萬局的練習之後,它已足以與人類棋王匹敵,甚至得勝。

AlphaGo 潛力驚人。開發者興奮地宣稱,該程式將用來協助醫療人員,讓 AI 加入拯救人命的行列,且其多樣化的學習法也能作為許多智能機器的基礎。

請點擊看大圖。圖/《知識大圖解》提供

科學家怎麼讓 AI 更加強大?

就當前的技術而言,我們僅能打造出效能強大但功能有限的 AI。這是因為當我們從通用 AI 轉往人類智能邁進時,所需的電腦效能也得更強大;而今,我們尚未發明能與人腦處理能力匹敵的事物。
不過,人之所以為人,便是因為敢於迎接挑戰,科學家目前正在研究潛能超強的新型電腦。這種電腦名為量子電腦(quantum computer);透過「超距幽靈作用」(即量子糾纏,quantum entanglement),其工作效率極佳,計算速度超乎人類想像。

IBM研發的量子電腦 圖/Lars Plougmann@flickr

在比較一般電腦和量子電腦時,你可想像它們須執行的任務都是從迷宮中逃脫── 一般電腦一次只會試著走一條路徑,直到找到正確的逃脫路徑為止。量子電腦卻能同時搜索每條路徑;這代表它運作得更快、效能更強,一旦搭配精密的 AI,將可能與人類大腦匹敵,甚至青出於藍。在量子計算能力迷宮外等著我們的究竟為何?這目前僅能仰賴我們的想像力;也許是打造人類等級的智能,或是更高級的智能系統。我們甚至可能打造超越人類認知能力的超級智慧。這聽起來或許既有趣卻又令人卻步,但只要我們步步為營、謹慎向前,就不該太過操心。

電影情節會成真嗎?AI 是否會危害人類?

超級 AI 本身並不會對我們構成危險;至少不是我們所想的那種情況。在小說描寫的末日情景中,AI 會像我們一樣思考,有時甚至擁有人類般的情感;AI 同人類一樣渴望自由,也有統治一切的野心。但實際情況並非如此──電腦的思維與你我的思考方式完全不同,即使是特別聰明的人造腦也不會改變這個事實。

電影《機械公敵》中出現人工智慧與人類發生衝突的情節,未來有可能上演嗎?圖/imdb

最聰明的生物會試圖爬上食物鏈頂端──這道理並不難理解,且人類就是最佳例證。但電腦並非演化的產物,這代表電腦與人類的本質上大不相同。人類所有的欲求都源自基因藍圖,而電腦卻不會受生物欲望所驅使,這對人類而言是──也許對機器來說也是──好事一件。這也許有點難以想像,畢竟換位思考本就不簡單。不過,電腦只會遵循內部程序行事,而這些程序都是由人類所制定。從這方面看來,我們便毋須擔心。

可惜的是,這也不代表我們就能清楚判定出未來走勢。假設有天人類成功打造出超級智慧,並要求它們協助將火星變成宜居的家園,也許 AI 真能找出人類要花上數世紀才能想出的解決方案,並幫助我們實現夢想。但它們也可能發現,改造火星的最佳方法就是將地球的大氣和資源送至火星。也就是說,AI 雖按指示行事,卻反而可能導致人類滅絕。AI 能否正確地理解指令,這之間的差距可能會讓人類成功殖民火星,抑或徹底滅絕。

AI 的第二個威脅則比較直接:有心人士可藉助其力量來破解程式。若落入壞人手中,強力 AI 經訓練後可能得以破解各種受密碼保護的程式。因此,在這方面我們得非常謹慎。然而,儘管有潛在問題存在,AI 對於人類的生活可能還是頗有助益。

對任何團隊來說,擁有聰明、能幹且全心投入的成員可是件好事,無論該成員是人類或其他事物。為此,AI 可能即將與人類攜手合作,開始涉足各行各業(如通信產業、航空業和醫藥業),也許之後還會供軍方和航太使用。

