0

0
2

文字

分享

0
0
2

手算來不及啦!先驅者並起,數位計算機的萌芽時期│《電腦簡史》數位時代(五)

張瑞棋_96
・2020/09/21 ・4445字 ・閱讀時間約 9 分鐘 ・SR值 514 ・六年級

-----廣告,請繼續往下閱讀-----

1937 年,夏農完成影響深遠的碩士論文,為後世擘劃出邏輯電路,開啟數位電腦的大門。不過歷史上總會有一些先驅者,縱然還沒有理論可依循,就先動手摸索嘗試。數位電腦也是如此,在夏農公開發表論文之前,已經有多組人馬試圖打造新型計算機。奇妙的是,他們彼此互不相識,卻宛如心有靈犀,都在 1936 – 1937 年之間開始著手開發。

本文為系列文章,上一篇請見:獨自搞定電腦與通訊的理論基礎,卻罕為人知的天才——夏農│《電腦簡史》數位時代(四)

客廳即工坊,數位計算機的先行者——楚澤

數位計算機的先驅者中,最先動手打造的是德國的楚澤 (Konrad Zuse)。楚澤在大學期間曾對未來感到迷惘而轉換科系,所以直到 25 歲才從土木工程系畢業。畢業後,楚澤到一家飛機公司擔任結構工程師,但不到一年就決定辭職,全心開發計算機。

據他回憶,這個念頭早在大學時期就已萌生。當別人都在玩樂談戀愛,他卻只能埋首於算都算不完的方程式,不禁幻想著有部計算機可以代勞這些大量複雜的計算。沒想到上班之後,竟又深陷計算地獄,讓他下定決心要打造出一台可程式化的計算機,用來解各種複雜的聯立方程式。

楚澤 (Konrad Zuse, 1910-1995) 攝於 1992 年。圖:WIKI

1936 年夏天,楚澤把家裡客廳當作工作坊,開始打造 Z1 計算機(原本楚澤取為V1,V 代表德文 “Versuchsmodel”,意思是「實驗機型」。後來為了與德國 V1 火箭區別,才改稱 Z1)。楚澤將 Z1 規劃為運算單元、記憶單元、控制單元、輸入/輸出單元,以及紙帶讀取器。這設計幾乎就是現代電腦的基本架構,唯一差別在於 Z1 的記憶單元只是用來貯存運算的數字,不像現代電腦的記憶單元也用來貯存程式。Z1 的運算程序和巴貝奇的分析機一樣,記錄在打孔紙帶上,再由讀取器傳送到控制單元(後來楚澤聽從朋友的建議,改用廢棄的電影膠卷,更便宜也更耐用)。

-----廣告,請繼續往下閱讀-----

Z1 還有外接一具電動馬達,以每秒轉動一圈的速度,讓各個單元同步運作;這作用就相當於現代電腦中的「時脈產生器」。事實上,這具電動馬達是整部機器中唯一的電氣元件。這聽起來很不可思議,楚澤不用繼電器之類的元件,如何打造出二進位的數位計算機?。

原來楚澤家中並不富裕,部分資金還是跟朋友募來的,根本買不起那麼多繼電器。所以他只好另闢蹊徑,找來朋友幫忙鋸出一片片金屬條,每片的末端再釘上一根針,然後將金屬條縱橫交錯地裝在板子上,做成可以左右或上下滑動。每個單元各自都有這樣的板子,透過滑動金屬條改變接觸點,便能形成不同迴路,達到與繼電器一樣的效果。

Z1 計算機的局部設計圖。圖:WIKI

也因為資源有限,楚澤想出用「浮點數」(floating-point numbers,類似十進位的科學記法 a x 10n) 的形式來貯存數字,可以更有效地利用硬體零件。浮點運算如今也成了電腦做小數點運算的方式。

雖然楚澤想辦法找出克難的方法,不過光靠家人與朋友的資金還是捉襟見肘,於是他在 1937 年邀請一位製造機械式計算機的企業家前來參觀,希望能獲得他的資助;或許因此還能買得起繼電器,打造下一個機型。

-----廣告,請繼續往下閱讀-----

到目前為止,楚澤仍是數位計算機的唯一領先者,但他不知道在大西洋的另一邊,還有多組人馬也已經起跑。夏農正在撰寫那篇震古鑠今的碩士論文,此外,有三位先驅者也在 1937 這一年試圖開發數位計算機。當然,他們也都毫不知情自己加入了這場開發數位計算機的競賽。

祕寶深藏閣樓半世紀,巴貝奇的繼承者——艾肯

艾肯 (Howard Aiken) 比楚澤大十歲,母親也是德國裔。他青少年時全家搬到印第安那州,父親卻開始酗酒家暴。艾肯十二歲時為了捍衛母親,持撥火棒將抓狂的父親趕出門,父親從此消聲匿跡未再回來,全家生活也因而陷入困頓。

為了幫忙分擔家中生計,艾肯只好輟學打工。所幸他的老師認為他有數學天分,特地幫他找了個夜間接線生的工作,讓他白天仍能繼續上學。艾肯就這麼半工半讀直到完成大學學業,畢業後到電力公司上班,擔任電機工程師。工作將近十年後,他於 1933 年又重返校園,進入哈佛大學攻讀物理博士。

