為何哺乳類顏色不能像鳥類與爬蟲類一樣豐富——著色的演化生物學

-----廣告,請繼續往下閱讀-----

長期以來,動物著色策略一直都是博物學家和哲學家感興趣的話題,甚至在 2000 多年前亞里士多德的《動物史》中也早已出現過相似的議題[34]。在過去的幾個世紀中,科學家們開始認真探索動物顏色是如何產生的[45],並闡明它們可能的功能[11, 12, 57]

其中哺乳類的顏色一般都被認為是比較單調的[8],印象中雖然有看過五色鳥、變色龍和箭毒蛙等顏色鮮豔的動物了,但相比之下五顏六色的哺乳類確實難以想像,這不禁讓人思考是不是有哪些演化環節造成如此的差異?

本篇文章將以多元的觀點作切入,一步步探討為什麼哺乳類著色(coloration)會不夠豐富,並且梳理其中相關議題的脈絡。

什麼影響著色策略?

首先釐清這個問題必需要分成幾個層次。

  • 發色機制

除了生物螢光(biofluorescence)外,所有動物顏色都是由兩種主要機制所產生的:(1) 色素著色以及 (2) 結構著色[16]

舉例來說,藍色顏料在自然界其實是稀缺的,大部分鳥類的藍色羽毛(如台灣藍鵲)就是利用結構著色,而不是藍色色素[2, 35, 42]

-----廣告,請繼續往下閱讀-----

其中生物色素如類胡蘿蔔素(carotenoid),吸收光譜約為 400–500nm,能在動物體內產生紅色至黃色,而黑色素在所有可見波長範圍內都表現出高吸光度,真黑素(eumelanin)產生黑色至金色;棕黑素(phaeomelanin)產生淡黃色至淡紅色[21, 28, 36]

而不同於其他脊椎動物,目前除了洪都拉斯白蝙蝠Ectophylla alba能夠在皮膚中累積類胡蘿蔔素以外[22]大部分哺乳類都只能在皮膚與毛髮中產生黑色素[7]

  • 視覺系統

再來必須意識到的是,我們人類所感知到的顏色與其他動物自己所感知到的顏色是兩回事。

生物的體色對於各式各樣的行為和演化研究非常重要,這些信號包括隱蔽(crypsis)、擬態(mimicry)、警戒色(warning coloration)、花果著色以及雌雄二型性(sexual dimorphism)[4, 18]

-----廣告,請繼續往下閱讀-----

對於這些特徵來說,真正重要的是這些信號的目標受眾的色覺(color vision),無論是捕食者、傳粉者還是潛在配偶等[23]。所以有人就認為顏色不是物體的固有屬性,而是能感知它的生物體視覺系統屬性[17]

換句話說,根據動物光感受器的吸收光譜的不同,從物體反射的波長光譜將被感知為不同的顏色[17, 24]。而關於色覺的差異,不同種類的視蛋白(opsins)就代表著不同的吸收光譜,然而在當代主要脊椎動物群中,四種視蛋白(代表四色視覺)是廣泛存在於各種鳥類、魚類和爬蟲類中的,但意外的是大部分哺乳類卻是雙色視覺[6]

重要的演化事件——夜行瓶頸(nocturnal bottleneck)

所以是什麼造成哺乳類與鳥類、爬蟲類的視覺差異?

  • 時間背景

時間拉回到 2.5 億年前左右,哺乳動物最早是從三疊紀的獸孔目祖先演化而來,根據對化石證據的分析推斷,這些幾乎是夜行性的小型食蟲動物[31],關於這個現象有些議題會專注於討論視覺[50, 58],而有些會談地更全面[48, 60]。具體的夜行瓶頸假說最初是由Menaker等人制定[20, 43],內容主要是推測一些類哺乳爬蟲類動物(合弓綱)在 P/Tr 事件(二疊紀/三疊紀滅絕事件)中倖存下來,並大約發展了 1.45 億年後形成了所謂的「中生代哺乳類(圖1)

  • 生態背景

夜行瓶頸假說認為早期哺乳動物在中生代期間會面臨到日行性爬蟲類(主龍類,如恐龍)的競爭[10, 29, 43, 58],而這一系列的適應性變化使早期哺乳動物能不用受太陽輻射和環境溫度的限制下在夜間進行活動,並促進其內溫系統的發展[23]。相對地,長期適應夜間活動可能使光感受器(photoreceptor)發生巨大變化,包括未充分利用之光感受器功能與紫外線保護機制的喪失[23]