想更進一步了解人工智慧發展,迎接 AI 時代,這裡有 30 堂你我都該上的必修課

 

本文為節錄版,完整報導請見《How It Works 知識大圖解》  2017 年 11 月號第 38 期

 

 

文章難易度
知識大圖解_96
76 篇文章 ・ 11 位粉絲
How It Works擅長將複雜的知識轉化為活潑有趣的圖解知識,編輯方式以圖像化百科呈現,精簡易懂、精采動人、深入淺出的圖文編排,讓各年齡層的讀者們都能輕鬆閱讀。

0

0
0

文字

分享

0
0
0
是什麼蒙蔽了我的雙眼?如何防範生成式 AI 的假資訊陷阱?——專訪中研院資訊科技創新研究中心副研究員陳駿丞
研之有物│中央研究院_96
・2023/09/24 ・5782字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|沙珮琦
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

不再是有圖有真相!深偽影像猖獗,我們該如何判別?

你看過美國前總統川普被警方逮捕的影片嗎?又或是英國女王在皇宮中大跳熱舞的片段?多年來,人們普遍相信著「有圖有真相」的道理,然而,隨著圖像與影音相關的生成式 AI 越發成熟,我們似乎再也不能輕易相信自己的雙眼。而在真假影音的差異可說是微乎其微的狀況下,我們究竟該如何判斷資訊真實性?中央研究院資訊科技創新研究中心的副研究員陳駿丞與團隊每天在尋找的,便是有效又好用的解決方案。本次,中研院「研之有物」將透過專訪,從生成式 AI 的原理開始了解,一步步為各位解開深偽影像的神秘面紗。

你已經是個成熟的 AI 了!幫我工作!

一講到生成式 AI,許多人都能立刻喊出「ChatGPT」的大名,足見這個領域之熱門程度。其實,生成式 AI 發展並不是近年才開始的事,可是為什麼直到最近,才受到社會大眾的熱烈歡迎呢?

中研院資創中心的陳駿丞副研究員認為,其中最關鍵的原因,莫過於 AI 程式的優秀表現開始讓一般人很「有感」。由於生成式 AI 的相關研究快速發展,基礎建設在近年來逐漸成熟,使用介面也設計得十分親民,讓大眾能透過極為直覺、簡單的方式去使用,實際體會到應用的效果,例如改善工作效率、處理圖像任務等,再加上大眾媒體的渲染,便帶起了 2023 前半年的 AI 風潮。

陳駿丞笑著說,雖然自己不是文字生成式 AI 的專家,但使用「ChatGPT」時,也發現到它真的能做到很多事,比早期的 Siri 效果更好、更準確。的確,對於我們來說,這款基於 OpenAI 開發的大型語言模型(Large Language Model)的聊天機器人(Chatbot),就彷彿是一個全能小秘書一般,可以整理文案、改錯字,甚至連寫程式碼都不在話下。

場景轉換到影像領域,如今市面上也有同樣由 OpenAI 打造出的圖像生成平台「DALL·E 2」,或是大名鼎鼎的「Midjourney 」,都可以很有效率的將使用者文字描述轉換成圖片。雖然這些平台生成的內容偶爾還是會出現「破圖」的情況,例如頭髮少一塊,或是出現奇怪色塊等,但它們的生成速度極快,也能產生不少令人印象深刻的高品質內容;對於一般大眾而言,自然充滿吸引力。

陳駿丞解釋,過去也有許多以文字產生圖片的嘗試,但品質並不佳,而現在之所以可以顯得如此真實,便是借助了「擴散模型」(Diffusion Model)的強大威力。大約 2019 年左右,「擴散模型」逐漸超越了原本主流的「生成對抗網路」(Generative Adversarial Network,GAN),吸引大量研究人員投入,也因此衍生出「Midjourney」這類的圖片服務,打個字、按個鈕便能生成美美的圖片。進階使用者還可以輸入如同咒語般長的自訂提示詞(Prompt),生成符合需求的圖片,甚至還有人專門訓練生成提示詞的 AI,各種 AI 藝術社群也如雨後春筍般成立。