艾肯 (Howard Aiken, 1900-1973)。圖:WIKI

1936 年,艾肯在準備博士論文時,常因為計算非線性微分方程式,耗費大量時間與精神,讓他深感苦惱,因此也與巴貝奇、楚澤一樣,期盼能交給計算機代勞。

-----廣告,請繼續往下閱讀-----

雖然當時已經有許多 IBM 之類的計算機公司,但是艾肯詢問的結果,竟然沒有一台可以處理非線性微分方程式的計算機。他有聽聞布希剛發明的微分分析儀,但只能解線性微分方程式,因此也派不上用場。

艾肯轉念一想:既然 MIT 可以支持布希打造計算機,咱們哈佛難道不行嗎?艾肯跑去跟系主任提這個想法。結果系主任告訴他:聽說科學中心的閣樓裡有台黃銅製的計算機,要不你先拿去看能不能用。

原來在閣樓中蒙塵已久的機器,竟是巴貝奇的差分機模型。這是他的兒子亨利在他死後所造,然後於 1886 年,為了祝賀哈佛建校兩百五十週年,捐贈予哈佛大學。艾肯立刻迷上了巴貝奇的機器,他進一步研究後,才知道還有一架分析機才是巴貝奇的終極夢想。

艾肯埋首史料之中,感覺巴貝奇彷彿從過去招喚著他,要他完成使命——倒不是要按照巴貝奇的原始設計圖重現分析機,而是以當代技術實現分析機的功能。

-----廣告,請繼續往下閱讀-----
巴貝奇的兒子亨利所造的差分機模型。圖:WIKI

不過艾肯現在的研究領域是理論物理,已不再是工程師了,所以他無意親自動手,而是打算制定出計算機的規格後,再交由廠商設計打造。

1937 年 4 月,艾肯完成二十三頁的計算機企劃案,除了涵蓋分析機的所有功能,還增列一些要求,包括計算負數,以及運用現有的函數(這意謂著要有記憶體預存這些函數)。

艾肯拿著企劃案拜訪一家大型計算機廠商,但對方評估了幾個月後,還是婉拒他的提案。所幸這家廠商有位中階主管相當熱心,幫艾肯居中牽線,讓他於當年 11 月向 IBM 簡報他的企劃案。艾肯渾然不知,此刻就在不遠處的貝爾實驗室裡,有位博士已經在打造數位計算機的原始電路。

在廚房完成數位計算機的概念驗證——史提畢茲

史提畢茲 (George Stibitz) 比艾肯小四歲,成長過程相當順遂,26歲取得數學博士學位後,就直接到貝爾實驗室上班。當夏農於 1937 年暑假到貝爾實驗室實習時,史提畢茲已經在那裡工作滿七年,不過他與夏農不在同一部門,所以兩人彼此並不認識。

-----廣告,請繼續往下閱讀-----
史提畢茲 (George Stibitz, 1904-1995)。圖:WIKI

這一年,史提畢茲被分派新的任務,恰巧是負責繼電器的設計。身為數學家,史提畢茲原本就相當熟悉二進位制,他也注意到繼電器與二進位制的關聯性,而萌生了一個想法。

1937 年 11 月的一個週末,史提畢茲把一些零件帶回家,就在廚房餐桌上組裝起來。他剪開菸草罐,裁出幾塊薄鐵片,用它們將兩個繼電器、電池,與燈泡固定在木板上,再用電線把它們連接起來,做出史上第一個繼電器組成的數位加法器。因為它是在廚房誕生的,史提畢茲的妻子乾脆把它取名為「型號 K」。

因為史提畢茲只帶了兩套零件回家,所以只能輸入二進位的 01 或 10,相加的結果用兩個燈泡顯示,亮代表 1 ,暗代表 0。雖然這個加法器如此陽春,但它的意義在於「概念驗證」 (proof of concept),證明了用繼電器建構的電路,可以成為一部數位計算器。史提畢茲相信只要給他更多繼電器,就能打造出加減乘除都能做的計算機。

隔天史提畢茲帶著型號 K 去公司,興沖沖地展示給同事看,不過大家都只當它是個有趣的玩具,沒有人察覺到它的重大意義。史提畢茲多年後回顧當時情景,不禁感慨:「沒有煙火、沒有香檳」。其實就連他也沒想過自己正站在數位時代的開端,他只希望獲得主管首肯,讓他繼續開發數位計算機。

-----廣告,請繼續往下閱讀-----

就在史提畢茲爭取主管支持之際,美國中西部有位教授研究計算機已經一年多,某一天他突然靈光一閃,想出如何打造出全電子式的計算機。

魔幻時刻!在酒吧想出全電子式數位計算機——阿塔納索夫

阿塔納索夫 (John Vincent Atanasoff) 和史提畢茲年紀相仿,兩人只差半歲,同樣也在 1930 這一年取得物理博士學位。他在寫博士論文時,和巴貝奇等計算機先驅一樣,深受繁重的計算工作之苦,因而不時想像是否能用計算機解決。事實上,當時他還真的研究過學校向 IBM 租用的計算機,但發現它無法處理自己所用的方程式。

