0

2
0

文字

分享

0
2
0

站在下個五十年的起點:《科學月刊》五十歲成長史

科學月刊_96
・2020/01/26 ・4148字 ・閱讀時間約 8 分鐘 ・SR值 585 ・九年級

-----廣告,請繼續往下閱讀-----

文/蔡孟利│2012 加入編委會、2013 副總編輯、2015 總編輯、2017 卸任,實際參與編務六年。很高興,曾經為這個沒有老闆的刊物工作。

《科學月刊》創立於 1970 年,由當時在美國百位臺灣留學生倡議創辦,迄今每月出刊,從無間斷。這本沒有財團、沒有政府預算支持,甚至是沒有老闆的刊物,在去 (2019) 年 12 月創刊滿五十年、發行滿六百期。

創刊五十年的《科學月刊》,集結了台灣留學生及各界教育學者的貢獻,讓科普知識散播社會,受益眾多學生及讀者。圖/《科學月刊》

五十年來,超過 6000 人次的臺灣科學家,為臺灣撰寫了超過 4000 萬字的科普知識與評論的文章;《科學月刊》在臺灣五十年所耕耘的,不僅是一個科學知識傳播的平台,也是臺灣的科學與文化、科學與社會對話的平台。這一本沒有老闆的科普雜誌,一貫初衷五十年,若要列舉臺灣奇蹟,《科學月刊》的屹立是一個;若要列舉臺灣之光,《科學月刊》也應該入列。

站在這個五十年的里程碑展望未來,這本「臺灣之光」若要繼續奇蹟式的屹立下個五十年,還是有許多持續性的課題需要處理;在新的因應作法與創刊初衷的理想堅持之間,還是要不斷地想辦法取得平衡。這些持續性的課題包括目標受眾、內容取向和網路與紙本的取捨。

-----廣告,請繼續往下閱讀-----

《科學月刊》的讀者是誰?

「讀者是誰?」這個問題,筆者認為不只是《科學月刊》,其他科普雜誌也都會面臨到同樣的問題。《科學月刊》在創立的初期,因為當時升學主義盛行及科學讀物匱乏的時代背景,所以主要設定的讀者對象是高中生與大學生。即便到了網路盛行、科普書刊越來越豐富的今日,這個訴求對象的設定,仍然沒有太大的改變。

要以什麼樣的讀者類型作為取材依據是《科學月刊》內容一大考量因素。圖/pexels

不過在 2016 年,《科學月刊》到美國採訪了著名的科普雜誌《科學美國人》 (Scientific American) 的總編輯迪克里斯汀納 (Mariette DiChristina) 女士,了解到這本世界知名的科普雜誌的讀者組成,居然有接近七成是政治決策者和商業管理者!這本科普雜誌不僅提供了商業的領導階層在產品開發的過程中,創新與靈感的養分來源,而一些政治決策者在制定與審核科技相關法規時,也會借助於這本雜誌去了解相關的原理和應用。

這次的訪問刺激了我們思考一個新課題:《科學月刊》需要擴大訴求的讀者對象嗎?

一旦讀者的定位擴展到社會人士的時候,文章主題的選定與內容的呈現方式,就變成了很複雜的課題。畢竟科普知識的傳播不同於一般商業性、政論性或娛樂性質的雜誌,在閱讀上需要有一定的知識基礎以協助其了解。例如一篇談論「基因」的科普文章,到底訴求的對象是國中、高中或大學生,是個必須在寫作前就釐清的問題。因為不同的讀者定位會連動到文章中對於「基因」一詞的解釋層次,即便定位是大學生,以臺灣目前的現況,文法商科系與理工科系的學生相比,在數理知識上的程度有著明顯的差距;而理工科系與生醫科系的學生之間,生物相關知識的程度也有相當的落差。因此,一篇在定位上是給大學生看的「基因」文章,仍然很難在內容上達到對大多數的大學生們,都是既「科」又「普」的理想狀態

-----廣告,請繼續往下閱讀-----

如何決定內容的取材方向?

《科學月刊》從創刊到現在,每期的內容該寫些什麼,基本上都是由編輯委員會討論決定的。編輯委員們的組成主要都是在臺灣從事科學研究或教學的專業人士,而且都是義務奉獻時間給《科學月刊》。因此在內容取向上,一直傾向於由編輯委員會的專家學者們認為「讀者該看什麼」,也因此在題目的設定上與寫作的風格上,長久以來都是學術色彩多於科普色彩,這也是《科學月刊》長期以來不易推廣的主因之一。

必須兼顧大眾的閱讀喜好,又須傳播正確的知識性內容,是《科學月刊》一直努力發展的方向。圖/《科學月刊》

除此之外,科普寫作在傳統的學術界裡,並不算可以作為評鑑或升等依據的能力指標,特別是近十年來臺灣學術界環境的變化,對於科學家們的研究表現有著比以往更嚴峻的考核,因此不只一般讀者投稿的數量銳減,直接對專業人士的邀稿也比以前困難許多。

當然,若是從提高能見度與銷售量的角度考慮,「讀者想看什麼」、「讀者喜歡什麼」甚或是「讀者認同什麼」會是更有用的取材考量,例如保健養生相較於狹義相對論絕對是更吸睛的主題、討論人工智慧 (artificial intelligence, AI) 能做什麼事情也會比討論AI的數學原理更有賣點;而且以讀者「想看、喜歡、認同」所取材的內容如果放上電子版面,較高的點擊率對作者而言更是即時的成就感回饋。只是這樣的考量會限制了科學內容的取材廣度與知識介紹的深度,如果沒有非常仔細地拿捏主題的設定與寫作的鋪陳方式,很容易將科普的內涵新聞化甚至是娛樂化了。

