別用愛了,用冰發電吧!——可燃冰的發現、應用及油氣能源的未來

-----廣告,請繼續往下閱讀-----

能源與環保間的平衡在全球一直都是十分火熱的議題。火力發電、核分裂發電等高效率的發電方式,或許會對環境及生物造成永久危害;風力發電、大陽能電池等綠能,受限於天候而無法廣泛應用;乾淨又有效率的核融合發電仍在開發階段,還不到可以商用的程度。那麼,通往乾淨能源的這條路,是否就這樣被插上此路不通的標示牌呢?當然不!因為可燃冰為我們另闢了一條蹊徑。

圖一 :正在燃燒的可燃冰。圖/參考文獻 1

那麼,可燃冰究竟是什麼呢?是否如同字面上,是一種可以燃燒的冰?如果是,是何種機制會使冰能被點燃;如果不是,那麼它是怎麼形成冰晶狀態的呢?若你好奇的話,請讀下去吧!本篇會從可燃冰本身、其應用與開採問題,全面地介紹這種新能源。

可燃冰的性質

可燃冰又稱為「天然氣水合物」,其中,甲烷氣體若佔總天然氣的 99%,則稱為「甲烷水合物」。直接觀察它被點燃的樣子,就像是一塊能燃起火焰的冰塊,這也是「可燃冰」一稱的由來。然而,確切來說,這顆「冰塊」其實是水和甲烷氣體在低溫高壓下混合形成的類冰物質。也就是說,可燃冰其實不是冰,而是由水分子組成的一個個「水籠」。如圖二,籠中包含大量的甲烷氣體,因此便不難理解它被稱為「甲烷水合物」的原因。或許你十分好奇水籠的模樣,不過在那之前,我們必須先談談組成水籠的柵欄——氫鍵。

圖二:可燃冰是由水分子組成的一個個「水籠」。圖/參考文獻 2

(一)、氫鍵

氫鍵為組成可燃冰結構舉足輕重之角色,而為介紹水籠及避免混淆重點,氫鍵概念皆舉水(簡式 H2O)為例。顧名思義,氫鍵是一種以「已結合 1 個氧原子的氫原子」為中心,與另一個氧原子所形成的「作用力」。沒錯,氫鍵並沒有產生實際的鍵結,本質上反而是一種電磁力。這個概念或許有點抽象,不過我們可以用小朋友吃蛋糕的例子來理解。

現在,老師分蛋糕給一群小朋友,高年級的小朋友可以分到比較多塊且口味不同的蛋糕,而低年級的小朋友則只有一塊蛋糕。分完蛋糕後,低年級的小朋友會跑去坐在大哥哥旁邊吃蛋糕,因為當他拿出一半的蛋糕分享時,大哥哥也會分享一半的蛋糕給他,如此一來,他們都能吃到 2 種口味的蛋糕。若低年級的小朋友還想再和別人分享一次,他就必須擁有第二塊蛋糕。然而,我們都知道他已經沒有多的蛋糕了,所以他會跑到另一個擁有蛋糕的大哥哥旁邊看著他,希望這個大哥哥能和他分享蛋糕。

-----廣告,請繼續往下閱讀-----

看完這個故事,我們可以把蛋糕替換成電子、低年級生替換成氫(價電子數為 1),而擁有很多蛋糕的大哥哥即為擁有許多電子的氧(價電子數為 6)。因此,如圖三(A)所示,當氫和氧各提供 1 個電子時,便會形成共價鍵。同時,已將電子用光的氫,會與另一顆帶有 2 個多餘電子——或稱作「孤電子對」(lone pair)——的氧形成氫鍵。

圖三(A):氫鍵結構。圖/黃之辰繪

其形成原因則如圖三(B),當氫用掉唯一的電子後,部分氫原子相對帶正電,會與另一個擁有孤電子對的原子互相吸引,故部分原子帶負電的氧原子互相吸引。這個吸引力就是氫鍵,並且由於其成因,我們可以說氫鍵就是一種電磁力。

圖三(B):氫鍵形成原理。圖/黃之辰繪

(二)、水籠

當許多個水分子以氫鍵結合時,水籠便形成了。

圖四:水分子間的氫鍵。圖/參考文獻 3

事實上,水籠分為許多種類,有結構 Ⅰ 型水合物、結構 Ⅱ 型水合物以及結構 H 型水合物。如下方圖五,在以單位晶格的尺度下觀察,結構 Ⅰ 型為的水合物是以 2 個五角十二面體(512)的小籠,和 6 個十四面體(51262)的大籠所組成。

-----廣告,請繼續往下閱讀-----

這時,你可能會好奇:為什麼是這個組合呢?讓我們來想想拼圖。當我們拿起一塊拼圖,會發現它會有凸出、凹陷,或是平平的不凸出也不凹陷等 3 種樣式的「邊」,或許是 4 個凸出、3 個凸出 1 個凹陷、2 個凸出 2 個凹陷,或是 1 個平平的邊加上 3 個凹陷……。這時,如果我們拿起一塊有「4 個凸出」的拼圖,那麼我們能把另外一塊也是 4 個凸出的拼圖拼在原本的那塊上嗎?