-----廣告,請繼續往下閱讀-----
(圖 1)夜行瓶頸時序圖。灰色色塊代表時間範圍,三角形表示演化輻射。P/Tr 代表二疊紀/三疊紀滅絕事件;K/Pg 表示白堊紀/古近紀滅絕事件,P/Tr 與 K/Pg 之間代表中生代(Mesozoic)的範圍。獸孔目(therapsida);合弓綱(synapsids);蜥型綱(sauropsida);主龍類(archosaur)。圖/參考資料 23
(圖 2)五個視蛋白基因家族的光譜敏感範圍。圖/參考資料 30
(圖 3) 視蛋白基因家族譜系。綠色是視覺感受;藍色是非視覺感受。圖/參考資料 23
  • 視覺光感受系統

視錐細胞(cone cells)和視桿細胞(rod cells)內的感光色素皆是由視蛋白組成,而視蛋白基因可分為五個亞型:(sws1、sws2、rh1、rh2 和 lwS)[13, 59],它們的接收光譜範圍可以參考(圖2)。

儘管可能所有五種視蛋白基因早期都存在於合弓綱中,但隨著真獸下綱(eutherian)的演化輻射,視蛋白基因的多樣性就開始急劇減少了[13]圖1)。首先所有哺乳類祖先都丟失了 rh2 基因,雖然單孔目動物(鴨嘴獸和針鼴等)還是有保留著 sws1 基因,但是卻失去其功能,隨即真獸下綱也丟失了 sws2 基因,只剩 sws1 和 lwS 能表達[13],導致至今大部分的哺乳類都屬於雙色視覺 [14, 56]表1)。

  • 非視覺光感受系統

儘管在整個哺乳動物演化過程中,色覺的變化是被認為神經生態適應最經典的例子之一,但事實上夜行瓶頸在塑造非視覺光感受(non-visual photoreception)方面,也發揮了相當的影響力[23]。其中黑視蛋白 (melanopsin,Opn4) 就扮演了非常重要的角色,它負責晝夜節律的光誘導及調節其他生理反應[23],例如:身體色素沉著的變化[51]、瞳孔收縮[38]、褪黑激素抑制[39]、睡眠誘導[40]及暗光運動[19](dark photokinesis[註2]) 等。

黑視蛋白有 Opn4X 和 Opn4M 這兩種基因(Opn4M 是 Opn4X 的基因重複變體),它們廣泛存在於非哺乳動物脊椎動物中,但 Opn4X 在早期哺乳動物演化中丟失[3, 15](表1)。至於這兩個基因的差異並不明顯,主要在於組職表達模式的不同[26],且至今仍然沒有完全理解為什麼所有現存哺乳動物中保留的是 Opn4M 而非 Opn4X[23]

-----廣告,請繼續往下閱讀-----
(表 1)各類群動物的視蛋白存在狀況。左至右:真骨下綱、兩棲類、爬蟲類、鳥類、單孔目、有袋類及真獸下綱。Y代表存在;N代表不存在。圖/參考資料 23

其他哺乳類的著色特例

  • 舊世界猴

約 8–9 千萬年前第一批靈長類動物出現了[5, 54],雖然這些早期靈長類通常也被認為是夜行性的[41],但隨後有許多靈長類動物譜系開始漸漸適應白天活動。直至大約 3–4 千萬年前,不同於其他哺乳類,所有狹鼻小目(catarrhine primates,包含舊世界猴、猿類與人類)都藉由基因重複多產生了一個 LWS 基因[44, 9],而這種革新開始提供靈長類重新擁有了三色視覺的能力。例如山魈因此得以演化出藍色的臉譜,但牠們利用的原理是相干散射(coherently scattering)[49],而不是單純的色素。

2022/07/06 編按:
多出來的 LWS 基因只是感測綠色,和藍色的山魈臉譜沒關係,前後並沒有因果關係。

(圖 4)山魈 。圖/pixabay
  • 能生物螢光的哺乳類

生物螢光簡單來說就是生物將短波長的光吸收後並重新發射成長波長的光,與舊印象不同,有趨勢顯示越來越多哺乳類物種被發現能夠進行生物螢光,雖然生物螢光的生態功能與起源目前還有爭議,但可能與中新世古氣候及物種的生活型態具有密切關係[25]