乘著網路時代的風,散播「正確」且「有趣」的科普

將科普內容做得有趣又不失正確性,才能吸引住讀者的眼球。圖/pexels

網路時代對於科學相關的資訊有幾個不同層面的需求,包括對「正確」資訊的需求、對「最新」資訊的需求、對「有趣」資訊的需求和對「一直有」資訊的需求。

-----廣告,請繼續往下閱讀-----

「正確」是網路時代的資訊傳播最基本的要求,但同時也是最難下判斷的要求。特別是高度專業的科學知識,一般民眾並不具有足以判斷其內容真偽的能力,也因此,資訊是由哪個單位所發出的,發出訊息的單位是否具有公信力,對於消息真假的判斷,就具有重要的參考價值。

《科學月刊》五十年來的扎實耕耘,在臺灣的科普界已經建立了難得的公信力,因此如何在這個「公信力」的基礎上,利用新興的社群網路媒體,將科學的最新進展(具體來說,重要期刊上所刊載的最新研究成果)轉譯整理成中文的資訊;將正確的資訊利用不同視角的議題聯想方式,包裝或改寫成有趣的資訊(例如 598 期的「透視暮色後的夜市」專輯);從 4000 萬字的龐大科普資料庫中,整理出具有歷史縱深與橫向關聯性的資料以供連續的發文所需,這都是《科學月刊》如何在網路時代善用新媒體來輔助行銷的新課題。

當紙本雜誌變成「收藏品」

精緻的美編且富有巧思的內容編排,能提升讀者對於紙本雜誌的閱讀興趣。圖/pexels

在網路時代中,人們的閱讀習慣逐漸被容易取得、容易閱讀的資訊傳遞形式,導向精簡化、零碎化與圖像化的趨勢發展,這對於需要完整篇幅、主體為文字論述的科學性文章而言,實在是一個不利的發展方向,連帶也降低大眾對於紙本刊物的閱讀需求。

在這樣的大趨勢下,如何讓大眾的目光從輕薄短小且活潑呈現的網路文章再拉回到紙本身上,已經不只是編輯技術上的問題而已,還是個典範轉移層級的議題。因為編輯技術上的努力,或許可以把紙本雜誌打造成比電子書更適合閱讀的載體,但畢竟網路資訊擁有容易取得、容易閱讀這兩個紙本雜誌達不到的特性,所以除非紙本雜誌與網路資訊兩者之間有更大的本質性差異,不然還是解決不了網路對於紙本書籍能否繼續存在的威脅。

-----廣告,請繼續往下閱讀-----

其中一個可能的發展方向是,讓每一期的紙本雜誌在形象上,從原本看完即丟的消耗品,轉變為值得收藏的精品;讓讀者閱讀這本雜誌的心境,不是隨滑隨看的那種順手即興,而是細細品嚐時尚品牌的滿足。亦即,紙本雜誌的價值不只是由其內所刊登的文字來彰顯,包含配合文字內容的圖、表和插畫等,都是整體美術設計的一環,也都是這個品牌價值的重要成分。

甚至從這個品牌的概念出發,在紙本雜誌之外發展出與其相關的多重周邊商品;不只是與《科學月刊》相關的文創類商品,也包括與《科學月刊》內容相關的動態活動,例如演講、研習等。

站在下一個五十年起跑點的《科學月刊》

《科學月刊》從 541 期開始從黑白改成全彩印刷,美編的工作逐步從單純的版面編排進階到如何以美術設計吸引讀者的目光。最近的努力方向更進一步提升到以美編輔助閱讀的層次,希望以切合內容的圖、表和插畫等來幫助讀者更容易了解文章的原意,也希望藉由這樣的努力,將來能累積成《科學月刊》整體的新風格,成為具有品牌識別度的文創產品。

從學術文章走向社會議題,《科學月刊》將以更多元的內容,將豐富知識及資訊傳遞給大眾。圖/pexels

與此同時,《科學月刊》在內容上也開始關照到多元化受眾的需求,包括以影像介紹為主的「顯影」、聊聊由科學聯想到的人文情懷之「非‧關科學」、介紹近期科學新聞的「News Focus」、相當於社論性質的「思辨之評」與不定期出現的人物專訪、活動介紹或書評等。這些盡量以一般大眾都能理解的筆觸所呈現的內容,都是我們希望《科學月刊》能夠從「學校內」跨出到「學校外」,讓社會上一般大眾也能從這些較易閱讀的內容入門,進一步接觸《科學月刊》所提供的各種科學資訊。畢竟,沒有無關科學的社會議題,而讓大眾願意閱讀科學,也是一本科普雜誌的重要社會責任

-----廣告,請繼續往下閱讀-----

當然,《科學月刊》仍然沒有忘記我們的初衷。專業科學知識的介紹與科學議題的評論,仍是《科學月刊》每期的主軸,包括數學、物理、化學、生物和地球科學這五個基礎學門的專欄、每個月的封面故事所探討的科學專題及讀者投稿的精選文章。雖然這些文章的取材與內容仍然跟過去的《科學月刊》有著同樣的堅持,亦即以學術專業的角度決定「讀者該看什麼」,但是我們在決定的過程中,加重了非學術圈內人的專業文編之意見,在討論「讀者該看什麼」的同時,也希望能盡量兼顧讀者「想看、喜歡、認同」的題材。甚至也開始了相關文創類商品的設計,也開辦了與《科學月刊》內容相關的動態活動。

