Categories: 科技能源

RESI : 基礎儀器定位奈米世界

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

Abstract Of Digital DNA Construction.Abstract Of Digital DNA Construction.
圖/顯微觀點

電腦運算是近 20 年來生物影像突破繞射極限的可靠工具,例如 STORM(Stochastic Optical Reconstruction Microscopy), PALM(Photo-Activated Localization Microscopy),以電腦記憶、疊合,將多次拍攝的零散螢光重建成完整輿圖,解析度極限可接近 10 奈米。

現在,透過電腦輔助的序列成像解析度增強術(RESI, Resolution Enhancement by Sequential Imaging),科學家能將細胞內分子的定位解析度大幅提升到埃(Ångström, Å.等於1/10奈米)的尺度,清晰定位緊鄰的分子、觀察它們在細胞內的變化。

RESI 定位可呈現 DNA 相鄰鹼基間距,超越超解析顯微鏡,達到與電子顯微鏡同等的解析度,而且只需基本的細胞固定,近乎完全保持樣本原貌。

-----廣告,請繼續往下閱讀-----

在德國馬克斯.普朗克生化研究所率領團隊研發 RESI 的榮曼(Ralf Jungmann)認為,RESI 能填補介於光學顯微術與結構生物學之間的資訊空白,揭露更多複雜生命系統的真相,為分子生物學與藥物動力學開闢道路。

「發光順序」成為解析度新要素

使 RESI 成為「超級超解析」定位術(super-super resolution)的核心概念,是以不同 DNA 螢光探針對目標進行多次標記定位,定位過程由電腦為目標編上號碼(DNA-barcoding),使「發光順序」成為分辨目標的新維度,並以「定位次數」來大幅提升解析度、為量化分析提供充沛樣本。

CD20 的分布在 RESI 定位下一覽無遺,透過 RESI 定位可發現,標靶藥物 RTX 使癌細胞表面的 CD20 聚集成鍊狀。圖片來源:Reinhardt et al. Ångström-resolution fluorescence microscopy. Nature 617, 711–716 (2023).

例如,淋巴癌與自體免疫疾病的關鍵標靶:B 細胞表面 CD20 蛋白﹐雖然早已發現是重要的癌細胞特徵,也確認有效藥物,但其結構與分子動力學依然曖昧不明,學界對它的了解還不足以研發進一步療法。

儘管 CD20 蛋白的結構已被電子顯微鏡呈現,但電子顯微鏡的拍攝條件會破壞細胞膜結構,導致 CD20 變形、偏移。現在透過 RESI 進行定位,CD20 的構造、藥物效果,都可以在接近生理狀態下一探究竟。

-----廣告,請繼續往下閱讀-----

在 RES I分析下,榮曼等學者發現 CD20 總是成對出現(as dimers),並且在關鍵藥物 RTX(一種抗 B 細胞的單株抗體)加入後,會在細胞膜上聚集成緊密的長鏈。這些資訊是過往電子顯微鏡與超解析光學顯微鏡都未曾展現的。

序列成像:以次序換取空間

各種超解析單分子定位術的共同難題,是兩個目標分子過於接近,連電腦運算也無法辨別。假使兩個距離 1 至 2 奈米的相同分子輪流被激發,PALM, STORM 等仰賴隨機放光的超解析定位術即使分別收到兩個光源的螢光訊號,重建時也容易將緊密的兩者混為一點。

榮曼也強調,當兩個螢光團的距離小於 10 奈米,近場光學效應會大幅影響光調控螢光染色分子(photoswitchable fluorescent dyes)的表現。分辨兩個距離數奈米甚至數埃(Å)的分子,是單分子定位技術的最後關卡。

面對諾貝爾級超解析技術也無法克服的障礙,RESI 巧妙地以「標記」技術避開了光學難關。RESI 採用進化版本的 DNA-PAINT,螢光探針與目標結合轉瞬即脫落,並能使相鄰的目標結合不同探針,避免兩者同時發光,兩個緊密的分子幾乎不會干擾彼此成像。

-----廣告,請繼續往下閱讀-----

奠基於隨機放光的單分子定位術(SMLM),序列成像(Sequential Imaging)用不同顏色、不同激發光譜的 DNA 螢光探針,標記鄰近的兩個目標,使兩者輪流發光。如此一來,發光順序便成為辨別螢光標記的新方法:兩個目標距離僅 1 奈米左右,但因為發光順序、螢光顏色不同,在重建過程中能夠被電腦清楚區分。

在真實的細胞中,若想以不同嵌合片段(docking strands)標記鄰近的相同蛋白(例如Nup96 dimer, CD20 dimer),則多少需要仰賴運氣。目前的 RESI 使用隨機標記(stochastically labelling),而非直接指定標記種類與位置。

以 RESI 定位核孔複合體的 Nup96 蛋白(圖d.),可以達到電子顯微鏡的解析度(圖 b.)。本實驗對同一個核孔進行 4 輪標記定位(圖d.),每次得到的定位資訊將重建疊合成最終定位圖。圖片來源:Reinhardt et al. Ångström-resolution fluorescence microscopy. Nature 617, 711–716 (2023).