阿塔納索夫 (John Vincent Atanasoff, 1903-1995)。圖:WIKI

1936 年,阿塔納索夫已經是愛荷華大學的教授,他終於動手打造一台類比計算機,用來計算拉普拉斯轉換。最後雖然打造成功,但他也認清類比計算機存在無法克服的限制,無論是運算速度與數字精確度都無法滿足要求,於是他毅然決定轉向開發數位式計算機。

原子物理是阿塔納索夫的研究領域,他剛好知道英國物理學家溫-威廉斯 (C. E. Wynn-Williams) 於 1932 年用真空管電路打造二進位計數器,能以極高的速率偵測粒子,因此他決定也用真空管做為計算機的元件。不過真空管價格昂貴,如果全面採用,所需的資金恐怕他個人和學校都負擔不起。

-----廣告,請繼續往下閱讀-----

權衡之下,阿塔納索夫決定只有運算單元採用真空管,但記憶元件則使用電容器。電容器價格便宜許多,雖然充、放電的速度比較慢,但畢竟記憶單元的存取頻率不像運算單元那麼高,拖慢的速度尚可接受。

唯一的問題是,電容器的電力很快就會流失,貯存的資訊也就跟著消失。阿塔納索夫一直想不出如何維持電容器的電力,一直到 1937 年 12 月的一個夜晚,他為了整理思緒開車上路,一路開到三百公里外的伊利諾州。他走進路邊一家酒吧,點了酒慢慢小酌,突然間靈光一閃,電容器的充電機制就在腦中浮現。

這個關卡突破後,他隨即在餐巾上草擬出計算機的整體架構與基本規格。幾個小時後,阿塔納索夫步出酒吧,心滿意足地徐徐開車返家,準備展開全電子式數位計算機的打造計畫。

阿塔納索夫體驗了許多發明家的魔幻時刻,而 1937 這一年在數位計算機的歷史上也是神奇的一年。

群雄並起,誰能在數位計算機征戰中勝出?

這一年,夏農完成影響深遠的碩士論文,等待公開發表;德國的楚澤所設計的 Z1 計算機已在建造中;艾肯試圖說服 IBM 開發他已制定好規格的計算機;貝爾實驗室的史提畢茲完成邏輯電路的概念驗證,爭取主管同意開發數位計算機;阿塔納索夫則跳過繼電器,構思出全電子式的計算機。

1937 年,群雄並起,不約而同地追逐數位計算機這座聖杯。究竟哪組人馬最後會脫穎而出呢?

文章難易度
張瑞棋_96
423 篇文章 ・ 955 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

3
2

文字

分享

0
3
2
【2023 諾貝爾物理獎】什麼是「阿秒脈衝雷射」?能捕捉到電子運動的脈衝雷射?
PanSci_96
・2023/11/28 ・5966字 ・閱讀時間約 12 分鐘

林俊傑《江南》:「相信愛一天,抵過永遠,在這一剎那凍結了時間」

這一剎那持續了多久?這出自佛經的時間單位有多個解讀,其中最短,可以對應的國際單位制是阿秒。 1 阿秒又有多快呢? 1 阿秒等於一百萬兆分之一秒,是已經短到不行的飛秒的千分之一。在這段時間,別說是談戀愛了,連世界上行動最快的光,也只能移動一顆原子直徑的距離。

在阿秒的時間尺度裡,連光都得停下腳步,過去我們認為捉摸不定的電子,也終於將在我們眼前現身。 2023 年的諾貝爾物理學獎,正是頒給了三位帶領人類進入阿秒領域,探索全新世界的科學家。而這項技術,還可能讓電腦的運算速度加快一萬倍!

就讓我們一起來進入阿秒的領域吧,領域展開!

什麼是阿秒脈衝雷射?

今年諾貝爾物理學獎的三位得主分別是 Pierre Agostini 、 Ferenc Krausz 、和 Anne L’Huillier ,表彰他們對阿秒脈衝雷射實驗技術的貢獻。

-----廣告,請繼續往下閱讀-----
圖/X

所謂的阿秒脈衝雷射,指的是持續時間僅有數十到數百阿秒的雷射。當我們能使用脈衝雷射來觀察目標,就好比使用快門時間極短的相機對目標拍照,能捕捉到瞬間的畫面。

2018 年的諾貝爾物理學獎,就頒給了極短脈衝雷射的研究。短短 5 年後,雷射領域再次得獎,但這次是更快的阿秒雷射,能捕捉到電子運動的超快脈衝雷射。

世界上沒有東西能真正的觸碰彼此?看見電子能帶來什麼突破?