不管內容的呈現怎麼調整,但我覺得,也相信,現在的《科學月刊》都還秉持著當初 1970 年代那些前輩們很年輕的時候的豪氣,就是:這份刊物是希望能夠啟迪這個社會,以科學的精神來看待事務,以科學的精神來處理——不只是科學的事務而已,還包括我們的日常生活。

《科學月刊》的下個五十年,相信會持續這份豪氣。


 

〈本文選自《科學月刊》2020 年 1 月號〉

-----廣告,請繼續往下閱讀-----

在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

 

文章難易度
科學月刊_96
249 篇文章 ・ 3481 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

2

2
2

文字

分享

2
2
2
諦聽宇宙深處的低吟,宇宙低頻重力波訊號代表的意義——《科學月刊》
科學月刊_96
・2023/11/01 ・3782字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/陳哲佑
    • 任職於日本理化學研究所,專長為黑洞物理、宇宙學、重力理論等。
    • 熱愛旅行、排球與珍珠奶茶
  • Take Home Message
    • 今(2023)年 6 月,北美奈赫茲重力波天文臺(NANOGrav)團隊觀察到宇宙中的低頻重力波。
    • NANOGrav 團隊利用數個脈衝星組成「脈衝星陣列」(PTA),測量各脈衝星訊號到達的時間,計算不同訊號的到達時間是否存在著相關性。
    • PTA 得到的重力波訊號相當持續,沒有明確的波源。科學家推測此訊號可能來自多個超大質量雙黑洞系統互繞而產生的疊加背景。

2015 年 9 月,位於美國的雷射干涉儀重力波天文臺(Laser Interferometer Gravitational-Wave Observatory, LIGO)成功偵測來自雙黑洞碰撞的重力波訊號(請見延伸閱讀 1)。

這個發現不僅再次驗證愛因斯坦(Albert Einstein)「廣義相對論」的成功,更引領人類進入嶄新的重力波天文學時代。到了現在,我們不僅能使用各種電磁波波段進行觀測,還多了重力波這個強而有力的工具能夠窺探我們身處的宇宙,甚至還有同時結合兩者的多信使天文學(multi-messenger astronomy)註1,皆能帶給人類許多單純電磁波波段觀測無法觸及的資訊(請見延伸閱讀 2)。

如同不同波段的電磁波觀測結果為我們捎來不同的訊息,重力波也有不同的頻譜,且頻譜與產生重力波的波源性質有非常密切的關係。以雙黑洞碰撞為例,系統中黑洞的質量與碰撞過程中發出的重力波頻率大致上成反比,因此當系統中黑洞的質量愈大,它產生的重力波頻率就愈低。

目前地球上的三個重力波天文臺:LIGO、處女座重力波團隊(The Virgo Collaboration, Virgo),以及神岡重力波探測器(Kamioka Gravitational wave detector, KAGRA, or Large-scale Cryogenic Gravitational wave Telescope, LCGT)都受限於干涉儀的長度,只對頻率範圍 10~1000 赫茲(Hz)的重力波有足夠的靈敏度,此範圍的重力波對應到的波源即是一般恆星質量大小的雙黑洞系統。

-----廣告,請繼續往下閱讀-----

然而,來自超大質量黑洞互繞所發出的重力波頻率幾乎是奈赫茲(Nano Hertz,即 10-9 Hz)級別,如果想要探測到此重力波,就需要一個「星系」規模的重力波探測器。雖然這聽起來彷彿天方夜譚,但就在今年 6 月,北美奈赫茲重力波天文臺(North American Nanohertz Observatory for Gravitational Waves, NANOGrav)的團隊利用「脈衝星計時陣列」(pulsar timing array, PTA)成功地觀測到這些低頻重力波存在的證據。

以不同方式觀察不同頻率的重力波

與電磁波相似,重力波也有不同的頻率。不同頻率的重力波會對應到不同性質的波源,且需要不同的方式觀測。圖/科學月刊 資料來源/Barack, et al. 2018

NANOGrav 如何觀測低頻重力波?

讀者聽過脈衝星(pulsar)嗎?它是一種高速旋轉且高度磁化的中子星(neutron star)註2,會從磁極放出電磁波。隨著脈衝星的旋轉,它的電磁波會以非常規律的時間間隔掃過地球,因而被身處於地球上的我們偵測到,就像是海邊的燈塔所發出的光,會規律地掃過地平面一般。由於脈衝星的旋轉模式相當穩定,掃過地球的脈衝就如同宇宙中天然的時鐘,因此在天文學上有相當多的應用——甚至可以用來觀測重力波。

利用脈衝星觀測重力波的第一步,首先要記錄各個脈衝星的電磁脈衝到達地球的時間(time of arrival),並且將這些訊號與脈衝星電磁脈衝的理論模型做比對。

如果訊號和理論模型相符,那麼兩者相減後所得到的訊號差(residual)只會剩下一堆雜訊;相反的,如果宇宙中存在著重力波,並且扭曲了該脈衝星和地球之間的時空,那麼兩訊號相減之後就不會只有雜訊,而會出現時空擾動的蹤跡。