定位 Nup96 的實驗就是一個例子,榮曼團隊的4種嵌合片段中,需要有 2 種分別標記相鄰的 Nup96 蛋白,才能夠使兩個相鄰蛋白分別依序發光。榮曼強調,得到理想標記的機率,會隨著嵌合片段的種類提升。在榮曼團隊的定位實驗中,RESI 對 Nup96 的定位達到和掃描式電子顯微鏡同等精密的解析度。

榮曼認為:「理論上,透過發光順序的差異,RESI 技術可以分辨無限接近的兩點。」

定位次數帶來解析度新境界

基於光波繞射的性質,點光源的光線不會透過顯微鏡聚焦為理想的一點,而是呈現一個立體球狀照射範圍。這個讓科學家困擾一個半世紀的照射範圍,就是此光學系統的點擴散函數(PSF, Point Spread Function)。

-----廣告,請繼續往下閱讀-----

在顯微鏡焦平面上,PSF 會形成一個中心最亮、四周漸黯的圓形光斑(艾里斑,Airy Disk),若兩個光點的光斑大幅重疊,就會難以辨別。這也就是遠場光學顯微鏡的最大天然障礙:阿貝繞射極限的由來。

包含 PALM, STORM 等超解析技術的單分子定位顯微術(SMLM, Single-Molecule Localization Microscopy)也必須考慮 PSF。它們定位解析度(也稱定位精準度,σSMLM),接近點擴散函數的標準差(σDiff)除以每次定位偵測光子數(N)的平方根:

 σSMLM  σDiff / N1/2

解析度數值愈小,代表辨別極限的距離愈近,定位結果愈清晰。超解析定位技術不斷追求的,就是縮小 σSMLM。

-----廣告,請繼續往下閱讀-----

在點擴散函數標準差(σDiff)隨儀器性能固定的情況下,每次定位偵測的光子數 N 就是定位解析度的主要變數。多數單分子定位技術,都需要設法提升偵測光子數以看得更清晰。

與其他單分子定位術不同的是,RESI 採用的 DNA-PAINT 探針對目標分子反覆結合、脫落,不斷有新的螢光探針前仆後繼,迅速與目標短暫結合,可以對每個目標累積多次定位。

DNA-PAINT 技術可達到小於繞射極限的解析度,但 10 奈米內的構造依然難以辨識。加上 RESI 以定位順序進行輔助,可以將解析度提升近百倍,達到 10 埃的尺度。圖片出處:S. C. M. Reinhardt et al., Nature 617, 711 (2023)

因此目標的「定位次數」(K)進入解析度數值核心。每個目標定位的解析度由單次定位的點擴散函數標準差(σSMLM),轉變為多次放光定位的平均值標準誤差(SEM, Standard Error of the Mean),其大小和定位次數(k)的平方根成反比。

SEM σSMLM / k1/2 ≈  Diff / N1/2) / k1/2

-----廣告,請繼續往下閱讀-----

此時只要提升定位次數(k),就可以得到更精密的定位(σRESI),毋須追求更強或更漫長的螢光來增加每次偵測的光子數(N)。再搭配以定位順序區分鄰近分子,RESI 就能得到近乎無限小的解析度。這種靈活的反覆定位模式,有賴 DNA-PAINT 技術奇特的「不牢固」結合(transient binding)搭配榮曼團隊研發的開源影像處理軟體Picasso 合力實現。

(DNA-PAINT 技術介紹請見:DNA-PAINT:短暫標記 奈米解析

參考資料

  • Reinhardt, S.C.M., Masullo, L.A., Baudrexel, I. et al. Ångström-resolution fluorescence microscopy. Nature 617, 711–716 (2023).
  • Max-Planck-Gesellshft. Ångström-resolution fluorescence microscopy. (2023)
  • Agasti SS, Wang Y, et al. DNA-barcoded labeling probes for highly multiplexed Exchange-PAINT imaging. Chem Sci. 2017 Apr 1;8(4):3080-3091.
-----廣告,請繼續往下閱讀-----
顯微觀點

從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。