目前已知的在紫外線下具有生物螢光毛皮的哺乳類物種中,全部都是夜行性的,其中包括:鴨嘴獸[1]、美洲飛鼠屬 ( Glaucomys spp.)[32]、跳兔(Pedetes capensis[46]和一些負鼠科 ( Didelphidae)物種[47]

(圖5)在各種紫外光(385–395 nm)濾鏡下的鴨嘴獸標本。圖/參考資料 1
  • 非洲金鼴

非洲金鼴(Amblysomus hottentotus、Amblysomus septentrionals、Chrysochloris asiaticaEremitalpa granti)是一群撒哈拉以南特有的視力退化食蟲性穴居動物[33],牠們的毛髮具有特殊的虹彩(iridescent),能反射出藍綠色的高光,並且在電子顯微鏡下Snyder等人發現這些槳狀毛髮的超微結構[53],這構造除了能成色外還具有增加毛鱗耐磨性與減少摩擦力等功能,他們假設:因為缺乏視覺能力,非洲金鼴的虹彩既不是性擇的產物,也不可能起到偽裝的作用,唯一的可能就是毛髮在這種結構下能夠幫助非洲金鼴在地下移動時,減少在泥沙中的湍流,而毛髮的虹彩可能就只是演化下的副產品。

-----廣告,請繼續往下閱讀-----
(圖5)非洲金鼴及其毛髪電顯圖,左邊是虹彩毛髮;右邊是一般毛髮。圖/參考資料 53

哺乳類的著色並沒有想像中的單調

雖然本篇的先入為主認為哺乳類的著色就是不豐富的,但如果論及花紋以及圖案了話,也有觀點是認為哺乳類的著色其實是很多樣的[8],況且如上面所提及的案例,就算以我們人類的視角,也有越來越多證據顯示某些哺乳類的顏色也沒那麼單調。正如前面所說的對於動物的著色而言,真正重要的是訊息的接受者,所以如果侷限於人類的視角了話,其實是難以了解其全貌的。

最後要提醒的是,即使夜行瓶頸影響了之後哺乳類的視覺系統,很多證據也顯示視覺與著色之間是有共演化關係的,特別是那些具有婚姻色或雌雄二型性的物種,但是對於隱蔽與偽裝色等來說,證據其實是有限的[37,55],更何況有如同非洲金鼴一樣的個案存在[53]。所以總體而言,這算是一個還滿複雜的議題,某些時候在宏觀演化學上不一定有所謂的必然[27],演化並不是說一定會這樣發展或那樣發展,更多的其實是要看這些生物在一定時空間尺度下要如何應對及適應。

註解

  1. 演化輻射指的是一個演化支多樣化的一個過程[52]
  2. 暗光運動指的是動物在缺乏眼睛等感光器官下,所進行的隨機尋光行為[19]