-----廣告,請繼續往下閱讀-----
利用數個脈衝星組成的脈衝星計時陣列,可用來尋找宇宙中低頻的重力波訊號。圖/Tonia Klein, NANOGrav 

然而以觀測的角度來看,即便我們從來自單一脈衝星的訊號中發現訊號差出現偏離雜訊的跡象,也不能直接推論這些跡象一定是來自重力波。畢竟科學家對脈衝星的內部機制和脈衝傳遞的過程也並未完全了解,這些未知的機制都可能會使單一脈衝星的訊號差偏離雜訊。

因此為了要判斷重力波是否存在,就必須進行更進一步的觀測:利用數個脈衝星組成脈衝星陣列,測量每個脈衝星訊號到達的時間,並且計算這些不同脈衝星訊號的到達時間是否存在某種相關性。

舉例來說,如果脈衝星和地球之間沒有重力波造成的時空擾動,那麼即便每顆脈衝星的訊號差都出現偏離雜訊的跡象,彼此之間的訊號也會完全獨立且不相干;反之,如果脈衝星和地球之間有重力波經過,這些重力波便會扭曲時空,不僅會改變這些脈衝訊號的到達時間,且不同脈衝星訊號到達的時間變化也會具有某種特定的相關性。

根據廣義相對論的計算,一旦有重力波經過,不同脈衝星訊號之間的相關性與脈衝星在天球上的夾角會滿足一條特定的曲線,稱為 HD 曲線(Hellings-Downs curve)。

-----廣告,請繼續往下閱讀-----

科學家以兩顆脈衝星為一組觀測單位,藉由觀測多組脈衝星的訊號、計算它們之間的相關性,再比較這些數據是否符合 HD 曲線,就能夠進一步推斷低頻重力波是否存在。值得一提的是,由於重力波訊號非常微弱,用來作為陣列的脈衝星必須有非常穩定的計時條件,因此一般會選擇自轉週期在毫秒(ms)級別的毫秒脈衝星作為觀測對象。

NANOGrav 在今年 6 月發布的觀測結果就是利用位於波多黎各的阿雷西博天文台(Arecibo Observatory,已於 2020 年因結構老舊而退役)、美國的綠堤望遠鏡(Robert C. Byrd Green Bank Telescope)和甚大天線陣(Very Large Array, VLA)觀測 68 顆毫秒脈衝星。

他們分析了長達 15 年的觀測數據後,發現這些脈衝星訊號的相關性與 HD 曲線相當吻合,證實了低頻重力波確實存在於我們的宇宙中。

除了 NANOGrav,其他團隊例如歐洲的脈衝星計時陣列(European Pulsar Timing Array, EPTA)、澳洲的帕克斯脈衝星計時陣列(Parkes Pulsar Timing Array, PPTA)、印度的脈衝星定時陣列(Indian Pulsar Timing Array, InPTA),以及中國的脈衝星計時陣列(Chinese Pulsar Timing Array, CPTA)等,皆得到相符的結果。

-----廣告,請繼續往下閱讀-----

NANOGrav 觀測結果帶來的意義

與先前 LIGO 觀測到的瞬時重力波訊號不同,目前利用 PTA 得到的重力波訊號是相當持續的,而且並沒有較明確的單一波源,反而像是由來自四面八方數個波源組成的隨機背景訊號。

打個比方,LIGO 收到的重力波訊號像是我們站在海邊,迎面而來一波一波分明的海浪,每一波海浪分別對應到不同黑洞碰撞事件所發出的重力波;而 PTA 的訊號則是位於大海正中央,感受到隨機且不規則的海面起伏。

目前對這些奈赫茲級別的重力波訊號最合理也最自然的解釋,是來自多個超大質量雙黑洞系統互繞而產生的疊加背景。若真是如此,那這項發現將對天文學產生重大的意義。

過去科學界對於如此巨大的雙黑洞系統能否在可觀測宇宙(observable universe)的時間內互繞仍普遍存疑,如果PTA觀測到的重力波真的來自超大質量雙黑洞互繞,那代表這類系統不僅存在,它們的出現還比過去我們預期的更為頻繁,且產生的訊號也更強。

-----廣告,請繼續往下閱讀-----

NANOGrav 的觀測結果

橫軸為脈衝星陣列中,兩脈衝星位置之間的夾角;縱軸為訊號之間的相關性;藍色數據點為 NANOGrav 15 年的觀測結果;黑色虛線為 HD 曲線。可看出數據點的分布與 HD 曲線相當吻合。圖/科學月刊 資料來源/Agazie et al. 2023

不過除了雙黑洞系統,也有其他「相對新奇」的物理機制也可能產生這樣的重力波背景,包含早期宇宙的相變、暗物質,以及其他非標準模型的物理等。若要從觀測的角度去區分這些成因,最重要的關鍵在於,能否從隨機背景中找到特定的波源方向。

如果是雙黑洞系統造成的重力波,勢必會有來自某些方向的訊號比較強;反之,如果是早期宇宙產生的重力波,那麼這些重力波將會隨著宇宙的膨脹瀰漫在整個宇宙中,因此它們勢必是相當均向的。

為了找到波源方向,提升訊號的靈敏度成為了當務之急。而若要提升 PTA 的靈敏度,最主要的方式有兩種——其一是將更多的脈衝星加入陣列;其二則是延長觀測的時間。

目前,不同的 PTA 團隊已經組成國際脈衝星計時陣列(International PTA)互相分享彼此的脈衝星觀測資料。隨著觀測技術的進步,解密這些奈赫茲級別的神祕重力波將指日可待。

