拯救世界的 mRNA 疫苗——疫苗科學的里程碑(四)

科學終會勝利。Science will win.

冠狀病毒帶來的瘟疫是威脅,也是契機。疫苗科學的第五個里程碑,是一場正在進行式的世紀大瘟疫。疫情的突然襲來,讓某位女科學家的研究,一夜之間成了拯救人類的英雄。

1995 年,卡林柯 (Katalin Karikó) 教授跌落人生至黯時刻。降職、確診癌症,丈夫更因簽證滯留海外、相隔千里。25 年後,爆發了新冠肺炎瘟疫,她鑽研了數十年的 mRNA 疫苗橫空出世,實驗室直接跨入人間、拯救世界,成了扭轉疫情的英雄。

疫苗史最近的一次轉捩點,就是新冠病毒疾病/COVID-19 的核酸類型 (mRNA, DNA) 疫苗。在瘟疫爆發不到一年的時間裡,核酸疫苗快速研發、試驗、上市,前所未有的光速,堪稱科學上的奇蹟。其中又由以 mRNA 疫苗的身世最為曲折離奇、充滿轉折。

mRNA 療法的初現與墜落

上世紀的六、七十年代,「DNA→mRNA→蛋白質」的邏輯逐漸清晰後,人類開始嘗試將 DNA 或 mRNA 塞進細胞,讓人體做出目標蛋白質,冀望藉此治療疾病,如:缺乏正常蛋白質等罕見疾病(例:B 型血友病)。

-----廣告,請繼續往下閱讀-----

1990 年,科學家將全裸、無保護的 mRNA 注入小鼠肌肉,發現此外來 mRNA 被細胞轉譯 (translation) 為蛋白質 [1],這個成果激發了無限的想像。1993 年,人類首次將流感病毒蛋白 mRNA 注入動物體內,誘發出能辨認該蛋白的 T 細胞,打響了 mRNA 疫苗的第一槍 [2, 3]

但科學家發現,mRNA 療法理論上可行,但在真實世界卻遭遇巨大障礙-人體非常討厭外來物。不是只有科學家想劫持人體細胞,更有許多邪惡的生物想綁架細胞,如:流感病毒等,也會將自己的病毒 RNA 塞進細胞,遙控細胞做自己不喜歡做的事。

因此人體有許多防禦系統,會摧毀外來的 RNA。除了組織間有酵素會分解 mRNA,而細胞的類鐸受體 (Toll-like receptors/TLRs) 系統,能偵測可疑的 RNA、停止它們轉譯成蛋白質,更糟的是會誘發劇烈發炎反應 [4, 5]。牢不可破的防禦系統,讓所有的科學家都放棄 mRNA 療法。除了一位來自匈牙利的女科學家。

卡塔林‧卡林柯 (Katalin Karikó)-讓 mRNA 疫苗成真的科學家之一。她和德魯·魏斯曼 (Drew Weissman) 開發的 mRNA 技術,讓他們成了諾貝爾獎熱門人選。圖/Biontech SE

卡林柯帶領團隊突破 mRNA 技術瓶頸

1990 年,來到美國五年的卡塔林‧卡林柯 (Katalin Karikó),向任職的賓州大學提交 mRNA 療法的研究計畫。儘管深信 mRNA 的潛力,但它過於脆弱、引致發炎的特性,讓她的計畫一再地被管理層否決。在缺乏突破的情況下,1995 年,她被大學降職、確診癌症,丈夫又因簽證滯留歐洲,接連不斷的挫折打擊著她和 mRNA 療法的未來。

-----廣告,請繼續往下閱讀-----

即使是沉重的人生低潮,卡林柯未因此放棄 mRNA(幸好如此)。數年後,她遇到志同道合的科學家-德魯·魏斯曼 (Drew Weissman),兩人持續地鑽研一個難題:外來的核酸 (DNA, RNA) 會引起免疫反應,但奇怪的是,細胞自己也有 RNA,為什麼不會引起發炎反應呢?