參考資料

  1. Anich, P. S., Anthony, S., Carlson, M., Gunnelson, A., Kohler, A. M., Martin, J. G., & Olson, E. R. (2020). Biofluorescence in the platypus (Ornithorhynchus anatinus). Mammalia, 85(2), 179–181. doi: 10.1515/mammalia-2020-0027
  2. Bagnara, J. T., Fernandez, P. J., & Fujii, R. (2007). On the blue coloration of vertebrates. Pigment Cell Research, 20(1), 14–26. doi:10.1111/j.1600-0749.2006.00360.x
  3. Bellingham, J., Chaurasia, S. S., Melyan, Z., Liu, C., Cameron, M. A., Tarttelin, E. E., Iuvone, P. M., Hankins, M. W., Tosini, G., & Lucas, R. J. (2006). Evolution of Melanopsin Photoreceptors: Discovery and Characterization of a New Melanopsin in Nonmammalian Vertebrates. PLoS Biology, 4(8), e254. doi: 10.1371/journal.pbio.0040254
  4. Bennett, A. T. D., Cuthill, I. C., & Norris, K. J. (1994). Sexual Selection and the Mismeasure of Color. The American Naturalist, 144(5), 848–860. doi: 10.1086/285711.
  5. Bininda-Emonds, O. R. P., Cardillo, M., Jones, K. E., MacPhee, R. D. E., Beck, R. M. D., Grenyer, R., Price, S. A., Vos, R. A., Gittleman, J. L., & Purvis, A. (2007). The delayed rise of present-day mammals. Nature, 446(7135), 507–512. doi: 10.1038/nature05634
  6. Bowmaker, J. K. (2008). Evolution of vertebrate visual pigments. Vision Research, 48(20), 2022–2041. doi: 10.1016/j.visres.2008.03.025
  7. Bradley, B. J., & Mundy, N. I. (2008). The primate palette: The evolution of primate coloration. Evolutionary Anthropology: Issues, News, and Reviews, 17(2), 97–111. doi: 10.1002/evan.20164
  8. Caro, T. (2005). The adaptive significance of coloration in mammals. BioScience 55(2), 125–136. doi: 10.1641/0006-3568(2005)055[0125:TASOCI]2.0.CO;2
  9. Carvalho, L. S., Pessoa, D. M. A., Mountford, J. K., Davies, W. I. L., & Hunt, D. M. (2017). The Genetic and Evolutionary Drives behind Primate Color Vision. Frontiers in Ecology and Evolution, 5(34). doi: 10.3389/fevo.2017.00034
  10. Crompton, A. W. (1980). Biology of the earliest mammals. In K. Schmidt-Nielsen, L. Bolis, & C. R. Taylor (Eds.), Comparative Physiology: Primitive Mammals (pp. 1–12).  New York, NY: Cambridge University Press.
  11. Darwin, C. (1859). On the origin of species by means of natural selection. London, UK: Murray.
  12. Darwin, C. (1871). The descent of man and selection in relation to sex. London, UK: Murray.
  13. Davies, W. I, Collin, S. P., & Hunt, D. M. (2012). Molecular ecology and adaptation of visual photopigments in craniates. Molecular Ecology, 21(13), 3121–3158. doi: 10.1111/j.1365-294X.2012.05617.x
  14. Davies, W. L., Carvalho, L. S., Cowing, J. A., Beazley, L. D., Hunt, D. M., & Arrese, C. A. (2007). Visual pigments of the platypus: A novel route to mammalian colour vision. Current Biology, 17(5), R161–R163. doi: 10.1016/j.cub.2007.01.037
  15. Davies, W. L., Hankins, M. W., & Foster, R. G. (2010). Vertebrate ancient opsin and melanopsin: divergent irradiance detectors. Photochemical & Photobiological Sciences, 9(11), 1444. doi: 10.1039/c0pp00203h
  16. Doucet, S. M., & Meadows, M. G. (2009). Iridescence: a functional perspective. Journal of The Royal Society Interface, 6(Suppl_2), S115–S132. doi: 10.1098/rsif.2008.0395.focus
  17. Endler, J. A. (1978). A Predator’s View of Animal Color Patterns. Journal of Evolutionary Biology, 11(3), 319–364. doi: 10.1007/978-1-4615-6956-5_5
  18. Endler, J. A. (1990). On the measurement and classification of colour in studies of animal colour patterns. Biological Journal of the Linnean Society, 41(4), 315–352. doi: 10.1111/j.1095-8312.1990.tb00839.x.
  19. Fernandes, A., Fero, K., Arrenberg, A., Bergeron, S., Driever, W., & Burgess, H. (2012). Deep Brain Photoreceptors Control Light-Seeking Behavior in Zebrafish Larvae. Current Biology, 22(21), 2042–2047. doi: 10.1016/j.cub.2012.08.016