提示詞給的資訊越多,就越有機會用繪圖 AI 生成想要的客製化圖片。
圖|研之有物(資料來源|Midjourney)

神奇 AI 訓練師——「擴散模型」與「生成對抗網路」

等等等等,什麼是「擴散模型」?什麼是「生成對抗網路」?想了解兩者的不同,讓我們先從比較「資深」的那個開始說起。

所謂「生成對抗網路」,其實是由兩個網路所組成的,分別是「鑑別網路」(Discriminating Network)與「生成網路」(Generative Network)。這兩者間的關係就像是考官和學生(亦敵亦友!),學生(生成網路)要負責把圖生出來,交給考官(鑑別網路)去判斷這張圖跟真實圖片的分布究竟像不像,像就給過、不像就退回去砍掉重練。

至於考官(鑑別網路)為什麼能如此精確呢?因為研究員會預先餵給它真實的圖片,好協助鑑別網路做出足夠專業的判斷、給予精準回饋。而學生(生成網路)則在這一次次「交作業、修正、交作業、修正」的過程中,畫出越來越接近真實模樣的圖片。

生成對抗網路的概念比喻圖,生成網路與鑑別網路這兩組神經網路會相互訓練,生成網路所產出的圖片會越來越接近鑑別網路的目標,差異越來越小。
圖|研之有物(資料來源|李宏毅

相比起 GAN 對錯分明、馬上定生死的特點,「擴散模型」採取的路徑相對而言非常迂迴,但是結果更為精準,如果採用知名電腦科學家臺大電機系李宏毅教授的比喻,擴散模型就像是從一塊大石頭裡面刻出大衛像,圖片就在雜訊當中!

「擴散模型」在訓練期間的第一步是加噪(add noise),以貓為案例來說,擴散模型的原理就是將一張正常的貓咪圖片,用統計方法取樣出一張特定大小的雜訊圖(例如 512*512),過程中研究人員會控制參數去加上高斯雜訊。第二步是去噪(denoise),透過減去預測的高斯噪聲,得到乾淨的原貓圖。模型訓練的越好,預測的高斯噪聲量越準。

訓練好之後,「擴散模型」在輸出的時候,為了輸出符合使用者文字指令的貓咪圖片,模型會從隨機的雜訊圖開始,應用訓練過程的去噪器,像物理的擴散過程一樣,逐漸改變每個像素點的值,反覆去掉噪點,得到最後新的貓咪圖。

如果有用過 Midjourney 的人,應該也會發現 AI 收到文字指令開始產圖的時候,是從一張模糊不清的圖片,一顆顆像素逐漸改變,變成你要的圖。

擴散模型透過加噪和去噪來訓練模型,利用去噪來生成圖片。實際生成圖片的過程,就是逐步去除噪聲的過程。
圖|研之有物(資料來源|李宏毅

陳駿丞指出,由於這些噪聲都是研究員自己加的,所以控制度極高,也可以掌握其中細部的變化過程。而這種「保姆式」訓練法,最大的好處就在於:擴散模型是一種漸進式學習的過程,因此對於細節的掌握度將會更高。

陳駿丞提到,兩種方式的訓練時間其實差不多,但以執行時間來說,「擴散模型」會比較久一點,因為需要慢慢摸索,而 GAN 則是幾乎一步到位。不過,雖說處理時間可能較長,「擴散模型」卻也因為訓練比 GAN 更穩定與更全面這份特質,可以訓練很大的資料集,也能生出較為豐富多元的成果。