為什麼看見電子的運動那麼重要呢?我們複習一下原子的基本構造,在原子核之外,帶有微小負電荷的電子,被帶正電的原子核束縛住。量子力學告訴我們電子沒有確切的位置,而是以特定的機率分布在原子核周圍的不同地方,也就是所謂的電子雲。

圖/YouTube

雖然電子的體積比原子核小很多,但電子雲的範圍,卻占了原子體積的絕大部分。在物理或化學反應中,真正和其他原子產生交互作用的,幾乎都是這些外面的電子。在電影《奧本海默》中,當男女主角手心貼著手心,奧本海默這時卻說:「世界上沒有東西能真正的觸碰彼此,因為我們觸摸到的物體,都只是其中原子的電子雲和我們手上的電子雲產生的斥力。」

-----廣告,請繼續往下閱讀-----
圖/screenrant

對了,這種話也只有奧本海默跟五條悟可以講,一般人請不要隨便亂牽別人的手。

除了和心儀的他牽手,不同的電子排列狀態也會直接影響物質的化學活性、材料的導電導熱等基本性質,各種化學和物理過程都和電子息息相關。從非常實際的層面來說,電子可以說是物質世界最重要的基本單位。所以不難想像,如果我們能看見電子,甚至獲得可以操縱個別電子排列與能量的技術,我們能真正成為材料的創世神,許多不可能都將化為可能,是相當重大的突破。

捕捉電子運動有多困難?

但要操縱電子可不是什麼簡單的事,不只是因為電子非常小,更重要的是他們動得非常快。具體來說,電子在原子周圍跳動的週期時間尺度大約是十的負十八次方秒,也就是一阿秒。一顆原子的大小約是十的負十次方公尺,速度等於距離除以週期,換算下來,電子雲差不多是以光速等級的速度在原子核周圍跳動。

圖/wikipedia

如果要捕捉到阿秒尺度的電子運動,就必須將實驗的時間解析度也提升到阿秒等級,否則就會像是用長曝光鏡頭拍攝亞運競速滑冰比賽一樣,只能拍到一團糊糊的影像,而沒辦法分出勝負。

-----廣告,請繼續往下閱讀-----

可是,在 1980 年代,脈衝雷射最快只能達到十的負十五次方左右,還只有飛秒等級。而且光靠當時的技術和材料優化,已經沒辦法再縮短脈衝時間了,因此這時候,就要從原理上重新打造一套方法了。

如何製造更快的脈衝?

首先,要製造更快的脈衝並不是用頻率更高的電磁波就好。你想,我們在拍照時,想要讓曝光時間更短,要改善的不是把室內光源從可見光改成頻率更高的紫外光,而是調快快門的開闔速度,讓光一段一段進入感光元件中,變成影片一幀一幀的畫面。而這一段一段進入像機的光訊號,就像是我們的脈衝。

不論是皮秒雷射、飛秒雷射還是阿秒雷射,一直以來在做的都是同一件事,在整體輸出功率不變的情況下,讓每一次脈衝的持續時間更短,同時單一次的功率也會更高。簡單來說,就是要從無數次的普通攻擊,變成每一次都是集氣後再攻擊。

但要怎麼為光集氣呢?光和其他波動一樣,可以和其他波動疊加。把不同頻率的光疊加在一起,波峰和波谷會抵消,波峰遇上波峰則會增強。只要用特定的比例組合許多不同頻率的光,就可以在整體總能量不變的情況下,產生一個超級窄的波峰,其他地方全部抵銷。

-----廣告,請繼續往下閱讀-----

1987 年,本次諾貝爾獎得主之一的 Anne L’Huillier 教授發現,當紅外線雷射穿過惰性氣體時,氣體會被激發放出整數倍頻的光。也就是氣體放出許多不同頻率的光,而這些頻率都是原本光源頻率的整數倍,從兩倍三倍到三十幾倍以上的高倍頻光都有。而橫跨這麼大頻率範圍的光,就能組合出時間長度很短的脈衝光。

不過這聽起來未免也太好康了,真的有那麼簡單嗎?

這個看似魔法的實驗背後其實有著相當簡潔的物理圖像。電子原本是被電磁力束縛在原子中,當一道強度夠強的雷射通過氣體原子,原本抓住電子的電位能被雷射削弱。

雖然這道牆只是矮了一些可是還是存在,但此時,在電子的大小尺度下,量子力學發揮了作用。調皮的電子有機會透過量子穿隧現象,穿過這道束縛,暫時逃離原子核的掌控。關於量子穿隧效應的介紹,我們近期也會再做一集節目來專門介紹。

-----廣告,請繼續往下閱讀-----

但電子還來不及逃遠,雷射光已經從波谷翻到波峰。電磁波的波谷與波峰,不是指能量的高和低,而是指方向相反。因此在相反的電磁場方向下,不幸的電子被推回原子核附近,再度被原子核捕獲。但在這欲擒故縱、七擒七縱的過程後,電子並非一無所獲,他所得到的動能會以光的形式重新放出。

而因為這些能量最早都來自雷射,因此電子放出的光波長,也剛好會是雷射的整數倍。再說的細一些,你可以理解為這些電子在吸收一顆顆光子後,一口氣釋放這些能量,所以能量都是一開始光子的整數倍。

在 1990 年代,科學家已經掌握了這個現象背後的原理。但一直到千禧年過後。這次諾貝爾獎得主之一 Pierre Agostini 教授和他的研究團隊才終於在適當的實驗條件之下,利用高倍頻光打造出了一連串寬度只有 250 阿秒的脈衝。同時第三位得主 Ferenc Krausz 也使用不同方法,分離出 650 阿秒的脈衝。

最後,獲得阿秒脈衝這個祕密武器之後,我們的世界將迎來哪些變化呢?