  20. Foster, R. G., & Menaker, M. (1993). Circadian Photoreception in Mammals and Other Vertebrates. Light and Biological Rhythms in Man, 73–91. doi: 10.1016/b978-0-08-042279-4.50009-1
  21. Fox, D. L. (1953). Animal Biochromes and Structural Colours. Amsterdam University Press.
  22. Galván, I., Garrido-Fernández, J., Ríos, J., Pérez-Gálvez, A., Rodríguez-Herrera, B., & Negro, J. J. (2016). Tropical bat as mammalian model for skin carotenoid metabolism. Proceedings of the National Academy of Sciences, 113(39), 10932–10937. doi: 10.1073/pnas.1609724113
  23. Gerkema, M. P., Davies, W. I. L., Foster, R. G., Menaker, M., & Hut, R. A. (2013). The nocturnal bottleneck and the evolution of activity patterns in mammals. Proceedings of the Royal Society B: Biological Sciences, 280(1765), 20130508–20130508. doi: 10.1098/rspb.2013.0508
  24. Gerl, E. J., & Morris, M. R. (2008). The Causes and Consequences of Color Vision. Evolution: Education and Outreach, 1(4), 476–486. doi: 10.1007/s12052-008-0088-x
  25. Gray, R., & Karlsson, C. (2022, February 6). 101 years of biofluorescent animal studies: trends in literature, novel hypotheses, and best practices moving forward. doi: 10.32942/osf.io/ub6yn.
  26. Hauzman, E., Kalava, V., Bonci, D., & Ventura, D. F. (2019). Characterization of the melanopsin gene (Opn4x) of diurnal and nocturnal snakes. BMC evolutionary biology, 19(1), 174. doi: 10.1186/s12862-019-1500-6
  27. Haufe, C. (2015). Gould’s Laws. Philosophy of Science, 82(1), 1–20. doi: 10.1086/678979
  28. Hill, G. E. (2010). National Geographic Bird Coloration (Illustrated ed.). National Geographic.
  29. Hut, R. A., Kronfeld-Schor, N., van der Vinne, V., & de la Iglesia, H. (2012). In search of a temporal niche. Progress in Brain Research, 199, 281–304. doi: 10.1016/B978-0-444-59427-3.00017-4
  30. Jacobs, G. H. (2009). Evolution of colour vision in mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1531), 2957–2967. doi: 10.1098/rstb.2009.0039
  31. Kemp, T. S. (2005). The origin and evolution of mammals Oxford. UK: Oxford University Press.
  32. Kohler, A. M., Olson, E. R., Martin, J. G., & Anich, P. S. (2019). Ultraviolet fluorescence discovered in New World flying squirrels (Glaucomys). Journal of Mammalogy, 100(1), 21–30. doi: 10.1093/jmammal/gyy177
  33. Kuyper, M. A. (1985). The ecology of the golden mole Amblysomus hottentotus. Mammal Review, 15(1), 3–11. doi: 10.1111/j.1365-2907.1985.tb00379.x
  34. Lennox, J. G. (2002). Aristotle: On the Parts of Animals I-IV (Clarendon Aristotle Series) (1st ed.). Clarendon Press.
  35. Liao, S. F., Yao, C. Y., & Lee, C. C. (2015). Measuring and modeling the inconspicuous iridescence of Formosan blue magpie’s feather (Urocissacaerulea). Applied Optics, 54(16), 4979. doi: 10.1364/AO.54.004979
  36. Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Current Protocols in Food Analytical Chemistry, 1(1), F4.3.1–F4.3.8. doi: 10.1002/0471142913.faf0403s01
  37. Lind, O., Henze, M. J., Kelber, A., & Osorio, D. (2017). Coevolution of coloration and colour vision? Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1724), 20160338. doi: 10.1098/rstb.2016.0338
  38. Lucas, R. J., Douglas, R. H., & Foster, R. G. (2001). Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nature Neuroscience, 4(6), 621–626. doi: 10.1038/88443
  39. Lucas, R. J., & Foster, R. G. (1999). Neither Functional Rod Photoreceptors nor Rod or Cone Outer Segments Are Required for the Photic Inhibition of Pineal Melatonin*. Endocrinology, 140(4), 1520–1524. doi: 10.1210/endo.140.4.6672
  40. Lupi, D., Oster, H., Thompson, S., & Foster, R. G. (2008). The acute light-induction of sleep is mediated by OPN4-based photoreception. Nature Neuroscience, 11(9), 1068–1073. doi: 10.1038/nn.2179
