本文轉載自顯微觀點
DNA 損傷有多種類型,是導致癌症或遺傳性疾病的致病原因之一。其中,環丁烷嘧啶二聚體(cyclobutane-pyrimidine dimer ,CPD)是一種紫外線誘導的常見 DNA 損傷,影響 DNA 複製時的鹼基配對,如無法修復將導致突變。
生物體有不同的 DNA 修復機制,但其修復過程仍是未解之謎。中研院院士蔡明道率領的國際研究團隊,則應用序列飛秒晶體學(serial femtosecond crystallography, SFX),以 X 射線自由電子雷射(X-ray free electron laser, XFEL),在極短時間內捕捉光解酶酵素修復 DNA 損傷的過程和關鍵中間體結構,可說是首次在原子解析度下直擊 DNA 修復的完整過程。研究成果更登上今年 12 月發表的國際科學期刊《科學》(Science)。
雖然隨著X射線晶體學和冷凍電子顯微鏡技術的發展,科學家已經可以用原子等級的解析度分析許多酵素和酵素複合體的結構,然而這些方法只能捕捉反應開始或結束的單一瞬間,無法進一步觀察反應過程。
這次的研究利用 XFEL 技術,在極短(100 億分之一到 5000 分之一秒)的時間內,為 DNA 光解酶催化過程的多個反應中間體結構拍了 18 張照片,顯示了四個反應位點隨時間的變化。
團隊在皮秒(picosecond, ps)層次捕捉到電子轉移;皮秒到奈秒(nanosecond, ns)的範圍內修復 CPD 損傷,隨後參與催化酶部分的恢復;在 500 奈秒時形成完全還原的酶產物複合物。 最後,在 25 至 200 微秒(µs)內捕獲胸腺嘧啶鹼基的後翻轉中間體,雙鏈 DNA (dsDNA) 重新退火黏合。
阿秒(as):10-18 秒,目前實驗上能測量的最小時間尺度
飛秒(fs):10-15 秒
皮秒(ps):10-12 秒
奈秒(ns):10-9 秒
微秒(µs):10-6 秒
毫秒(ms):10-3 秒
秒(s)
蔡明道指出,這項研究直接以原子解析度觀察酵素反應的完整過程,不但促進結構生物學的發展,也開啟酵素學的新時代。且透過 XFEL 技術,可檢視酵素的反應中間體結構的全貌,進而提供後續應用機會,例如新藥物開發的潛在新靶點。
使用 XFEL 的 SFX 技術,約在十年前問世,主要用於以時間分辨結構的研究。
一般雷射使用將特定物質作為雷射介質,將其電子以能源(光)激發至激發態。當能階提高後的電子嘗試回到低能階狀態,便會釋放能量;再結合共振腔,產生能量相等、高同調性的雷射光。因此一般雷射有三個基本要素:增益介質(gain medium)、共振腔(optical resonator)和激發來源(pumping source)。
自由電子雷射(free electron laser ,FEL)則是利用聚頻磁鐵(undulator)或增頻磁鐵(wiggler)的磁場將高速前進的電子束多次改變方向,將動能轉為光子。
由於 FEL 不需要介質也不需要特定物質做居量反轉,不會被特定物質的能級限制波長,只要調整動能和磁鐵的參數就能改變雷射波長。因此涵蓋範圍從微波、遠紅外線、可見光到 X 射線等;XFEL 即是 X 射線波長的自由電子雷射。
X 射線可以用來研究晶體中原子排列的狀況,透過繞射圖像來判斷晶體中電子密度分布狀況,分析原子位置和化學鍵資訊,例如解開 DNA 雙股螺旋結構。但 X 射線波長短、對物質穿透力強大,也容易造成蛋白質晶體損傷。
XFEL 具有 X 射線波長特性,卻比以往的亮度高 10 億倍;而且脈衝持續時間短,就像超高速閃光燈,可以瞬間捕捉到原子運動和及快速的化學反應。
XFEL 提供極其明亮且短暫(約 10 fs)的 X 射線雷射,能在出現任何輻射損傷前從蛋白質微晶體中進行繞射(破壞前繞射),也就是繞射測量在樣品破壞之前就已經完成。
而透過繞射圖樣,那些容易被 X 射線輻射改變的蛋白質穩態結構便能被確定;與超快可見脈衝結合時,就能確定光誘導過程中的中間體。 全球提供 TR-SFX 的設施僅有五個,分別分布在美國、日本、德國、韓國和瑞士。本次蔡明道院士團隊的研究,則在日本 SACLA 和瑞士 SwissFEL 進行 XFEL;論文共同作者共有 69 位,分別來自世界各地的17個研究機構。