-----廣告,請繼續往下閱讀-----

阿秒脈衝在各領域的應用

其實啊,有在關注諾貝爾獎都知道,諾貝爾獎通常不會頒給時下正夯的新興研究,前面講的研究,實際上都已經是二十多年前的往事了,而這些辛苦的科學家會在這麼多年後拿下諾貝爾獎的榮耀,正是因為阿秒雷射的發明經過了時間的考驗,成為非常普及的實驗技術,而且被大家公認為重要的科學貢獻。

當然,今年生醫獎的 mRNA 是個超快例外,有興趣的話,別忘了點擊下方影片,看看編劇都編不出來的 mRNA 研究歷程。

說了那麼多,阿秒雷射究竟對人類生活有什麼幫助呢?當然,它能讓我們更深刻了解物質還有光的本質,但是除了幫電子拍下美美的照片放在期刊的封面上,阿秒雷射可以用來做什麼?

在過去這二十年,許多研究已經找到了相當有潛力的應用。

-----廣告,請繼續往下閱讀-----

舉例來說,在醫療方面,阿秒雷射可以用來分析血液或尿液樣本。控制良好的超短脈衝可以精準的刺激生物樣本中的各種有機分子,讓這些分子震動並放出紅外線訊號。如果使用的脈衝長度太長,分子釋放的訊號就很容易和原本施加刺激的雷射混在一起,造成量測的困難。唯有阿秒等級的超短脈衝能夠實現這樣的量測。

這些紅外線光譜就像是質譜儀一樣,能幫助我們快速分析血液中的蛋白質、脂質、核酸等重點物質的關鍵官能基狀態。並透過機器學習的方式整合,成為個人化的健康狀態報表,或是做為診斷的依據,將精準醫療提升到全新的層次。

圖/attoworld

不只如此,發送超短脈衝的技術也可能革新當今的電腦運算。電腦運作的方式就是利用電晶體這種微小的開關,不斷的開開關關去發送一跟零的訊號,所以開關電流的速度便決定了你的運算速度。以半導體為基礎的電晶體,工作頻率通常不超過上百 GHz ,在時間上也就是十的負十一次方秒。

自從阿秒雷射技術普及之後,就有科學家想到:既然雷射脈衝的速度更快,那不如就別用半導體了,改用光學脈衝來控制電流作為運算的媒介。這個概念叫做光學電晶體(Optical Transistor)。

今年初,亞利桑那大學的團隊便發展示了如何利用小於十的負十五次方秒的超短雷射脈衝,來開關電流並傳送一與零的位元,這個頻率比現有半導體電晶體快了一萬倍以上。這顯示了光學方法的操作頻率可以有多快,或許能讓我們突破訊號處理和運算上的速度瓶頸。

看完這些便可以理解,阿秒等級的超快雷射脈衝的確是相當近代的一個科學里程碑。就像是科學革命時望遠鏡和顯微鏡的發明,讓人們看見那些最遠和最小的事物,超快脈衝用最快的時間解析度,讓我們看到許多人類從未看過的景象。

阿秒脈衝雷射的出現,是科學上的一個里程碑,讓我們能用更高的時間解析度,讓我們看到許多過去從未看到的景象。最後也想問問大家,在雷射這一塊,你最期待有哪些應用,或者最希望我們接著來講哪個主題呢?

  1. 為什麼醫美、眼科手術那麼喜歡用飛秒、阿秒雷射,真的有比較好嗎?
  2. 使用雷射脈衝的光學電晶體真的有可能取代傳統電晶體嗎?
  3. 除了光學電晶體,最近很夯的矽光子技術,聽說裡面也有用到雷射,可以一起來介紹嗎?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

PanSci_96
1219 篇文章 ・ 2197 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
1

文字

分享

0
0
1
忠泰美術館新展《未來的生命,未來的你─數位、機器與賽博格》9/9 登場
PanSci_96
・2023/09/08 ・6294字 ・閱讀時間約 13 分鐘

-----廣告,請繼續往下閱讀-----

15 組國內外藝術家與團隊開啟新生命與未來情境的提問、想像與思索

「你是否曾想像,在身體中植入機械,人機融合並化身為賽博格的自己?」

忠泰美術館即將於 9 月 9 日至 2024 年 1 月 28 日推出全新當代藝術展《未來的生命,未來的你數位、機器與賽博格》(The Future Life, Future You – Digital, Machine and Cyborgs)。延續上檔展覽中以建構城市與文明的基礎「人」出發,由反思擁有肉身的「人類」存在與本質,進一步探問「生命何為」,思考人與科技共構的未來生命情境與議題。本展邀請沈伯丞擔任策展人,匯集來自英、美、法、日、德國與埃及、西班牙、墨西哥、臺灣共 15 組國外內藝術家與團體,帶來 6 組全球首展與 4 組全臺首度亮相的新作,透過 AI 演算、大數據、深偽技術、穿戴裝置、賽博格等科技與藝術的結合創作,映射出藝術家們對未來生命形貌的多元想像。

生命何為:生命是什麼?能做什麼?為了什麼?