  41. Martin, R. D., & Ross, C. F. (2006). The Evolutionary and Ecological Context of Primate Vision. The Primate Visual System, 1–36. doi: 10.1002/0470868112.ch1
  42. Mason, C. W. (1923). Structural Colors in Feathers. I. The Journal of Physical Chemistry, 27(3), 201–251. doi: 10.1021/j150228a001
  43. Menaker, M., Moreira, L., & Tosini, G. (1997). Evolution of circadian organization in vertebrates. Brazilian Journal of Medical and Biological Research, 30(3), 305–313. doi: 10.1590/s0100-879×1997000300003
  44. Nathans, J., Thomas, D., & Hogness, D. S. (1986). Molecular Genetics of Human Color Vision: The Genes Encoding Blue, Green, and Red Pigments. Science, 232(4747), 193–202. doi: 10.1126/science.2937147
  45. Newton, I., Cohen, B. I., Einstein, A., & Whittaker, E. (2012). Opticks: Or a Treatise of the Reflections, Refractions, Inflections & Colours of Light-Based on the Fourth Edition London, 1730. Dover Publications.
  46. Olson, E. R., Carlson, M. R., Ramanujam, V. M. S., Sears, L., Anthony, S. E., Anich, P. S., … Martin, J. G. (2021). Vivid biofluorescence discovered in the nocturnal Springhare (Pedetidae). Scientific Reports, 11(1). doi: 10.1038/s41598-021-83588-0
  47. Pine, R. H., Rice, J. E., Bucher, J. E., Tank, D. H. J., & Greenhall, A. M. (1985). Labile pigments and fluorescent pelage in didelphid marsupials. Mammalia, 49(2). doi: 10.1515/mamm.1985.49.2.249
  48. Pough, H. F., Heiser, J. B., & McFarland, W. N. (1989). Vertebrate Life (3rd ed.). Macmillan Coll Div.
  49. Prum, R. O. (2004). Structural colouration of mammalian skin: convergent evolution of coherently scattering dermal collagen arrays. Journal of Experimental Biology, 207(12), 2157–2172. doi: 10.1242/jeb.00989
  50. Schwab, I. R. (2012). Evolutions witness: how eyes evolved. New York, NY: Oxford University Press.
  51. Shiraki, T., Kojima, D., & Fukada, Y. (2010). Light-induced body color change in developing zebrafish. Photochemical & Photobiological Sciences, 9(11), 1498. doi: 10.1039/c0pp00199f
  52. Simões, M., Breitkreuz, L., Alvarado, M., Baca, S., Cooper, J. C., Heins, L., … Lieberman, B. S. (2016). The Evolving Theory of Evolutionary Radiations. Trends in Ecology & Evolution, 31(1), 27–34. doi: 10.1016/j.tree.2015.10.007
  53. Snyder, H. K., Maia, R., D’Alba, L., Shultz, A. J., Rowe, K. M. C., Rowe, K. C., & Shawkey, M. D. (2012). Iridescent colour production in hairs of blind golden moles (Chrysochloridae). Biology Letters, 8(3), 393–396. doi: 10.1098/rsbl.2011.1168
  54. Springer, M. S., & Murphy, W. J. (2007). Mammalian evolution and biomedicine: new views from phylogeny. Biological Reviews, 82(3), 375–392. doi: 10.1111/j.1469-185x.2007.00016.x
  55. Van der Kooi, C. J., Stavenga, D. G., Arikawa, K., Belušič, G., & Kelber, A. (2020). Evolution of Insect Color Vision: From Spectral Sensitivity to Visual Ecology. Annual Review of Entomology, 66(1). doi: 10.1146/annurev-ento-061720-071644
  56. Wakefield, M. J., Anderson, M., Chang, E., Wei, K. J., Kaul, R., Graves, J. A. M., Grützner, F., & Deeb, S. S. (2008). Cone visual pigments of monotremes: Filling the phylogenetic gap. Visual Neuroscience, 25(3), 257–264. doi: 10.1017/S0952523808080255
  57. Wallace A. R. (1889). Darwinism: an exposition of the theory of natural selection with some of its applications. London & New York: Macmillan.
  58. Walls, G. L. (2016). The Vertebrate Eye and Its Adaptive Radiation (Classic Reprint). Fb&c Limited.
  59. Yokoyama, S. (2000). Molecular evolution of vertebrate visual pigments. Progress in Retinal and Eye Research, 19(4), 385–419. doi: 10.1016/S1350-9462(00)00002-1
  60. Young, J. Z., & Nixon, M. (1991). The Life of Vertebrates (3rd ed.). Oxford University Press.
-----廣告,請繼續往下閱讀-----
森地內拉