-----廣告,請繼續往下閱讀-----

註解

  1. 相較於過往只能以可見光觀測宇宙,多信使天文學能利用多種探測訊號,如電磁波、微中子、重力波、宇宙射線等工具探索宇宙現象,獲得更多不同資訊及宇宙更細微的面貌。
  2. 質量較重的恆星在演化到末期、發生超新星爆炸(supernova)後,就有可能成為中子星。

延伸閱讀

  1. 林俊鈺(2016)。發現重力波!,科學月刊556,248–249。
  2. 金升光(2017)。重力波獨白落幕 多角觀測閃亮登場,科學月刊576,892–893。
  3. NANOgrav. (Jun 28 2023). Scientists use Exotic Stars to Tune into Hum from Cosmic Symphony. NANOgrav.
  • 〈本文選自《科學月刊》2023 年 10 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
所有討論 2
科學月刊_96
249 篇文章 ・ 3481 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

0
0

文字

分享

0
0
0
人類終於實現室溫超導體之夢?常溫常壓超導體 LK-99——《科學月刊》
科學月刊_96
・2023/11/01 ・4262字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/王立民
    • 臺灣大學物理學系教授,主要研究領域包括超導物理、高溫超導電子元件等
  • Take Home Message
    • 今(2023)年 7 月 27 日,韓國研究團隊宣稱他們發現一種在常溫常壓下能產生超導體性質的材料「LK-99」。
    • 筆者團隊在實驗室中合成了 LK-99 樣品,並觀察到此樣品在常溫時呈現出抗磁性性質,但不具有超導體的完全抗磁特性。
    • LK-99 樣品具有半導體的導電特性,在 390 K 也有電阻急遽下降的變化,但應為樣品內含的硫化亞銅所致,因此僅可被視為一種具抗磁性半導體材料。

一直以來,實現「室溫超導體」就是人類的夢想。今(2023)年 7 月 27 日,來自韓國的研究團隊宣稱發現一種在常溫常壓下能產生超導體性質的材料「LK-99」,隨即引起全世界的振奮與轟動。

此外,在理論計算上也顯示 LK-99 在適當的摻雜與晶格排列下,具有表現超導性的可能。

幾天後,美國勞倫斯柏克萊國家實驗室(Lawrence Berkeley National Laboratory, LBNL)的研究員格里芬(Sinéad Griffin)也指出,透過超級電腦的計算模擬顯示,當銅原子(copper, Cu)滲透到晶格中的路徑處於適當的條件和位置——特別是取代某一個鉛原子(lead, Pb)的特殊位置時——它們就能夠具有超導的共同特徵。

這是首篇證實 LK-99 理論上可行的論文,更帶動了能源科技公司美國超導體(American Superconductor Corporation, AMSC)的股價在收盤前暴漲。緊接著其他以密度泛函理論(density functional theory, DFT)計算 LK-99 的能帶結構也被提出,作者們普遍認為銅的摻雜引起了「從絕緣體到導體」的轉變,並大膽推斷 LK-99 可能具有超導特性。

-----廣告,請繼續往下閱讀-----

然而,各國間許多以實驗工作為主的研究團隊試圖復現韓國研究團隊 LK-99 的結果,卻未能證實 LK-99 是室溫超導體,國際團隊的實驗均顯示它僅是具抗磁性的半導體材料。

在各國紛紛設法復刻韓國團隊的研究時,筆者實驗室也立刻緊鑼密鼓加入,期望驗證這項被宣稱為「世紀大發現」的研究真實性。

超導的「迷」與「謎」

為了解這次室溫超導的真相,我們不得不先從現今超導的研究開始談起。

超導迷人之處不僅在於學術上的奇妙物理相變化,更在實際應用中展現出它獨特的性質——零電阻與完全抗磁性。這幾項特質在電力傳輸、交通、軍事、能源、量子科技等領域中,都具有相當多的應用價值。

-----廣告,請繼續往下閱讀-----

然而自 1911 年荷蘭物理學家歐尼斯(Heike Onnes)發現「汞」(mercury, Hg)在 4.2 K(Kelvin,克耳文)的溫度下會呈現超導特性,成為第一個超導材料以來,歷經 75 年人們發現的最高超導溫度僅有 23 K 的鈮鍺化合物(niobium-germanium)。

1986 年,瑞士物理學家米勒(Karl Alexander Müller)及德國物理學家比得諾茲(Johannes Georg Bednor)發現銅氧化合物超導體(又稱高溫超導體),並於 1987 年獲得諾貝爾物理獎。

同年,中央研究院院士吳茂昆與朱經武也發現超導溫度約 90K 的釔鋇銅氧(YBCO)超導體,它的超導溫度已突破應用液態氮 77 K 的溫度障壘。

而迄今為止,常壓下超導溫度最高的是在 1993 年發現的汞鋇鈣銅氧(HBCCO)超導體,約為 135 K。

-----廣告,請繼續往下閱讀-----

在理論的發展上,1957 年三位美國物理學家施里弗(John Schrieffer)、巴丁(John Bardeen)、古柏(Leon Cooper)提出 BCS 理論(Bardeen–Cooper–Schrieffer theory, BCS theory),解釋了出現於 1986 年以前的「低溫超導體」(或稱傳統超導體)的超導行為,例如同位素效應。然而公認能解釋高溫超導性的理論仍付之闕如,BCS 理論預期的超導上限溫度僅 40 K 左右。

多年來,人們也嘗試提高超導溫度,常用的手法是利用高壓,如在百萬大氣壓下一些含氫化合物將呈現近室溫的超導性,但這些方法其實對超導的理論或實驗研究不具任何意義。

因為根據基本理論,當外加壓力無限大時,超導臨界溫度(Tc)當然可以無限提高。所以具有重大意義的室溫超導,必須是在常壓下出現超導特性的材料,這也是韓國團隊宣稱 LK-99 為常溫常壓超導對科學界帶來震撼的原因。

如何檢驗材料的超導特性?