當 AI 人工智慧、機械穿戴手臂從科幻電影橋段躍入我們的日常生活中,科技改變生活,也逐漸影響了生命的樣貌與演化,生命開始超越人類肉身的物理型態時,我們又該如何去思考未來的生命與生活?忠泰美術館本次邀請沈伯丞擔任策展人,以其長期的藝術計畫「再・創世:智慧生命的衍生型態」研究為基礎,從生命是一個持續發展中、創造中的概念出發,策劃當代藝術展《未來的生命,未來的你─數位、機器與賽博格》,從藝術視角思辨,當科技介入了生活與生命,生物六大分類之外是否還將多出「科技界」?物競天擇「演化論」與科技始終來自於人性的「控制論」交會之下,未來的生命與生活情境又會有怎樣的想像。

沈伯丞表示:「展覽所意欲投射的並非僅是關乎生命的『科技』,更是關乎新科技情境中『生命樣態』的人文思索與美學關懷。」,展覽邀請了 Aiden Faherty、Hassan Ragab、Jake Elwes、JIZAI ARMS project team、Mal Bueno、Markos Kay、Martin Backes、Moon Ribas、Patrick Tresset、Universal Everything、陳乂、陳萬仁、陽春麵研究舍─陳姿尹、莊向峰、黃新、蘇匯宇,國內外共 15 組用創作回應科技浪潮的藝術家與團隊,透過3個子題「流動的生命與身體」、「數位裡的你與數位的它」和「機器、人與賽博格」,引領觀者凝視現場作品,直面新生命與新生命情境的提問、想像與思索。

「流動的生命與身體」 當科技鬆動了生命與身體定義

地球上的生命經歷數十億年的自然演化,形成了如今的物種樣貌,隨著科技的日新月異,無序且隨機的自然演化過程被演算與邏輯控制。隨著科技而流動的生命觀點與身體型態,恰是「人擇」的證明,人與動物、有機體與無機體,現實與虛擬之間的邊界逐漸模糊鬆動,生命與身體的型態也有了更多的解讀。

-----廣告,請繼續往下閱讀-----

英國藝術家傑克.艾維斯(Jake Elwes)首度在臺展出的〈Zizi 動起來:深偽變裝烏托邦〉,將深偽技術(deepfake)與酷兒群體結合,從 AI 演算中誕生的變裝皇后們,在如同櫥窗的螢幕中不斷流轉變換軀體與角色,企圖反思人工智慧的族群概念,打破固化的性別與身體定義。臺灣藝術家蘇匯宇的〈The White Waters〉三頻道錄像作品,以「後人類」敘事補述經典傳說《白蛇傳》,從文本中人、蛇異種的身體流動,解構生物界的邊界。埃及建築師哈桑.拉賈(Hassan Ragab)的系列影像,提取人與建築的影像,透過 AI 圖像生成系統 Midjourney、Stable Diffusion 等,將建築從「生活機器」,幻化為能走秀、跳舞的人形「生物活體」。

美術館還將於 11 月中旬加碼開放忠泰企業大廳展區,展出英國藝術團體Universal Everything的知名作品〈變形〉,巨型人形影像,邁著未曾停止的步伐,宛如電影《驚奇4超人》般從石頭、火、水、金屬等自然的元素不斷地演化變形,映照著生命與人類的演化從不止息。

「數位裡的你與數位的它」 演算法環境中人類與生命的形象

當生命與身體在演化與演算交會時被重新定義,數位維度中對「自我」與「他者」的認知也將有所轉變。

1、「你」:人類於演算環境中的形象

關於人類於數位環境中對「自我」的認定,甫獲得林茲電子藝術獎的臺灣藝術團隊陽春麵研究舍─陳姿尹、莊向峰,於本展中將得獎作品《Inter net》系列延伸出兩組全新現地創作,接續探討 AI 演算中「我」的形象。空間互動裝置〈Inter net – Labeling me〉中,可見 AI 判讀標記、搜尋引擎記錄,以及機器人與觀者「眾包標註」下的「我」的形象。單頻道演算影像裝置〈The Portrait – The Crowd’s Portrait of Me〉與〈The Portrait – My Self-Portrait〉將描述藝術家的文本轉換成特徵向量,以看似雜訊的影像,勾勒出數位足跡中的認知肖像。

-----廣告,請繼續往下閱讀-----

陳萬仁作品〈歪腰一下〉,位於美術館天井中,讓觀者以仰望的視角,觀看由藝術家 3D 繪製的人形,將現實去背進行數位縫合,行走於數位時空裡無止盡的空循環與延伸。墨西哥藝術家馬爾.布埃諾(Mal Bueno)全球首次展出的作品〈終曲〉,將與作品互動的觀者形象上傳到數位維度中,直覺呈現數位演算法中的「你」。