顯然無法。因此,如果我們要將拼圖拼起來,就需要拿出另外 4 片有凹陷的拼圖,各接在原本那塊拼圖上,才能逐漸將這副拼圖拼完。這個「拼拼圖」的概念也就是為什麼水籠結構會需要不同的立體形狀組成了,因為這些不同的形狀負責「鑲嵌」彼此,從而形成一個完整的、沒有空隙的拼圖,也就是這個堅固的水籠。

接下來讓我們繼續介紹另外 2 種結構。結構 Ⅱ 型則以 16 個五角十二面體,加上另一種十六面體(51264)的大籠結合而成;結構 H 型則分別由 2 種小籠—— 3 個五角十二面體,及 2 個十二面體(435663)——與二十面體(51268)大籠組成。其中,不論是大籠或小籠,每個籠中皆包含 1 個甲烷分子。

值得注意的是,甲烷水合物屬於結構 Ⅰ 型水合物,且其分子式為 CH4·8H20。理論上來說,一單位晶格內應含有 8 個甲烷分子與 64 個水分子。然而,由於可燃冰晶體中的水可與鄰近的 2 個水籠共用,因此一單位晶格內實際上只有 46 個水分子,而這也是當我們將可燃冰轉化後,可以產生大量天然氣的原因。

圖五:各類水籠結構及組成。圖/參考文獻 4

二、可燃冰的誕生

上文有提到水和甲烷能在低溫高壓之下生成可燃冰。那麼,是什麼環境才會包含大量的水、足夠的天然氣,同時又有低溫高壓的特性呢?沒錯,就是海洋!現在,我們已經有足夠多的水了,但要如何在海中找到大量的甲烷呢?以大西洋的布雷克海脊(Blake Ridge)為例,含有甲烷的沉積物稱為「氣水化合物穩定帶」(GHSZ,GasHydrate Stability Zone),大約厚 300 至 500 公尺,且位於約 190 公尺至 450 公尺的中深度範圍海域[參考文獻 5]。在這些沉積物的孔隙中,有許多以溶解狀態存在的甲烷。那麼,問題又來了,這些深海礦床是怎麼產生甲烷的呢?答案就是——細菌!

-----廣告,請繼續往下閱讀-----

在深海中存在著 2 種細菌:好氧細菌和厭氧細菌。從他們各自的名字來看,很明顯可以知道好氧細菌會進行有氧呼吸,也就是它們會以氧的化學反應來獲得能量。反之,厭氧細菌不用以有氧呼吸來生存,意即它們可以生存在沒有氧的環境中。

在深海礦床中,沉積物孔隙中的水在幾公分的深度便是缺氧狀態的,且由於這個區域的水域包含了沉澱率高、有機碳含量豐富、環境酸鹼值適中等條件,厭氧細菌便會開始作用在這些沉積物的有機碳物質上,並產生甲烷。 

事實上,大陸地區也可以生成可燃冰,但是蘊含量極少,大約只有 1% 的可燃冰儲存在陸域[參考文獻 9]。其原因或許和組成陸地的砂石成分有關,因為科學家採樣之後的結果顯示,這些生成於陸域的甲烷水合物僅會存在於深度 800 公尺以下的砂岩或粉沙岩岩床中。同時,存在於砂石縫隙中的化合物,會被熱力或微生物分解;然而,重量較重的烴類——也就是組成天然氣的原料,卻會在較輕的化合物被分解完之後,才有機會被分解[參考文獻5]。可以看出大陸生成甲烷水合物的條件極為苛刻,因此,以這種方式形成的可燃冰,目前只存在於西伯利亞和阿拉斯加的永凍土中。

三、能源議題的救世主?

