時時刻刻監測您的「飛行安全」——智慧型手機有潛力作為「大麻檢測器」

智慧型手機的功能日趨全面,幾乎就要包辦日常生活大小事,當然也包含我們的健康。有些人拿它來記錄每天的運動狀況,也有人搭配應用程式,監測自己的心肺功能。

但這還不夠,科學家總是能想到更奇葩的需求:未來,你的手機也有機會變身「大麻檢測器」了!羅格斯大學健康暨健康政策與高齡研究所(Rutgers Institute for Health, Health Care Policy and Aging Research)研究團隊,調查大麻使用者的「嗨度」,並將其與機器學習技術做結合,試圖打造能準確判斷大麻中毒程度的日常小工具。

研究發表於《藥物與酒精依賴》(Drug and Alcohol Dependence)期刊[1]

大麻何以讓人愉悅?

法國喜劇劇集《大麻咖啡館》(Family Business)中,年輕企業家喬瑟夫.亞贊(Joseph Hazan)乘著法國大麻合法化的順風車,決定將老父親傑哈德.亞贊(Gérard Hazan)的肉鋪改造成大麻咖啡館。雖說父親一開始很反對,但在偶像安瑞可.馬西亞斯(Enrico Macias)的循循善誘下,父親最終也體驗了呼麻的快感,並開始積極面對他們的咖啡館事業。

-----廣告,請繼續往下閱讀-----

大麻為何能讓人快樂到放棄執著?一個叫四氫大麻酚(Tetrahydrocannabinol, THC)的傢伙扮演著關鍵角色。由於 THC 的化學結構與人體的內源性大麻「花生四烯乙醇胺」(anandamide)十分相似,它能與大麻素受體(cannabinoid receptors)結合,並啟動大腦的獎勵系統,讓我們感到身心愉悅[2]

這不免讓人感到好奇:究竟,人們是如何攝入大麻的呢?

一般來說,大麻被攝取的途徑有二:吸食,或直接拿起來嗑(沒啦,是摻在食物裡面服用)。當人們吸食大麻時,裡頭的化學物質會從肺部進入血液,進而將它們運送到身體各處,包括大腦。但如果是用吃的,由於是透過消化系統吸受,因此大麻所帶來的影響通常會晚個 30 分鐘到 1 小時出現。

製作中的大麻奶油。圖/WIKIPEDIA

大麻中毒將導致「定向感」降低

對大麻使用者來說,它最迷人的地方大概就是使用後欣快的放鬆感受。此外,有些人也會體驗到感官放大的飄忽景象,但也有部分人認為,大麻會讓他們感到焦慮、恐懼、不信任和恐慌。雖然目前較少有因純粹吸食大麻而死亡的案例,然而,若是使用過量,便會引發大麻中毒(cannabis intoxication)[3]

-----廣告,請繼續往下閱讀-----

大麻中毒的人,輕則產生飢餓與嗜睡等症狀,嚴重的話,會導致認知與對人事時地物的定向感降低,甚至會出現急性精神病(acute psychosis)[4]。其他典型、可預測的症狀,還包括口乾舌燥、紅眼、短期記憶受損,以及知覺和動作的影響等5

部分大麻中毒者,會因為大麻在精神上的影響,對外界反應時間過慢,造成工作或學校表現低落,甚至在開車、駕駛時形成干擾,最終導致交通事故與傷亡等憾事。

雖說如今有血液、尿液或唾液等測試,能針對大麻中毒進行檢測,但若要實現日常生活中的時刻監測,恐怕還是有些限制的。

過去曾有研究,以現代人形影不離的「智慧型手機」裡的感測器,來探測高風險的飲酒者,準確率高達 90%[6]。有鑑於此,羅格斯大學健康暨健康政策與高齡研究所團隊開始研究,想知道在機器學習模型的協助下,手機是否能發揮檢測「大麻中毒」的作用,即時探測那些可能因大麻中毒引發的危機。

-----廣告,請繼續往下閱讀-----
智慧型手機,有潛力作為「大麻中毒」的檢測器。圖/Pexels

如何檢測嗨不嗨?關鍵是「使用後的行為」

團隊首先從美國賓州匹茲堡(Pittsburgh, PA)找來 57 位年齡介在 18~25 歲的年輕人,透過自我報告,得知他們每週至少使用大麻兩次。之後,團隊透過「手機回傳調查」搭配「手機內感測器數據」等方法,每日收集受試者使用大麻的相關數據持續至多 30 天,以掌握他們在大麻中毒後的狀況。

其中,回傳調查每日三次,包含開始與結束使用大麻的時間、用量,以及主觀感受的自我評分——依據「嗨」的程度,評分標準為 1~10分,其中 10 分為「敲級嗨」。後來回傳的 451 起大麻使用事件中,平均「嗨度」為 3.77 分。

