從遊戲到量子計算:NVIDIA 憑什麼在 AI 世代一騎絕塵?

-----廣告,請繼續往下閱讀-----

AI 與 GPU 的連結:為什麼 NVIDIA 股價一路飆?

2023 年至今,人工智慧(AI)熱潮引爆全球科技圈的競爭與創新,但最受矚目的企業,莫過於 NVIDIA。它不僅長期深耕遊戲顯示卡市場,在近年來卻因為 AI 應用需求的飆升,一舉躍居市值龍頭。原因何在?大家可能會直覺認為:「顯示卡性能強,剛好給 AI 訓練用!」事實上,真正的關鍵並非只有強悍的硬體,而是 NVIDIA 打造的軟硬體整合技術──CUDA

接下來將為你剖析 CUDA 與通用圖形處理(GPGPU)的誕生始末,以及未來 NVIDIA 持續看好的量子計算與生醫應用,一窺這家企業如何從「遊戲顯示卡大廠」蛻變為「AI 世代的領航者」。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

CPU vs. GPU:為何顯示卡能成為 AI 領跑者?

在電腦運作中,CPU(中央處理器)向來是整個系統的「大腦」,負責執行指令、邏輯判斷與多樣化的運算。但是,AI 模型訓練需要面對的是龐大的數據量與繁複的矩陣或張量運算。這些運算雖然單一步驟並不複雜,但需要進行「海量且重複性極高」的計算,CPU 難以在短時間內完成。

反觀 GPU(圖形處理器),原先是用來處理遊戲畫面渲染,內部具有 大量且相對簡單的算術邏輯單元。GPU 可以同時在多個核心中進行平行化運算,就像一座「高度自動化、流水線式」的工廠,可一次處理大量像素、頂點或是 AI 訓練所需的運算。這讓 GPU 在大量數值計算上遠遠超越了 CPU 的處理速度,也讓「顯示卡算 AI」成了新時代的主流。

-----廣告,請繼續往下閱讀-----

顯示卡不只渲染:GPGPU 與 CUDA 的誕生

早期,GPU 只被視為遊戲繪圖的利器,但 NVIDIA 的創辦人黃仁勳很快察覺到:這種多核心平行化的結構,除了渲染,也能用來處理科學運算。於是,NVIDIA 在 2007 年正式推出了名為 CUDA(Compute Unified Device Architecture) 的平台。這是一套讓開發者能以熟悉的程式語言(如 C、C++、Python)來調用 GPU 資源的軟體開發工具套件,解決了「人類要如何對 GPU 下指令」的問題。

在 CUDA 出現之前,若要把 GPU 用於渲染以外的用途,往往必須透過「著色器語言」或 OpenGL、DirectX 等繪圖 API 進行繁瑣的間接操作。對想用 GPU 加速數學或科學研究的人來說,門檻極高。然而,有了 CUDA,開發者不需理解圖像著色流程,也能輕鬆呼叫 GPU 的平行運算能力。這代表 GPU 從遊戲卡一躍成為「通用圖形處理單元」(GPGPU),徹底拓展了它在科學研究、AI、影像處理等領域的應用版圖。

AI 崛起的臨門一腳:ImageNet 大賽的關鍵一擊

如果說 CUDA 是 NVIDIA 邁向 AI 領域的踏腳石,那麼真正讓 GPU 與 AI 完美結合的轉捩點,發生在 2012 年的 ImageNet 大規模視覺辨識挑戰賽(ILSVRC)。這場由李飛飛教授創辦的影像辨識競賽中,參賽團隊需要對龐大的影像數據進行訓練、分類及辨識。就在那一年,名為「AlexNet」的深度學習模型橫空出世,利用 GPU 進行平行運算,大幅減少了訓練時間,甚至比第二名的辨識率高出將近 10 個百分點,震撼了全球 AI 研究者。

AlexNet 的成功,讓整個學界與業界都注意到 GPU 在深度學習中的強大潛力。CUDA 在此時被奉為「不二之選」,再加上後來發展的 cuDNN 等深度學習函式庫,讓開發者不必再自行編寫底層 GPU 程式碼,建立 AI 模型的難度與成本大幅降低,NVIDIA 的股價也因此搭上了 AI 波浪,一飛沖天。

-----廣告,請繼續往下閱讀-----
AlexNet 的成功凸顯 GPU 在深度學習中的潛力。圖/unsplash

為什麼只有 NVIDIA 股價衝?對手 AMD、Intel 在做什麼?