可燃冰在近幾十年突然出現在人們的面前,一躍成為炙手可熱的能源議題新寵兒。事實上,人類早在 1810 年就已經於實驗室中發現天然氣水合物這種物質,只不過受限於當時的時空背景以及科學發展進程,1934 年才在美國的輸氣管道中,發現天然的甲烷水合物這種「可以燃燒的冰塊」。直到 1968 年,蘇聯科學家才終於在西伯利亞發現了天然氣水合物礦藏[參考文獻 6],而在此期間,人們普遍認為天然氣水合物大多只會出現在太陽系外圍的低溫區[參考文獻5]

-----廣告,請繼續往下閱讀-----

那麼,這種神祕的、甚至連科學家都還沒完全搞清楚生成機制的化合物,究竟是怎麼在這場能源大賽中「殺出重圍」的呢?這和可燃冰的轉化率、蘊藏量、能源危機,甚至人類環保意識的提升都有不可或缺的關係,可謂是天時地利人和的結果。

然而,目前可燃冰離完全商用仍有很長的一段路要走。先不提這個,我們來談談轉化率,顧名思義就是「可燃冰轉換成天然氣的效率」。前面有提到,當可燃冰轉化後,即可產生大量天然氣,而若我們精確地看數字,就可以發現 1 立方公尺的可燃冰分解後,可釋放出大約 164 立方公尺的天然氣[參考文獻 6]

這個轉化率著實驚人,因為若拿同等體積的天然氣和可燃冰相比,可燃冰能產出的能量是天然氣的 150 至 180 倍!所以,若可燃冰能順利轉為商用,無疑能使「運輸天然氣加蓋地下管線」、「天然氣存量減少以致價格上漲」等問題迎刃而解。 

不過,某種能源能是否能順利轉為商用,還有一個重要的條件——蘊藏量。目前,人類就正在面臨石化燃料存量枯竭的問題,然而人們的生活早已和石化燃料密不可分,小至織品原料,大至交通工具,或許都會面臨一場重大的革新,而這些無疑會造成經濟動盪,故這是十分棘手且嚴峻的狀況。

那麼,可燃冰的蘊藏量究竟能供人類使用多久呢?根據美國的天然氣需求量來看,僅開發美國本土外海的天然氣水合物,就足以供美國人使用 2000 年[參考文獻 9]!而台灣在西南海域發現的存量,可以供台灣使用約 40 年[參考文獻 10]!科學家也預估,可燃冰的天然存量大約是天然氣的 2 至 10 倍[參考文獻 5]

-----廣告,請繼續往下閱讀-----

由於可燃冰驚人的轉化率、龐大的蘊藏量,再加上燃燒後不會產生殘渣等特性,造成的汙染相較於現今正在使用的各種燃料來說減少許多。在人類盡力追求經濟產能與環保平衡的今天,無疑是救世主一般的存在。

四、如何開採可燃冰

可燃冰看似是目前能源議題的最佳解,但我們對它的瞭解仍遠遠不夠,因為我們還不知道如何快速、安全且大量開採。自 40 年前第一次發現礦藏至今,科學家不斷探索、採集並分析可燃冰這種新興燃料,即使瞭解仍十分有限,但也已經發展出一些鑑別以及開採的方法。除了以前傳統、直觀(但是相對來說更低效且粗魯)的加熱法及減壓法以外,甚至有了更新型的開採方法。不過,在介紹新型方法前,我們可以先從較傳統的方法開始,以便更加瞭解開採可燃冰最基本的模型與原理。由於此種方法較為直觀,篇幅會較為簡短。

以下分別介紹 3 種傳統與新型開採方法:

(一)、傳統——加熱法與減壓法

加熱法,顧名思義就是將可燃冰層以對流法、電磁加熱法[參考文獻 6]等直接升溫,將可燃冰分解為天然氣與水,並且直接以管線收集天然氣。減壓法則是以管線導出可燃冰層下方的氣體或流體,使可燃冰層的壓力變小。此時,可燃冰中的「冰」就會因為壓力下降而液化成為水,使得天然氣被釋放。

-----廣告,請繼續往下閱讀-----

(二)、新型——二氧化碳置換開採法

這個方法可說是傳統加熱法的進化型態,兩者都是以同樣的原理運作,即:使可燃冰升溫,讓水合物中的天然氣釋放出來,並加以收集。那麼,二氧化碳置換法為什麼是進階版的加熱法呢?原因就在於這種方法能在開採可燃冰的同時,將一部份的二氧化碳轉為水合物,封存在海底。以環保的角度來說,簡直可以稱得上是高收益。

此方法的核心概念是利用天然氣水合物和二氧化碳水合物保持穩定時的壓力差進行開採,意思就是,當我們把壓力控制在特定範圍下,天然氣水合物就會分解,而適合這個壓力的二氧化碳水合物就會形成[參考文獻 6]。圖六是二氧化碳置換法的示意圖,圖六(A)是開發前蘊藏可燃冰礦藏的海床。開採時,如圖六(B)所示,我們需要在可燃冰礦層的上方及下方都注入二氧化碳,下方那一層是主要運作的區域,而上方則用以阻隔並穩定海床。