侵權與假消息——生成式 AI 的負面影響

能生出細膩而接近真實的圖乍聽之下是好事,但它同時也是一把雙面刃,可能伴隨著侵害智財權、製造假消息等等負面效應。

在訓練生成式 AI 相關模型時,必定需要大量的資料做為參考,而以 AI 繪圖來說,許多資料其實是未經授權的網路圖片;假設宮崎駿的圖片被盜用去訓練開源模型,那這些生成式 AI 後來生出的圖可能就會帶有宮崎駿的風格或曾經畫過的元素,這樣是否會帶來侵權或抄襲的問題?是我們必須思考的重要課題。

而說到假消息,就一定得談到值得關注的「深偽」(Deepfake)技術。雖然這個詞很容易讓人聯想到一些負面的事件,比如新聞報導網紅小玉用深偽技術製作不雅影片。然而,陳駿丞澄清,深偽技術最常出現的場域其實是在電影工業中。其中,最知名的應用,莫過於《玩命關頭》系列電影,在拍攝期間主角保羅沃克不幸意外離世,劇組便透過電腦合成影像技術,讓主角的弟弟替身上陣,主角身影得以再次與觀眾相見。

用你的魔法對付你!反制深偽影像的 AI

深偽技術若運用得宜,便是賺人熱淚的神器,反之,卻也可能成為萬人唾罵的幫兇,面對這樣強大的工具,難道我們只能乖乖束手就擒嗎?才不!既然 AI 如此強大,那我們就訓練 AI 來對付它!

陳駿丞分享道,反制深偽影像常用的方法便是訓練「二元偵測器」,藉由蒐集大量真實與偽造影像資料去訓練 AI,讓它得以判斷影像的真偽。然而,深偽有很多種,而二元偵測器對於沒有看過的資料,表現會大打折扣。

過去人們是用 GAN 來生圖,現在是用擴散模型來產圖,未來也有可能出現新的方式,想要找出一個一勞永逸的方法,其實並不容易。

陳駿丞認真地說,深偽偵測的過程,其實很像在研發一套「防毒軟體」,防毒軟體很難永遠跑在病毒前面,大多是遇到病毒再往下思考解方。但是,面對這樣的情況也不用完全悲觀,因為訓練偵測模型可以透過「非監督式」和「自監督式」等方式去進行模擬,進而得出比較能廣泛應用的工具。

除了偵測深偽的錯處之外,我們也可以針對訓練資料動點手腳,像是加上一些「浮水印」。許多生成式 AI 的訓練資料來自圖庫圖片,其中許多圖片自帶防盜浮水印,假設 AI 蒐集了這些素材,往後生成的圖片中可能就會出現「版權所X」等等字樣。

而我們能做的,便是為訓練資料加上肉眼看不見的浮水印。比如說,在影像領域中,伽碼(gamma)指的是用來編(解)碼照度的非線性曲線,我們可以偷偷將浮水印藏在人眼看不見的伽碼範圍中,唯有調整到特定區域,才能看見浮水印。聽起來是不是很像我們小時候用檸檬汁玩的隱形墨水呢?

同樣是浮水印,我們也可以將它藏在人眼比較不敏感的頻率中,然後偷偷放去圖片中邊邊角角的地方,讓人眼看不出來。 加入浮水印後,我們就可以進一步訓練偵測器去尋找浮水印。假設偵測器能在圖上面找到浮水印,那就可以藉此推斷圖的真偽。

而相對偵測、加浮水印等等「補救」的方式,假設我們已經掌握了一些模型的架構,便能透過添加「對抗樣本」(Adversarial Examples),直接攻入生成式 AI 的大本營,讓這些深偽 AI 只能生出一些亂七八糟、毫無邏輯的圖片,或是強迫生成特定的圖案。例如找出幾個常用、能進行臉部特徵操作的 GAN,針對它們研發相關對抗樣本,如此一來,只要加入了團隊開發的噪聲,便能同時打壞這幾種 GAN 的生成。

對抗樣本是防禦深偽模型的有效手段,干擾深偽模型的影像生成。
圖|研之有物

假消息滿天飛怎麼辦?交給深偽影像偵測器!

