由英國牛津大學的 Henry J. Snaith 所領導的研究團隊,包含來自牛津大學、日本的桐蔭橫浜大學(Toin University of Yokohama)與日本茨城縣的 AIST(產綜研)的共同作者,已將他們高效率太陽能電池的研究發表在 Science 上。
「這是一種新技術,故在本質上就是一項新紀錄,」Snaith 表示。「所有太陽能電池技術都有不同的效率,使用 GaAs 最高可超過 28%。這並不是一項絕對的世界記錄,但卻有可能是可溶液製程固態太陽能電池中最高的。而且真正令人振奮的是,接下來幾年其所能達到的地步;它應當具有陡峭的改良曲線。」
在太陽能電池效率的貢獻程度上,電極材料的選擇在太陽能電池中是最重要的因素之一,而 TiO2 由於其優良的光激發(photoexcitation,將光子轉換成電子)能力,以及用染料或吸收劑(absorber)光敏感化(photosensitized)後,其強大的電子接受(electron-accepting)特性,常在可溶液製程太陽能電池中被當成電極材料使用。
但為了要改善太陽能電池效率,科學家在此得要解決根本的、到處出現在光伏過程(photovoltaic process,指吸收光子與產生電子的過程)的能量損耗。一如他們的解釋,能量是在下列狀況中損耗:電子–電洞對(激子/excitons)的光發電(photogeneration)、緊密結合之激子的分離,以及來自高度失序(disordered)網路之自由電子的汲取(extraction)。
為了克服這些損耗,先前的研究已探索過塗佈一層 ETA 層的用法。ETA 層厚 2 到 10 nm,位於 TiO2 電極的內部表面,以便增加電流密度與電壓。到目前為止,具 ETA 層的太陽能電池已達到 6.3% 的功率轉換效率。
在此,研究者已研究過這種可能性:TiO2 由於其電失序(electronic disorder)與低遷移率,可能阻礙 ETA 層的效用。因為Al2O3 是一種寬能隙絕緣體,研究者發現,把它當作電極使用時,光激發的電子仍保留在 ETA 層中,且不會像 TiO2 電極那樣,墜入氧化物的較低能階中。
這種差異提供了幾種優勢。例如,研究者發現,使用 Al2O3 時顯著加速電子傳輸過程,迫使電子迅速通過鈣鈦礦(perovskite)ETA 層,也因而增加了電壓。這些改善,使功率轉換效率從使用 TiO2 電極的 8% 到使用 Al2O3 電極的 10.9%。因為 Al2O3 主要作為中尺度支架(meso-scale scaffold),而非在光激發中扮演某種角色,研究者稱此裝置為「中型–超結構太陽能電池(meso-superstructured solar cell,MSSC)」。「氧化鋁作用如同鈣鈦礦層支架,以及接下來的電洞型導體(hole-conductor,那被塗佈在鈣鈦礦層頂部)支架,」Snaith 說,「那不具電活性(electronically active),純粹作為一種物理性支撐。」
「非常令人驚訝而且前所未料,」他補充到,「然而,我們能後見之明(hindsight)的看見,此效益從何處獲得。真正的驚奇是,鈣鈦礦層在傳輸電荷上如此有效率,以及在太陽能電池中產生的高光伏。」
科學家預期,未來可透過各種方法更進一步改善效率,例如,以新的鈣鈦礦進行實驗,使用其他半導體,以及擴展吸收範圍。
「這項研究使低成本的可溶液製程太陽能電池大幅接近完美地晶體半導體(crystalline semiconductors)的效能,同時又對未來的研究與發展開啟廣泛的可能性,」Snaith 說。
資料來源:Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science [October 4 2012]
轉載自 only perception
View Comments