如前所述,超導具有零電阻與完全抗磁的特性,因此一項材料超導特性的驗證基本上需經由電阻與磁性的量測來確認(若加上比熱量測則會更完整)。以筆者實驗室裡用磁控濺鍍技術所成長的高溫超導 YBCO 薄膜為例,圖一(a)為量測此材料電阻率(ρ)比值隨溫度(ρ/ρ100 K− T)變化的關係(以 100 K 為基準),可以看到當溫度降至大約 88 K 時,YBCO 薄膜的電阻急速下降至近零電阻(儀表偵測極限)狀態。

-----廣告,請繼續往下閱讀-----

而在磁性的量測,則利用超導量子干涉磁量儀(SQUID magnetometer)量測 YBCO 薄膜在零磁冷卻(zero-field cooling, ZFC)與磁冷卻(field-cooling, FC)下的磁化強度(magnetization, M)隨溫度變化的關係。

之所以需量測 ZFC 與 FC 曲線,是為了確認超導的磁通釘扎(magnetic flux pinning)效應,也就是磁力線在超導體內部低位能區的束縛狀態(可由 FC 曲線觀察此現象),而此效應也是所謂「第二類超導體」的特徵之一。

圖一、YBCO 薄膜電阻率的比值(a)與磁化率(b)隨溫度變化的關係。當溫度降至大約 88 K 時,YBCO 薄膜的電阻急速下降至近零電阻狀態。圖/科學月刊(作者提供)

另外,若材料本身為完全無雜質存在的「百分之百超導體」,則它的磁化率(χ,定義為 M/H,H 為外加磁場強度)在 ZFC 低溫下則是完美的 -1 值(為超導體的邁斯納效應)。

相對地若材料本身只含有部分超導材料,混合了某些非超導材料,則 χ 雖仍為負值但卻會小於 1,且對應材料中超導成分所占的體積比率。因此透過磁性 ZFC、FC 的量測可以精確地定性與定量一項材料的超導特性。

-----廣告,請繼續往下閱讀-----

如圖一(b)所示,此為量測 YBCO 薄膜在外加磁場 5 Oe(oersted,奧斯特)下 ZFC、FC 磁化率 χ 隨溫度變化的關係。圖中可以看到 YBCO 薄膜在低溫 2 K 下 ZFC 的 χ 值為 -1,顯示它完美的抗磁性,且 ZFC 與 FC 曲線分離也顯示樣品中存在著磁通釘扎效應。

另一種大家熟知、直觀的超導現象即為磁浮實驗。圖一(a)左上角的照片便是利用筆者實驗室自行成長的大塊 YBCO 單晶(黑色),在液態氮冷卻下的磁浮實驗照片。

圖中可清楚看到磁鐵飄浮於 YBCO 晶體上方,但此處需強調的是——一項材料並不是具磁浮現象就可斷言為超導體,例如因具有高抗磁性而可產生磁浮現象的熱解碳(pyrolytic carbon),就是一種具磁浮現象但並非超導體的例子。因此,超導特性的檢驗仍須以嚴謹的電性與磁性測量為檢驗標準。

驗證 LK-99 是否為超導體

依據韓國團隊在論文中揭露的 LK-99(化學成分為 Pb9Cu(PO4)6O)合成方法,此材料的技術門檻不高,從原料到成品僅需數天即可完成。

-----廣告,請繼續往下閱讀-----

首先根據文獻,我們合成的 LK-99 樣品外觀與顏色與其他團隊結果無異(圖二右上角),圖二為合成 LK-99 樣品的 X 光繞射圖(X-ray diffractometer, XRD)。此結果同樣與韓國等團隊所呈現的結果差異不大,均顯示其中的成分組成並非單純化合物,尤其是其中出現銅-硫化合物的「雜相」,意味著在對 LK-99 的特性量測與下定論時需格外小心。

圖二、筆者實驗室合成的 LK-99 樣品外觀(右上)。LK-99 樣品的 X 光繞射圖與韓國等團隊所呈現的結果差異不大,均顯示其中的成分組成並非單純化合物,尤其是在合成方法中出現副產物硫化亞銅(Cu2S)的「雜相」。圖/科學月刊

圖三(a)為筆者實驗室合成的 LK-99 樣品在外加磁場 200 Oe 下的磁化強度量測結果,顯示 LK-99 在室溫(約 300 K)下具抗磁性,但換算磁化率則極低,約為 10-4 左右。我們觀察到 LK-99 的 ZFC、FC 與韓國研究團隊公開的數據類似,也觀察到類似第二類超導體 ZFC 與 FC 曲線的分離,但這可能是因樣品中存在著具有磁通釘扎效應的雜質,才會造成它在低溫(10 K)以下呈現磁矩反轉成大於零的順磁性。

圖三(b)則為筆者實驗室製作的 LK-99 樣品電阻率隨溫度變化的關係圖,樣品在常溫以下呈現半導體的導電行為,特別是在溫度約 390 K 觀察到電阻急遽降低的情形,類似韓國團隊宣稱的在約 378 K 出現超導零電阻現象。