這麼看下來,深偽偵測若想做得好,需包含的面向又多又廣、還很複雜,但請各位別緊張,陳駿丞與中研院、臺灣大學、臺灣科技大學、成功大學、中央大學以及國家高速網路與計算中心其他教授與研究員共同組成的研究團隊,最近才剛打造出一款泛用性相對較佳的「深偽影像偵測器」,團隊其他研究成員包括王新民研究員、曹昱研究員、花凱龍教授、許志仲教授、許永真教授、蔡宗翰教授與國網的郭嘉真研究員。

這款偵測器以慕尼黑工業大學和義大利拿坡里費德里克二世大學共同提出的偽造人臉資料庫「Face Forensic++」為基礎,透過自監督的方式去產生出深偽的各式可能形式。

團隊是如何訓練偵測器的呢?具體的運作方式是:先偵測輪廓、產生一個「面罩」去界定人臉的位置;接著,再讓偵測器透過些許微調去模擬深偽影像的特徵;再來,將這些「模擬的深偽影像」丟回去當作訓練資料。經過訓練的偵測器便能大幅升級,可以根據顏色、頻率、邊緣特徵等等參數,去判斷影像的真偽,甚至可以幫這些深偽影像區分難度呢!

影片是陳駿丞與團隊的深偽辨識成果,這裡設定為辨識 Deepfake 模型。看到紅框了嗎?數值越小,就表示圖片是深偽的可能越高,這個工具不僅能告訴你影像的真假,甚至能針對顏色、頻率、調整程度做出判斷。
圖│研之有物(資料來源│陳駿丞)

聽起來,這樣的偵測器已經很完美了?陳駿丞笑著說,這樣的內容一經發表,偽造資訊的一方可能又會想辦法繞過這些地方,對雙方來說,這就是場永無止盡的攻防戰,對此,陳駿丞表示,團隊想要完成的,便是:

盡量提供一個比較完整的解決方案,提供普羅大眾各種可能的工具,盡可能讓大家的資料不會被偽造,並幫助他們偵測。

陳駿丞笑著說,在發表深偽偵測的研究內容之後,偽造資訊的一方肯定又會想辦法繞過,這是一場永無止盡的攻防戰。
圖|研之有物

深偽技術防護罩——對所有事保持懷疑

這一份深偽影像偵測器凝結了眾人的心血,陳駿丞很期待未來偵測器正式上線後,能透過國家高速網路與計算中心設計的好用介面讓大家方便操作,在詐騙防治方面盡一份心力。同時,也期待各界看到這個工具的潛力,願意成為堅強的支持力量。

那在這麼好用的工具正式上線之前,我們又該如何去判斷影片的真假呢?陳駿丞傳授了我們一些獨家小絕招:首先:注意「姿勢」,深偽影片可能會出現一些不自然的怪異姿勢;其次,可以關注「背景」,比如突然出現裂痕之類的;再來,也要看看「衣服」等等細節,可能會發現破圖的蹤跡。而影片若是出現側臉時,也比較容易發現瑕疵,比如說頭髮動得很怪、眼神不對、牙齒沒牙縫等等。

另一方面,如果影像的解析度太低,也會影響深偽偵測的準確性,所以,對於太過模糊的圖片、影片,都應該格外小心。

陳駿丞也提醒,隨著相關造假技術日臻成熟,圖片、影片中的細微瑕疵將會越來越難以察覺,這時候,一定要謹記以下原則:

不能像以前一樣看到影片就覺得是真的,還是要抱持懷疑的態度。

假設看到一些違反常理或「怪怪」的內容,一定要多方查證,絕不可以馬上就相信。

讀到這裡的各位,想必已經被陳駿丞裝上了一套強而有力的「深偽防毒軟體」,希望大家帶著這層防護罩,在生活中遠離虛假、靠近真相!(p.s. 要記得定期更新啊!)