2、「它」:演算誕生的新生命型態

當現實生活中的元素與概念轉化成編碼再重新生成,人的意識與選擇,又會如何影響新生命情境?臺灣藝術家黃新的全新創作〈生成速寫:多肉植物園〉即時演算影像裝置,便是將多肉植物由演算法生成速寫畫,以程式的幾何造型來解構日常的場景。陳乂的人造風動模擬裝置〈風場〉,以風量、風向與風的聲音資訊作為採集與實驗項目,將 AI 演算法生成的數據模型匯入機械裝置結合,由蘆葦般的發光體演繹一段模仿自然風吹的搖曳姿態。

以數位人造生命為題,英國藝術家馬科斯.凱(Markos Kay)的〈非生物起源〉,直接在數位環境中生成擁有鮮豔色彩,如同細胞般的新物種,藝術家試圖透過創作生命探詢生命起源。在 TikTok 抖音擁有超過 50 萬粉絲的「Coolacloy」,創作者是來自美國的藝術家艾登.費海提(Aiden Faherty),本次展出的影像作品〈穿越超驗森林之旅〉為藝術家首次於國際間展出的作品,透過 AI 深層學習模型捕捉自然界資訊生成的生態系,讓觀者進入現實與想像無縫融合的《愛麗絲夢遊仙境》。

德國藝術家馬丁.貝克斯(Martin Backes)的擴增實境創作〈我知道什麼?我只是個機器?!〉,讓觀眾透過行動裝置與懸浮在美術館空間內的正圓球形機器人相遇、對話,藝術家試圖透過 AR 擴增實境昭示數位維度裡的新生命型態。

-----廣告,請繼續往下閱讀-----

「機器、人與賽博格」 人與科技重新共構的生命情境

科技趨勢預言家凱文.凱利(Kevin Kelly)曾提出「科技界」的概念,即科技體為生命的第七種型態,而人工智慧的發展,彷彿回應著此概念,預告了人與機器之間的新關係網路。法國藝術家帕特里克.特雷塞特(Patrick Tresset)透過作品〈人類研究 #2─公雞與狐狸等的大虛幻〉,思考著機器、人之間的多重可能性。機器手臂進行素描繪圖,如同人類般觀察、提筆,探索著機器如何學習成人的過程,同時也由此行為反思機器的「創作」是否為創作?是否為「藝術」?

機器學著成為人,而人則試圖將肉體改造為混合機器的「賽博格」。被喻為世界上第一位女賽博格藝術家的西班牙藝術家穆恩.里巴斯(Moon Ribas),通過將地震傳感器植入體內,讓身體與大地的律動結合一體。首次在臺展出的作品〈在蒙塞拉特山等待地震〉為一支雙人舞作,由地球掌控節奏和強度,而藝術家則透過接收地震波動的強弱來詮釋舞曲。日本東京大學實驗室研究計畫的自在肢計畫團隊(JIZAI ARMS project team),則以外掛型態研究開發穿戴式機器人模組《自在肢》,形似電影角色「八爪博士」的穿戴肢,能由使用者自由改變其穿戴型式,試圖探索賽博格社會中,不同「數位賽博格」之間所能發生的互動。

忠泰美術館導入 AI 技術應用 生成語音導覽、展覽主視覺

忠泰美術館持續透過當代藝術展覽及視角回應美術館長期關注的「城市」與「未來」議題,忠泰基金會執行長李彥良表示:「科技帶領著當代生活不停地變動與發展,也改變著人們的生活型態與認知。我們該如何在這樣的環境中找到適應並前進的方式?希望藉由本展所開啟的對話,能提供我們對於近未來想像的素材與方向。」

-----廣告,請繼續往下閱讀-----

館方也嘗試於展覽周邊事務中導入 AI 技術應用,包括結合 Bing Image Creator AI 繪圖工具製作的展覽主視覺,以及 AI 聲音生成技術製作的語音導覽等。本展中多件影像創作,忠泰美術館與連續 17 年全球電視銷售第一的三星電子攜手合作,使用擁有 AI 影像升頻技術的 Neo QLED 8K,結合量子 Mini LED 背光與金屬量子點顯色技術,呈現藝術家於數位維度的創作中,新物種、新生命情境的絢麗幻想。《未來的生命,未來的你》從 9 月 9 日展至明年 1 月 28 日,期間將陸續推出展覽系列專題講座、電影與漫畫共享沙龍、專家導覽等多元活動,邀請觀眾一同想像「未來的生命,未來的你」。更多展覽活動與看展優惠資訊,詳見美術館官方網站。

【展覽資訊】

展覽名稱|未來的生命,未來的你─數位、機器與賽博格

展覽期間|2023.09.09(六)-2024.01.28(日)

-----廣告,請繼續往下閱讀-----

展覽地點|忠泰美術館、忠泰企業大廳(臺北市大安區市民大道三段178號)

開放時間|週二至週日 10:00-18:00(週一休館);忠泰企業大廳作品展出時間請見官網參觀資訊

參觀資訊|全票 100 元、優待票 80 元(學生、65 歲以上長者、10 人以上團體);身心障礙者與其陪同者一名、12 歲以下兒童免票(優待票及免票須出示相關證件)