然而,已有中國科學院研究團隊的實驗結果表明,此超導現象可能是由於合成方法產生的副產物硫化亞銅所引起,硫化亞銅已知會在 377 K 出現結構相轉變並伴隨電阻急遽下降。而 LK-99 樣品在以能量色散光譜(energy-dispersive-spectroscopy)元素分析後也能觀察到硫元素的存在,與 X 光繞射的結果吻合。

-----廣告,請繼續往下閱讀-----

因此,我們在實驗室中觀察到 LK-99 樣品在溫度約 390 K 時電阻急遽降低的現象,推論應為硫化亞銅所致,與超導無關。

圖三、樣品在常溫以下呈現半導體的導電行為,特別是在溫度約 390 K 附近觀察到電阻急遽降低的情形。但此超導現象可能是由於合成方法產生的硫化亞銅所引起,與超導無關。(a)LK-99 樣品在外加磁場 200 Oe 下的磁化強度量測結果,顯示 LK-99 在室溫下具抗磁性,但換算磁化率則極低。(b)LK-99 樣品電阻率隨溫度變化的關係圖。圖/科學月刊

並非室溫超導體的 LK-99

根據韓國團隊所發表的合成方法,我們複製出室溫超導 LK-99 樣品。在磁性測量部分,顯示 LK-99 在室溫為抗磁性物質,但不具超導的完全抗磁特性。

電性測量則顯示 LK-99 具有半導體導電特性,在 390 K 也有電阻急遽下降的變化,但應為樣品內含的硫化亞銅所致,與超導零電阻行為無關。因此,LK-99 僅可被視為一種抗磁性半導體材料,此結論與許多國際團隊的結果一致。在今年 8 月中旬,知名期刊《自然》(Nature)甚至刊出一篇文章直指「LK-99 不是超導體」。

LK-99 的認證實驗仍有待各國(包含韓國國內)其他團隊持續進行,尋找室溫超導之路仍然漫長。

感謝臺灣大學及國科會在研究資源的支持,以及中興大學物理系教授吳秋賢、東海大學物理系教授王昌仁及時找到元素磷,使復現實驗得以立刻進行。

也感謝實驗室團員的努力,使實驗室得以早日揭露 LK-99 真相,相關結果將整理以期刊正式發表。

註解

在超導狀態下,第一類超導體在超導臨界磁場(Hc)以下時呈現完全抗磁狀態(邁斯納效應,Meissner effect)。第二類超導體則呈現兩個臨界磁場:下臨界磁場(Hc1)與上臨界磁場(Hc2),磁場在小於Hc1下為完全抗磁性的狀態;磁場介於 Hc1 與 Hc2 之間時,部分磁力線可以進入超導體內部,呈現非完全抗磁性的混合態。

  • 〈本文選自《科學月刊》2023 年 10 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
科學月刊_96
249 篇文章 ・ 3481 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

2
0

文字

分享

0
2
0
站在下個五十年的起點:《科學月刊》五十歲成長史
科學月刊_96
・2020/01/26 ・4148字 ・閱讀時間約 8 分鐘 ・SR值 585 ・九年級

-----廣告,請繼續往下閱讀-----

文/蔡孟利│2012 加入編委會、2013 副總編輯、2015 總編輯、2017 卸任,實際參與編務六年。很高興,曾經為這個沒有老闆的刊物工作。

《科學月刊》創立於 1970 年,由當時在美國百位臺灣留學生倡議創辦,迄今每月出刊,從無間斷。這本沒有財團、沒有政府預算支持,甚至是沒有老闆的刊物,在去 (2019) 年 12 月創刊滿五十年、發行滿六百期。

創刊五十年的《科學月刊》,集結了台灣留學生及各界教育學者的貢獻,讓科普知識散播社會,受益眾多學生及讀者。圖/《科學月刊》

五十年來,超過 6000 人次的臺灣科學家,為臺灣撰寫了超過 4000 萬字的科普知識與評論的文章;《科學月刊》在臺灣五十年所耕耘的,不僅是一個科學知識傳播的平台,也是臺灣的科學與文化、科學與社會對話的平台。這一本沒有老闆的科普雜誌,一貫初衷五十年,若要列舉臺灣奇蹟,《科學月刊》的屹立是一個;若要列舉臺灣之光,《科學月刊》也應該入列。

-----廣告,請繼續往下閱讀-----

站在這個五十年的里程碑展望未來,這本「臺灣之光」若要繼續奇蹟式的屹立下個五十年,還是有許多持續性的課題需要處理;在新的因應作法與創刊初衷的理想堅持之間,還是要不斷地想辦法取得平衡。這些持續性的課題包括目標受眾、內容取向和網路與紙本的取捨。

《科學月刊》的讀者是誰?

「讀者是誰?」這個問題,筆者認為不只是《科學月刊》,其他科普雜誌也都會面臨到同樣的問題。《科學月刊》在創立的初期,因為當時升學主義盛行及科學讀物匱乏的時代背景,所以主要設定的讀者對象是高中生與大學生。即便到了網路盛行、科普書刊越來越豐富的今日,這個訴求對象的設定,仍然沒有太大的改變。

要以什麼樣的讀者類型作為取材依據是《科學月刊》內容一大考量因素。圖/pexels

不過在 2016 年,《科學月刊》到美國採訪了著名的科普雜誌《科學美國人》 (Scientific American) 的總編輯迪克里斯汀納 (Mariette DiChristina) 女士,了解到這本世界知名的科普雜誌的讀者組成,居然有接近七成是政治決策者和商業管理者!這本科普雜誌不僅提供了商業的領導階層在產品開發的過程中,創新與靈感的養分來源,而一些政治決策者在制定與審核科技相關法規時,也會借助於這本雜誌去了解相關的原理和應用。

-----廣告,請繼續往下閱讀-----

這次的訪問刺激了我們思考一個新課題:《科學月刊》需要擴大訴求的讀者對象嗎?