總覺得自己是理組中的文科生,一枚資工念一半就轉去生科的傻白甜。 關注於生態、演化生物學、生物多樣性及動物行為等議題,想要把自己的想法與接受到的新知傳達給大家,所以就開始嘗試寫科普......

View Comments

  • 本篇的內容以視覺與成色的原理為主,【為何哺乳類顏色不能像鳥類與爬蟲類一樣豐富】的標題完全偏離內容,是標準的文不對題。

    文中舉的例子不恰當,因為變色龍並不是鮮豔的,箭毒蛙也不是爬蟲類……

    生物的演化,需要非常久的物競天擇與用進退廢機制,大多數日間飛行的生物,無論鳥類或昆蟲,都有必要的需求,就是快速飛行時的辨色能力,這個能力會讓生物有更好的覓食機會,附加的作用是雌雄配對的演化競爭,顏色、圖騰越是相對特別,越容易有交配的機會。

    至於只能在陸地或樹上活動的生物,就必須以生活環境的色調為主,可稱為保護色,無論防禦或掠食,都是必要的演化條件,除非,生物已經演化出毒性或特殊的防衛機制,在演化的過程中,區域環境的生物同步演化出警告感知(也就是沒有警告感知的生物~可能都中毒死光滅絕了),防衛機制最常見的,就是鮮豔高或對比的警告色。(澳洲蔗蟾就是悲慘的例子)

    大多數哺乳類沒有很好的辨色能力(也不須要),也沒有日間快速飛行的能力,身體為什麼要有豐富的顏色?對於物種的生態有什麼好處?這篇文章的標題是不是搞錯了?

    • #2
      感謝網友的補充,這邊先簡易回答幾個問題
      1.標題
      本篇文章脈絡是由「問題」出發,並嘗試探討延伸出來的相關議題,而「問題」本身並沒有對錯之分,重要的是討論的過程。另一方面科普文章還要考慮到潛在讀者的快速理解與搜索等,請諒解菜鳥作者在標題設計上的兩難。

      2.文章開頭的舉例
      這裡我是盡量舉一些大眾比較刻板、好理解的例子,需要了話我也可以舉魚類例子,並且我也沒有說箭毒蛙是爬蟲類。

      3.哺乳類辨色與體色豐富的優勢?
      這個要case by case,畢竟重要的是訊息傳播者、接受者及環境之間的交互關係,另外色覺與著色策略之間也沒有絕對的關係(文中有提到),性擇和天擇之間也可能有衝突的狀況。還有目前在哺乳類中也只有一些靈長類個案有比較明顯色覺與著色上的革新,這是既定事實,那過幾百萬年會不會有呢?無法確定,但這有很大的討論空間。

    • #2

      三色視覺有助於維氏冕狐猴檢測水果品質:
      Veilleux, C. C., Scarry, C. J., di Fiore, A., Kirk, E. C., Bolnick, D. A., & Lewis, R. J. (2016). Group benefit associated with polymorphic trichromacy in a Malagasy primate (Propithecus verreauxi). Scientific Reports, 6(1). https://doi.org/10.1038/srep38418

    • #2

      三色視覺有助於維氏冕狐猴檢測水果品質:
      Veilleux, C. C., Scarry, C. J., di Fiore, A., Kirk, E. C., Bolnick, D. A., & Lewis, R. J. (2016). Group benefit associated with polymorphic trichromacy in a Malagasy primate (Propithecus verreauxi). Scientific Reports, 6(1). https://doi.org/10.1038/srep38418

  • 看內文,文中的「生物螢光」比較像是在指biofluorescence,而不是bioluminescence

    • #6
      在介紹發光機制那邊的生物螢光,引用原文[16]確實是用bioluminescence(生物發光)這字眼,但他們原本想要表達的應該是包含bioluminescence+biofluorescence才對,然後鴨嘴獸那邊確實是生物螢光(biofluorescence),翻譯整理時沒注意到,謝謝提醒。
      題外話,雖然生物學會分得比較清楚,但論”luminescence”本身了話,是可以包含fluorescence(螢光)和phosphorescence(磷光)的。
      Harper, D. (n.d.). Etymology of luminescence. Online Etymology Dictionary. Retrieved June 28, 2022, from https://www.etymonline.com/word/luminescence

Recent Posts

夜間駕駛變惡夢?長焦段人工水晶體幫你還原暗夜視力

白內障影響視力,特別是夜間光暈...

2 天 ago

半導體製程中的微米至奈米級汙染...

3 天 ago

頭痛、視力模糊別輕忽!可能是腦部淋巴癌警訊

原發性中樞神經系統 B 細胞淋...

4 天 ago

從免疫病到心肺危機:不可輕忽的肺動脈高壓

肺動脈高壓是罕見但致命的自體免...

1 週 ago

三大減重手術一次看懂,選對方法瘦得安全又有效

減重手術幫助改善肥胖與代謝症候...

2 週 ago