萬物之理
1226 篇文章・ 1137 位粉絲
由新到舊 由舊到新 日期篩選

・2015/12/21
1926年,穆勒發現經X射線照射過的果蠅所生的下一代,有很高的比例會產生性狀改變。經過多次實驗後,他於1927年發表論文,公開X射線會造成遺傳基因突變的實驗結果。論文一出立即造成轟動,因為這代表從此就能視實驗需要,以人工的方式產生大量突變,不用再被動地苦等自然突變。
・2015/12/21
2000年10月,倫敦帝國理工學院(Imperial College, London)的彭德里(J. B. Pendry)教授在《物理評論通訊》上發表一篇著名的文章,證明一塊折射率為-1的負折射介質板是一個「完美透鏡」,具有放大「消逝波(evanescent wave)」的神奇能力,可將波源「完美成像」而超越繞射極限。此文發表後,立即在學術界掀起了負折射研究的熱潮。在研究者的持續努力下,負折射的現象已證明確實存在,且Science 期刊基於其應用潛力(例如新式的讀寫頭等),將相關研究選為2003 年的十大科技成果之一。
・2015/12/20
艾德溫·艾波特·艾波特並不是科學家或科普作家,他只是英國的一名數學教師。他在一百三十年前出版的這本科幻小說《平面國》(Flatland),原本是為了諷刺當時逕渭分明的社會階層與僵化的繁文縟節。艾波特用高低維度之間難以跨越的鴻溝作為隱喻,沒想到他以豐富的想像力描繪平面人眼中的世界,而成為思考不同次元的先驅,反而才是令這本書流傳至今、影響久遠的真正原因。
・2015/12/19
35歲的年輕物理學家邁克生與他的同事莫利對看一眼,無奈地低下頭來。他六年前就開始著手的實驗失敗了!而且他仍然想不出來究竟是哪裡出了差錯,但測出來「以太風」的相對速度卻遠比理論值小,小到落在誤差範圍之內。邁克生還是發表了這個徒勞無功的實驗,從此不再追逐以太。他萬萬想不到,原來他們在1887年所作的這個實驗並非徒勞無功,反而成為決定以太存在與否的關鍵。
・2015/12/18
今(2015)年10 月6 日,諾貝爾遴選委員會宣布物理獎由梶田隆章(Takaaki Kajita)與亞瑟.麥唐納(Arthur B. McDonald)獲獎。表彰他們找到微中子(neutrino)震盪的證據,進而推測微中子具有質量的貢獻。
・2015/12/18
十九世紀末,即使週期表已大致建立、電磁感應已被發現、科學家已能熟練地做電解實驗,但沒有人知道電流是什麼,也仍然不知原子是什麼。原子依然只是理論上的想像之物,代表組成物質的最基本單位,一個無法再切割的概念而已。直到英國物理學家湯姆森出現,才在1897年用巧妙的實驗吹散些許迷霧,揪出電子這個基本粒子。
・2015/12/15
普林斯頓高等研究院,少數頂尖學者方能受邀進駐的學術殿堂。不須教書,不須產出論文,完全不受俗務干擾,只須專心思考。愛因斯坦、馮·紐曼、哥德爾、狄拉克、包立、李政道與楊振寧、……等人都曾駐足此處,不過,來來去去的學者之中,竟有一位學者沒有博士學位,而且一待就超過四十年。
・2015/12/12
布爾提出兩個突破性觀念:其一,用符號表示邏輯命題;其二,可用代數作符號運算。總體來說,我們可先用符號代表命題,用公理表示邏輯的規則,再以代數的方式運算。在運算的過程中,不需考慮符號本身及運算的意義,運算完畢,將符號再帶回原本的命題,即為邏輯正確的結果。
・2015/12/11
量子力學最初只是起源於把光視為不連續的粒子,有著共同的基本單位能量,但是仍遵守古典的力學原理。即使薛丁格提出波動方程式,以更簡潔優雅地方式描述波耳的氫原子模型,在薛丁格本人與認同量子力學的物理學家眼中,電子在方程式中的波函數就代表實實在在的波,就像光子也是一種波。然而,有個問題困擾著大家:波函數竟然是複數,怎麼去理解虛數的物理意義?就在大家還在議論紛紛之際,德國物理學家玻恩一人跨出決定性的一大步。正是他的詮釋讓量子力學擺脫古典力學,開創了令人目眩神迷的全新境地。
・2015/12/09
馬爾薩斯於十八世紀末發表《人口論》,悲觀的認為糧食的產量絕對趕不上人口的快速成長。當時全世界的人口約莫十億,而今已達七十二億,雖然增加了這麼多人口,但馬爾薩斯預言的糧食危機並未發生,最主要的原因就在於德國化學家哈柏於1908年發明了將空氣中的氮轉化為氨氣的方法,為農業提供了源源不絕的氮肥。