接著,因為壓力被控制在適合二氧化碳水合物生成的範圍,因此當這種水合物逐漸生成並放熱時,最靠近底層的可燃冰就會被這些熱量分解,轉化出大量甲烷。此時如圖六(C),這些甲烷會被導管收集,所以下方的二氧化碳就會上移、填補空缺,然後持續生成二氧化碳水合物,使更多的可燃冰分解、釋放甲烷。在這種連鎖反應下,我們就可以達到在不斷釋放可燃冰中甲烷的同時,不斷(以水合物的形式)封存注入至海床中的二氧化碳[參考文獻 11]

圖六:以二氧化碳封存置換甲烷氣示意圖。圖/參考文獻 11

(三)、新型——固體開採法

最初的固體開採法是直接採集可燃冰固體,並將可燃冰固體移至淺水海域後加以分解,因為若是以物理或化學方法就地分解,會產生消耗能源,而且經費昂貴。之後,固體開採法也衍生出了另一種更進階的方式,稱為「混合開採法」。這種方法是將可燃冰就地轉為固體、液體混合的狀態,再將包含了可燃冰固體、液體及氣體的「泥漿」以導管傳輸至海平面上作業,藉此取得天然氣[參考文獻 6]。這種不用再將礦產運送至淺水區的方式顯然更加方便操作,且以導管運輸的方式能進一步減少可燃冰的損耗。

-----廣告,請繼續往下閱讀-----

五、台灣的可燃冰及各式能源之比較

相對於其他科技、科學競賽來說,台灣在可燃冰的發展上,雖然起步較晚,仍然有相當亮眼的成績。2018 年,科技部的第二期能源國家型科技計畫(NEP-II)就在臺灣西南外海採集到天然氣水合物。而誠如主導計畫的中央大學地科系許樹坤教授所說:「台灣因沒有自主能源,更顯珍貴。」教授說:「台灣是一個能源缺乏的島嶼,99% 的能源都仰賴進口。科學的新發現,若能配合工程技術開發,就能帶來新契機。台灣西南海域蘊藏豐富,預估可用上 40-50 年,目前日本和中國大陸都已試開採[參考文獻 17]。」若是台灣能成功開採並使用可燃冰,或許便能在這場白熱化的能源議題中,找到一線生機。

各式能源之比較表。資料來源/參考文獻 16

參考文獻

  1. Frozen Heat: Exploring the Potential of Natural Gas Hydrates.(2017, May).Office of Fossil Energy and Carbon Management.
  2. Sara E. Harrison. Natural Gas Hydrates. Physics 240, Stanford University, Fall 2010.
  3. Model of hydrogen bonds (1) between molecules of water. Wikipedia.
  4. Juwon Lee and John W. Kenney III. Clathrate Hydrates. IntechOpen.
  5. 甲烷水合物,維基百科。
  6. 可燃冰,百度百科。
  7. Kenneth C. Janda. Gas Hydrate Structure.
  8. 冰與火戰歌,經濟部石化產業高值化推動辦公室簡報。
  9. 解開可燃冰封印,科學人雜誌。
  10. 西南海域可燃冰若開採學者:可供台灣使用逾40年,國立中央大學。
  11. 以二氧化碳封存置換甲烷氣示意圖,中央地質調查所。
  12. 超流體,維基百科。
  13. 固液共存,百度百科。
  14. Coal – Types, Uses and Formation
  15. Table 8.2. Average Tested Heat Rates by Prime Mover and Energy Source, 2010 – 2020,SAS Output (eia.gov)
  16. 各式發電比較,國立交通大學。
  17. 重大突破!中大地科團隊首次在台灣海域鑽獲「可燃冰」,國立中央大學。
-----廣告,請繼續往下閱讀-----
Chih-Chen Huang

目前就讀中央大學光電系。喜歡閱讀,還有邊境牧羊犬。

View Comments

  • 為什麼高年級的小朋友可以吃到多塊且口味不同的蛋糕,而低年級的小朋友卻只有一塊蛋糕?已經很多年沒能吃上生日蛋糕的我感到心碎。

  • 1立方公尺的可燃冰分解後,可釋放出大約 164 立方公尺的天然氣

  • 1立方公尺的可燃冰分解後,可釋放出大約 164 立方公尺的天然氣

Recent Posts