2005 年,研究團隊分離細胞內的 tRNA、mRNA、rRNA 等,分別測試它們誘發免疫反應的能力,結果發現 tRNA,幾乎不會活化免疫細胞 [4]。而過往的研究已發現,DNA 裡的核苷酸,是否被修飾,是決定引起發炎反應的關鍵,如:DNA 的 CpG 序列裡,較少的甲基化修飾,會觸發細胞的發炎反應。

團隊進一步分析發現,tRNA 裡的核苷酸,高達 25% 的核苷酸被修飾。也因此說明了一種可能,細胞透過檢視 RNA 裡修飾的型式、比例,藉此判斷是否為自己的 RNA [4]。換言之,外來的 mRNA 只要有足量和正確的核苷酸修飾,就能欺騙細胞,對細胞為所欲為!三年後,團隊將帶有核苷酸修飾的人工螢光蛋白 mRNA,注入小鼠靜脈。結果發現,小鼠體內有高量螢光蛋白、穩定存在的人工 mRNA,更重要的是,有效地降低了動物的發炎反應 [6]

動物實驗支持了卡林柯等人的假設,透過修飾核苷酸,能讓人工 mRNA 穩定、安全地存在於動物體內,並能劫持細胞、讓它生產出人類想要的蛋白質。從此,訓練白血球辨認腫瘤蛋白質、病毒,進而治癒癌症、對抗瘟疫的夢想,有了更安全的道路。

-----廣告,請繼續往下閱讀-----
黑色素瘤患者-布拉德·克雷默 (Brad Kremer)。他於 2019 年 3 月接受 mRNA 腫瘤療法,數週內,腫瘤以肉眼有感的速度萎縮,展現了極大的醫療潛力。圖/《Nature

COVID-19 出現前,超前部屬棘蛋白抗原

經過 2002 年 SARS、2012 年 MERS 肆虐後,人類有感在未來,新興傳染病必將越漸頻繁。因此科學家針對冠狀病毒之生活史、蛋白質等細節進行了研究,並發現若想以疫苗對抗冠狀病毒,棘蛋白將是最好的抗原。因為棘蛋白分佈在病毒表面,是抗體最佳的辨認目標;同時棘蛋白辨認細胞表面受器、是侵入細胞的關鍵鑰匙,若能用疫苗誘發高效抗體,使其中和病毒、阻止棘蛋白和受器結合,將能達到避免感染、預防惡化的疫苗目的。

沒想到不過數年之後,科學家的超前佈署居然派上了用場。2019 年底,新型冠狀病毒 (SARS-CoV-2) 從中國爆發、開始橫掃全世界,全人類亟需快速、有效的疫苗來終止瘟疫。

2020 年 1 月初,中國首次分享新型冠狀病毒 (SARS-CoV-2) 的全基因密碼,Moderna、Biontech 等藥廠開始設計和量產。透過以前累積的研究成果,藥廠團隊選定棘蛋白的為疫苗抗原,並依當年研究的建議優化棘蛋白,讓 mRNA 產出的棘蛋白,較天然的棘蛋白更穩定,能更有效地誘發免疫力。

mRNA 劫持細胞產生抗原,活化體內免疫系統

藥廠藉由卡林柯等人的技術,用修飾後的核苷酸製備成 mRNA 等技術,提升 mRNA 的穩定性,並將其包裹在奈米脂質顆粒裡。當疫苗被注射進人體後,樹突細胞 (dendritic cell) 等抗原呈現細胞 (antigen-presenting cell) 會吞噬奈米脂質顆粒。

-----廣告,請繼續往下閱讀-----

隨著奈米脂質顆粒崩解、mRNA 釋出。mRNA 便劫持細胞,讓細胞開始產生病毒的棘蛋白。充滿細胞表面和體液的病毒蛋白,使 T 細胞活化,進而開啟整個免疫系統、刺激 B 細胞製造能辨認棘蛋白的抗體,並培養出有長期保護力的記憶型 B、T 細胞(memory B, T cell)。

核酸類疫苗的基礎原理示意。圖/《Nature Reviews Drug Discovery

為什麼 mRNA 疫苗快速又有效?

