生物體中的蛋白質分子通常長得非常複雜,不是幾行化學式能解決的。如果想把它的分子結構鉅細靡遺的描繪出來,你有幾種選擇。
其中一個是 X 光晶體學,也就是讓許多蛋白質分子一同排列成整齊的晶體,接著將 X 光打進去,用繞射圖案進行分析。從 1950 年代以來,科學家便常常使用這種技術來探索分子結構。DNA 的雙股螺旋結構便是透過 X 光晶體學被發現。
不過這種方法有其根本上的限制。X 光晶體繞射後的強度很弱,必須藉由晶體內多個重複且整齊的晶格,進行同步繞射來增強訊號,因此沒辦法處理太大的蛋白質分子(單位體積內重複晶格太少),或是結構複雜的蛋白質(像是核糖體是由兩個次單元組成的),而且因為 X 光晶體學仰賴的是晶體結構的繞射,那些無法好好結晶的蛋白質,便不在它的防守範圍內,而細胞中許多的蛋白質都很難形成整齊的晶體。
另外,就算可以成功的結晶,被結晶的蛋白質分子也無法呈現出平常運作時的多種風貌,產生的影像也無法捕捉關於分子的任何動態資訊。
於是我們有另一個選項:低溫電子顯微技術 (cryo–electron microscopy) 。待觀察的分子被凍結在超低溫環境中,而研究人員用電子束轟炸分子,透過電子留下的影像來還原分子的立體結構。這種技術不需要蛋白質進行結晶,不過解析度普遍較差,最後的影像往往只能看出幾個模糊的團塊,因此通常只會用在大的蛋白質分子。
隨著相關領域人員的持續努力,低溫電子顯微的解析度已經大有進展。2017 年的諾貝爾化學獎便是頒給三位科學家在高解析度低溫電子顯微技術方面的突破。前一陣子的紀錄保持者是日本團隊對缺鐵基蛋白 (apoferritin) 的研究,解析度到達 1.53 埃。不過如果想要清楚的呈現個別原子,解析度差不多需要到達 1.5 埃,還差了一些。
在今年十月 Nature 期刊的一篇最新研究中,一個跨國研究團隊利用改良過的電子束與分析軟體,成功達到了 1.25 埃以上的解析率,足以清楚標示出每顆原子的位置。
聽起來很厲害,不過這代表的是什麼?
由於生物分子可以在行動中被降溫並「定格」,我們現在能夠清楚的看見蛋白質這類複雜的分子機械如何運作,清楚到每顆原子的動態都盡收眼底。毫無疑問地,這樣的技術將為分子與結構生物學帶來重要的進展。
目前,原子等級的解析度只適用於結構較堅硬的蛋白質分子。做為下一階段的目標,研究團隊希望能將同樣的技術運用在一般柔軟的大型蛋白質結構,並達到一樣好的解析度。在結構生物學的領域中,使用低溫電子顯微鏡的研究人口逐年成長,而這次的技術突破有望繼續加速這個趨勢。
View Comments
生物課剛教完X光繞射圖就看到這篇,但我還是不懂他怎麼知道是雙股螺旋的⋯
下線等解XD
#1等等也太剛好了吧!
請問要如何定義蛋白質的結構軟硬呢?
舉手發問:這技術不會遇到量子力學的問題嗎?例如觀測造成改變?