而手機則搭配應用程式,收集了 102 種手機感測器的數據,如 GPS、加速度計(accelerometer)、撥出的電話數量以及平均移動距離等。有些人聽到這裡可能坐不住了。等等⋯⋯GPS 這類定位工具與加速度計,到底能做什麼?是這樣的,GPS 可用來偵測大麻使用者陷入「自我陶醉」時的行進範圍(travel boundary),而加速度計則是用來監測他們的步態與身體活動量。

在對照受試者的回傳調查及手機數據後發現,當使用者回報他們「正嗨」時,透過 GPS 的數據分析可知,他們的移動範圍並不遠。另外,此時加速度計的資料也顯示,主觀報告大麻中毒者,雖然活動多樣性下降,但身體的活動程度卻比較劇烈。

-----廣告,請繼續往下閱讀-----

考慮時間點的監測,精確度大提升!

最後,他們在演算法的幫助下[7][註1],盼能瞭解上述方法,是否能區別無中毒和中毒(輕度或中度)的情形。透過各種中毒時的行為特徵,加上機器學習技術的檢核,智慧型手機就可以變成如假包換的「大麻使用監測器」啦!

為了探究這個組合的準確性,團隊企圖在不同的時間點(例如:一周中的某一天,或是某一天的幾點幾分)下做排查,找出與大麻使用行為與特定時間點的關係,以進一步確認大麻中毒的具體指標。

結果顯示,僅出動手機內的感測器偵測這群人是否使用大麻,準確度為 67 %;但若結合「個人呼麻時間點」與 GPS 和加速度計等資料,則準確度高達 90%

經乾燥過後的大麻示意圖。圖/Pexels

用手機偵測大麻使用?得再等等⋯⋯

面對如此結果,研究團隊認為,以手機結合機器學習預測大麻中毒程度,是相當可行的。不過,未來還需要加入更多資料,以完備這項工具。

-----廣告,請繼續往下閱讀-----

首先,由於該研究對大麻中毒的判定,主要建立在「受試者主觀判斷和自我(ㄕㄡˇ)報告」的基礎上,因此在物質使用和生理反應的識別上,不如執法部門的檢驗工具那般客觀。此外,像是大麻使用者的使用史、攝入身體的途徑、劑量,以及使用者對大麻的耐受性,都會影響他們報告身體狀況的結果。

不僅如此,像是不常使用大麻者在中毒時,他們的行為與身體反應和那些「老司機」們相比,是否有明顯差異?該研究受試者多為白人,其他人種在同劑量的條件下,會不會產生相應的數據?這裡不是要戰種族,但光是「喝酒」這件事,每個人種的反應也多少帶有一些差異,像亞洲人普遍就很難代謝酒精[8]

以上種種,都是這個工具可能被泛用的關鍵。最後,假設這個大麻偵測小工具,有朝一日被推到應用程式的市場上,你會想下載嗎?又,我們是否能因為大麻使用者的敏感身份與風險,而逕自對他們搜集資料、加以監控?作為一旁拍手叫好等待好用產品問世的小老百姓,在引頸期盼的同時,也必須深思這樣的問題。

註解

  • 註 1:該研究所使用的技術為「Light Gradient Boosting Machine」,是微軟公司以「決策數演算法」(decision tree algorithms)為基礎,於二〇一七年釋出 LightGBM 演算法,用於排序、分類和其它機器學習的任務。

參考文獻

  1. Sang Won Bae et al. (2021) Mobile phone sensor-based detection of subjective cannabis intoxication in young adults: A feasibility study in real-world settings. Drug and Alcohol Dependence.
  2. How does marijuana produce its effects? National Institute on Drug Abuse, 2020.
  3. What are marijuana’s effects? National Institute on Drug Abuse, 2020.
  4. Helen Okoye. Cannabis Intoxication DSM-5 292.89 (F12.12). Theravive.
  5. Marijuana intoxication. U.S. National Library of Medicine.
  6. Bae et al. (2018) Mobile phone sensors and supervised machine learning to identify alcohol use events in young adults: Implications for just-in-time adaptive interventions. Addictive Behaviors
  7. LightGBM. Wikipedia.
  8. Hui Li et al. (2009) Refined Geographic Distribution of the Oriental ALDH2*504Lys (nee 487Lys) Variant. Annals of Human Genetics.
-----廣告,請繼續往下閱讀-----
帕德波耶特 Pas de poète

嗜酒如命的平靜份子,逃離醫療工作後,在一連串荒謬的經歷下,成了文字與音樂工作者。