  • 和整顆病毒類型疫苗比較:mRNA 疫苗僅截取單一蛋白質的密碼,因為不含其他病毒訊息,對接種者的安全性極高
  • 和蛋白質類型疫苗比較:mRNA 疫苗無須在藥廠生產病毒蛋白質,省去了蛋白質的純化、定量製程,同時 mRNA 疫苗更接近自然感染(細胞產生病毒蛋白)的形態
  • 和腺病毒載體疫苗比較:mRNA 疫苗無須大量生產腺病毒載體,省去了病毒純化、定量等製程。且腺病毒疫苗之牛津、嬌生疫苗,推測會引發罕見血栓併血小板低下之副作用。而 mRNA 疫苗目前未觀測到此副作用,相對安全。

而 mRNA疫苗更強大的優勢是速度——只需完整的遺傳密碼,就能製造出疫苗。在新型冠狀病毒 (SARS-CoV-2) 密碼釋出後,莫德納 (Moderna) 僅花了 25 天就製備出疫苗;而面對變異株的威脅,輝瑞表示僅需六週,藥廠就能打造出針對變異病毒的新疫苗。mRNA 疫苗的光速製程,在瞬息萬變的新興瘟疫裡站穩巨大的優勢。

卡林柯撐過了人生的低潮,堅持著她對科學的信仰。數十年後,人類仰賴著她當年的突破,不到一年的時間內就製備出超高保護力,且幾乎全年齡、全族群都適用的 mRNA 疫苗。

在 mRNA 疫苗戰勝瘟疫後,相信更多科學家會站在卡林柯教授的肩膀上,開發出對抗癌症、自體免疫疾病等惡疾的 mRNA 療法。人類還不知道 mRNA 疫苗的極限在那裡,但我們何其幸運,站在疫苗史上關鍵的時間點上,見證科學卓越的里程碑。

-----廣告,請繼續往下閱讀-----

延伸閱讀

系列文章

參考資料

  1. JA Wolff, RW Malone, P Williams, W Chong, G Acsadi, A Jani, PL Felgner (1990) Direct gene transfer into mouse muscle in vivo. Science. DOI: 10.1126/science.1690918
  2. How COVID unlocked the power of RNA vaccines. Nature. 2021/01/12.
  3. Frédéric Martinon  Sivadasan Krishnan  Gerlinde Lenzen  Rémy Magné  Elisabeth Gomard  Jean‐Gérard Guillet  Jean‐Paul Lévy  Pierre Meulien (1993) Induction of virus‐specific cytotoxic T lymphocytes in vivo by liposome‐entrapped mRNA. European Journal of Immunology.
  4. Katalin Karikó, Michael Buckstein, Houping Ni, Drew Weissman (2005) Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA. Immunity.
  5. Ugur Sahin, Katalin Karikó & Özlem Türeci (2014) mRNA-based therapeutics — developing a new class of drugs. Nature Reviews Drug Discovery.
  6. Katalin Karikó, Hiromi Muramatsu, Frank A Welsh, János Ludwig, Hiroki Kato, Shizuo Akira, Drew Weissman (2008) Incorporation of Pseudouridine Into mRNA Yields Superior Nonimmunogenic Vector With Increased Translational Capacity and Biological Stability. Molecular Therapy.
-----廣告,請繼續往下閱讀-----
miss9

蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9

View Comments

  • 其實歷史蠻久的A 但多數國家比較有普遍公費施打的麻疹水痘流感之類的沒有先試驗的原因? 該不會,是包含維持複雜製程鏈的就業機會? 類似燃氣機汽車跟電動車?

Recent Posts