週三學生日|每週三憑學生證可當日單次免費參觀

-----廣告,請繼續往下閱讀-----

官網|https://jam.jutfoundation.org.tw/exhibition/4337

PanSci_96
1219 篇文章 ・ 2197 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

2
0

文字

分享

1
2
0
如果整個地球由質子構成,月球由電子構成,那會怎樣?——《如果這樣,會怎樣?2》
天下文化_96
・2023/04/26 ・2141字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

如果整個地球都由質子構成,而整個月球都由電子構成,那會怎樣?
——諾亞.威廉斯(Noah Williams)

質子地球,電子月球

這可能是我寫過最具破壞性的假設情境。

你可能會想像電子月球繞著質子地球運行,有點像是巨大的氫原子。某方面來說,這還有點道理;畢竟,電子繞著質子運行,而衛星繞著行星運行。事實上,原子的行星模型曾流行一時(不過,拿來解釋原子竟然不太管用)。

如果你把兩個電子放在一起,它們會想要分開。電子帶負電,而來自電荷的排斥力比將它們拉在一起的重力強了大約 20 個數量級。

如果你把 1052 個電子放在一起(構成月球),它們會劇烈的互相排斥,以致每個電子會被大到不可思議的能量推開。

-----廣告,請繼續往下閱讀-----

事實證明,對諾亞假設的「質子地球和電子月球」情境來說,行星模型更是大錯特錯。月球不會繞著地球運行,因為它們根本沒有機會影響彼此;使兩者各自分別炸開的力量,會遠大於兩者之間的任何吸引力。

如果暫時忽略廣義相對論(等一下會回來談),我們可以算出,來自這些電子相互排斥的能量,足以使它們向外加速到接近光速。將粒子加速到那樣的速率並不少見;桌上型粒子加速器(例如映像管螢幕)可以將電子加速到光速的相當比例。

但是,諾亞月球的電子所攜帶的能量,會遠遠大於普通加速器中的電子所攜帶的能量。它們的能量會超過普朗克能量的數量級,普朗克能量本身則是比最大的加速器中,所能達到的能量又大了很多數量級。換句話說,諾亞的問題遠遠超出普通物理學的程度,帶我們進入到量子重力與弦理論之類的高等理論領域。

所以我聯繫了尼爾斯.波耳研究所(Niels Bohr Institute)的弦理論科學家基勒博士(Dr. Cindy Keeler),請教她關於諾亞的假設情境。

-----廣告,請繼續往下閱讀-----

基勒博士同意,我們不應該信賴任何涉及「在每個電子中放這麼多能量」的計算,因為這遠遠超出加速器測試的能力範圍。「我不相信粒子能量超過普朗克尺度的任何事情,」她說。「我們實際觀測到的最大能量存在於宇宙射線中;我認為比大型強子對撞機大了差不多 106,但還是離普朗克能量很遠。身為弦理論科學家,我很想說會發生什麼關於弦理論的事情——但說老實話,我們也不知道。」

幸好,故事還沒結束。還記得我們先前決定忽略廣義相對論嗎?嗯,這是「帶入廣義相對論反而使問題更容易解決」的罕見情況之一。

在這種情境下,存在巨大的位能——使所有這些電子遠離彼此的能量。這樣的能量會扭曲空間和時間,和質量一樣。結果證明,電子月球中的能量大約等於整個可見宇宙的質量與能量總和。

相當於整個宇宙的質能集中在(相對較小的)月球的空間裡,會使時空強烈扭曲,甚至會比那 1052 個電子的排斥力還要強。

-----廣告,請繼續往下閱讀-----

基勒博士斷言:「沒錯,黑洞。」但這可不是普通的黑洞,而是帶有大量電荷的黑洞。為此,你需要一組不同的方程式——不是標準的史瓦西(Schwarzschild)方程式,而是萊斯納—諾德斯特洛姆(Reissner-Nordström)方程式。

萊斯納—諾德斯特洛姆方程式比較了向外的電荷作用力和向內的重力之間的平衡。如果來自電荷的向外推力夠大,黑洞周圍的事件視界可能會完全消失。那樣會留下密度無限大的物體,光可以從中逸出——這就是所謂的裸奇點(naked singularity)。

一旦有了裸奇點,物理學就會開始分崩離析。

量子力學和廣義相對論給出荒謬的答案,甚至是不同的荒謬答案。有人認為,物理定律根本不容許出現這種情況。正如基勒博士所言,「沒有人喜歡裸奇點。」

-----廣告,請繼續往下閱讀-----

以電子月球的例子來說,來自所有這些電子互相排斥的能量會非常大,以致重力會獲勝,而奇點會形成正常的黑洞。至少,某方面來說是「正常的」;它會是和可觀測宇宙一樣大的黑洞。這個黑洞會導致宇宙塌縮嗎?很難說。答案取決於暗能量是怎麼回事,沒有人知道暗能量是怎麼回事。

但就目前而言,至少附近的星系是安全的。由於黑洞的重力影響只能以光速向外擴展,因此我們周圍的大部分宇宙仍會天下太平,對我們荒謬的電子實驗毫不知情。

——本文摘自《如果這樣,會怎樣?2:千奇百怪的問題 嚴肅精確的回答》,2023 年 3 月,天下文化出版,未經同意請勿轉載。

所有討論 1
天下文化_96
132 篇文章 ・ 618 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。