市面上有多家廠商生產 CPU 和 GPU,例如 AMD 與 Intel,但為什麼只有 NVIDIA 深受 AI 市場青睞?綜觀原因,硬體只是其一,真正不可或缺的,是 「軟硬體整合」與「龐大的開發者生態系」

硬體部分 NVIDIA 長年深耕 GPU 技術,產品線完整,且數據中心級的顯示卡在能耗與性能上具領先優勢。軟體部分 CUDA 及其相關函式庫生態,涵蓋了影像處理、科學模擬、深度學習(cuDNN)等多方面,讓開發者易於上手且高度依賴。

相比之下,雖然 AMD 也推行了 ROCm 平台、Intel 有自家解決方案,但在市場普及度與生態支持度上,依舊與 NVIDIA 有相當差距。

聰明的管理者

GPU 的優勢在於同時有成百上千個平行運算核心。當一個深度學習模型需要把數據切分成無數個小任務時,CUDA 負責將這些任務合理地排班與分配,並且在記憶體讀寫方面做出最佳化。

-----廣告,請繼續往下閱讀-----
  • 任務分類:同性質的任務集中處理,以減少切換或等待。
  • 記憶體管理:避免資料在 CPU 與 GPU 之間頻繁搬移,能大幅提升效率。
  • 函式庫支援:如 cuDNN,針對常見的神經網路操作(卷積、池化等)做進一步加速,使用者不必從零開始撰寫平行運算程式。

結果就是,研究者、工程師甚至學生,都能輕鬆把 GPU 能力用在各式各樣的 AI 模型上,訓練速度自然飛漲。

從 AI 到量子計算:NVIDIA 對未來的佈局

當 AI 波浪帶來了股價與市值的激增,NVIDIA 並沒有停下腳步。實際上,黃仁勳與團隊還在積極耕耘下一個可能顛覆性的領域──量子計算

2023 年,NVIDIA 推出 CUDA Quantum 平台,嘗試將量子處理器(QPU)與傳統 GPU / CPU 整合,以混合式演算法解決量子電腦無法單獨加速的部分。就像為 AI 量身打造的 cuDNN 一樣,NVIDIA 也對量子計算推出了相對應的開發工具,讓研究者能在 GPU 上模擬量子電路,或與量子處理器協同運算。

NVIDIA 推出 CUDA Quantum 平台,整合 GPU 與 QPU,助力混合量子運算。圖/unsplash

這項新布局,或許還需要時間觀察是否能孕育出市場級應用,但顯示 NVIDIA 對「通用運算」的野心不只停留於 AI,也想成為「量子時代」的主要推手。

-----廣告,請繼續往下閱讀-----

AI 熱潮下,NVIDIA 凭什麼坐穩王座?

回到一開始的疑問:「為什麼 AI 熱,NVIDIA 股價就一定飛?」 答案可簡化為兩點:

  1. 硬體領先 + 軟體生態:顯示卡性能強固然重要,但 CUDA 建立的開發者生態系才是關鍵。
  2. 持續布局未來:當 GPU 為 AI 提供高效能運算平台,NVIDIA 亦不斷將資源投入到量子計算、生醫領域等新興應用,為下一波浪潮預先卡位。

或許,正因為不斷探索新技術與堅持軟硬整合策略,NVIDIA 能在遊戲市場外再創一個又一個高峰。雖然 AMD、Intel 等競爭者也全力追趕,但短期內想撼動 NVIDIA 的領先地位,仍相當不易。

未來,隨著 AI 技術持續突破,晶片性能與通用運算需求只會節節攀升。「AI + CUDA + GPU」 的組合,短時間內看不出能被取代的理由。至於 NVIDIA 是否能繼續攀向更驚人的市值高峰,甚至在量子計算跑道上再拿下一座「王者寶座」,讓我們拭目以待。

歡迎訂閱 Pansci Youtube 頻道 鎖定每一個科學大事件!

-----廣告,請繼續往下閱讀-----
PanSci

PanSci的編輯部帳號,會發自產內容跟各種消息喔。