陳駿丞與實驗室成員合影。未來他們將和國網中心合作,正式推出深偽偵測辨識平台。
圖|研之有物
研之有物│中央研究院_96
287 篇文章 ・ 2914 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

1

1
1

文字

分享

1
1
1
AI 做簡報又更簡單了!只輸入網址,Bard 就整理好線上論文?
泛科學院_96
・2023/08/20 ・689字 ・閱讀時間約 1 分鐘

超誇張,只要貼上網址,Google Bard AI 把網頁內容變成簡報,這這這我還能不變心嗎?

之前有一支影片分享了 ChatGPT 結合 Power Point 的簡報製作技巧。

在 Bard 大更新之後,運用網頁瀏覽的功能,不管是線上期刊還是論文,轉換成簡報更加的方便,根據我自己的測試,只要五分鐘,從一篇網路上的論文就可以快速的變成一份漂亮的簡報,這真是懶人救星啊!

今天簡單的分享了 Bard 支援連接網路之後的論文摘要功能,並且回應之前影片網友遇到的內容大綱轉簡報的製作問題,希望這支影片能解決你的問題

看完影片之後你覺得 Bard 的哪個功能最讓你驚艷或驚嚇呢?

  1. 拳打 ChatGPT 的連網功能
  2. 腳踢 ChatGPT 的內容準確性
  3. 豪奪網站的資訊內容
  4. 巧取生成錯誤資訊魚目混珠

如果你有更多的想法與問題,歡迎加入泛科學 AI 的 Discord 論壇,我把連結放在影片下方資訊欄。

如果這支影片對你有幫助的話,請幫我在影片下方點個喜歡,或是透過超級感謝展現你的心意,讓我製作更多實用有趣的 AI 教學影片,最後別忘了訂閱泛科學院的頻道,我們下支影片再見囉。

更多、更完整的內容,歡迎上泛科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

所有討論 1
泛科學院_96
5 篇文章 ・ 7 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

0

1
1

文字

分享

0
1
1
隨手塗鴉給 AI,就秒生出10種風格畫作!完全免費手機也能用
泛科學院_96
・2023/08/19 ・688字 ・閱讀時間約 1 分鐘

你跟我一樣是靈魂畫手嗎?

在工作上總是花很多時間處理簡報或商品圖片,好想要一位設計師小天使嗎?

今天的影片我要來跟你分享 Stability 公司最新推出的 AI 圖片生成工具,它可以讓你直接利用自己的塗鴉生成作品,亂畫的塗鴉也可以喔!而且使用完全免費,每天最多可以讓你製作 400 張圖片,是不是很吸引人呢?

我最近的演講授課簡報製作完畢之後,打算再花個五分鐘,專門設計一張符合主題的影片封面圖,就讓我簡單來測試給各位看吧。

今天簡單跟各位分享了使用 Stability 公司近期推出的三個 AI 圖片工具,在免費且開放的架構下,加上好用的 APP 介面,我都認真思考是否該停用 Midjourney 了,你覺得未來的文字生成圖片 AI 誰會最終統一天下呢?

  1. 煉獄大哥才沒有輸 (deep),Midjourney 大哥才沒有輸
  2. 我大 Stability 公司手持開放大旗,終將八紘同軌
  3. 普天之下皆有我 Azure OpenAI 恩澤廣被

如果你有更多的想法與問題,歡迎加入泛科學 AI 的 Discord 論壇,我把連結放在影片下方資訊欄。

如果這支影片對你有幫助的話,請幫我在影片下方點個喜歡,並且把這支影片分享給需要的朋友,最後別忘了訂閱泛科學院的頻道,我們下支影片再見囉。

更多、更完整的內容,歡迎上泛科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

泛科學院_96
5 篇文章 ・ 7 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!