一旦讀者的定位擴展到社會人士的時候,文章主題的選定與內容的呈現方式,就變成了很複雜的課題。畢竟科普知識的傳播不同於一般商業性、政論性或娛樂性質的雜誌,在閱讀上需要有一定的知識基礎以協助其了解。例如一篇談論「基因」的科普文章,到底訴求的對象是國中、高中或大學生,是個必須在寫作前就釐清的問題。因為不同的讀者定位會連動到文章中對於「基因」一詞的解釋層次,即便定位是大學生,以臺灣目前的現況,文法商科系與理工科系的學生相比,在數理知識上的程度有著明顯的差距;而理工科系與生醫科系的學生之間,生物相關知識的程度也有相當的落差。因此,一篇在定位上是給大學生看的「基因」文章,仍然很難在內容上達到對大多數的大學生們,都是既「科」又「普」的理想狀態

如何決定內容的取材方向?

《科學月刊》從創刊到現在,每期的內容該寫些什麼,基本上都是由編輯委員會討論決定的。編輯委員們的組成主要都是在臺灣從事科學研究或教學的專業人士,而且都是義務奉獻時間給《科學月刊》。因此在內容取向上,一直傾向於由編輯委員會的專家學者們認為「讀者該看什麼」,也因此在題目的設定上與寫作的風格上,長久以來都是學術色彩多於科普色彩,這也是《科學月刊》長期以來不易推廣的主因之一。

必須兼顧大眾的閱讀喜好,又須傳播正確的知識性內容,是《科學月刊》一直努力發展的方向。圖/《科學月刊》

-----廣告,請繼續往下閱讀-----

除此之外,科普寫作在傳統的學術界裡,並不算可以作為評鑑或升等依據的能力指標,特別是近十年來臺灣學術界環境的變化,對於科學家們的研究表現有著比以往更嚴峻的考核,因此不只一般讀者投稿的數量銳減,直接對專業人士的邀稿也比以前困難許多。

當然,若是從提高能見度與銷售量的角度考慮,「讀者想看什麼」、「讀者喜歡什麼」甚或是「讀者認同什麼」會是更有用的取材考量,例如保健養生相較於狹義相對論絕對是更吸睛的主題、討論人工智慧 (artificial intelligence, AI) 能做什麼事情也會比討論AI的數學原理更有賣點;而且以讀者「想看、喜歡、認同」所取材的內容如果放上電子版面,較高的點擊率對作者而言更是即時的成就感回饋。只是這樣的考量會限制了科學內容的取材廣度與知識介紹的深度,如果沒有非常仔細地拿捏主題的設定與寫作的鋪陳方式,很容易將科普的內涵新聞化甚至是娛樂化了。

乘著網路時代的風,散播「正確」且「有趣」的科普

將科普內容做得有趣又不失正確性,才能吸引住讀者的眼球。圖/pexels

網路時代對於科學相關的資訊有幾個不同層面的需求,包括對「正確」資訊的需求、對「最新」資訊的需求、對「有趣」資訊的需求和對「一直有」資訊的需求。

-----廣告,請繼續往下閱讀-----

「正確」是網路時代的資訊傳播最基本的要求,但同時也是最難下判斷的要求。特別是高度專業的科學知識,一般民眾並不具有足以判斷其內容真偽的能力,也因此,資訊是由哪個單位所發出的,發出訊息的單位是否具有公信力,對於消息真假的判斷,就具有重要的參考價值。

《科學月刊》五十年來的扎實耕耘,在臺灣的科普界已經建立了難得的公信力,因此如何在這個「公信力」的基礎上,利用新興的社群網路媒體,將科學的最新進展(具體來說,重要期刊上所刊載的最新研究成果)轉譯整理成中文的資訊;將正確的資訊利用不同視角的議題聯想方式,包裝或改寫成有趣的資訊(例如 598 期的「透視暮色後的夜市」專輯);從 4000 萬字的龐大科普資料庫中,整理出具有歷史縱深與橫向關聯性的資料以供連續的發文所需,這都是《科學月刊》如何在網路時代善用新媒體來輔助行銷的新課題。

當紙本雜誌變成「收藏品」

精緻的美編且富有巧思的內容編排,能提升讀者對於紙本雜誌的閱讀興趣。圖/pexels

在網路時代中,人們的閱讀習慣逐漸被容易取得、容易閱讀的資訊傳遞形式,導向精簡化、零碎化與圖像化的趨勢發展,這對於需要完整篇幅、主體為文字論述的科學性文章而言,實在是一個不利的發展方向,連帶也降低大眾對於紙本刊物的閱讀需求。

-----廣告,請繼續往下閱讀-----

在這樣的大趨勢下,如何讓大眾的目光從輕薄短小且活潑呈現的網路文章再拉回到紙本身上,已經不只是編輯技術上的問題而已,還是個典範轉移層級的議題。因為編輯技術上的努力,或許可以把紙本雜誌打造成比電子書更適合閱讀的載體,但畢竟網路資訊擁有容易取得、容易閱讀這兩個紙本雜誌達不到的特性,所以除非紙本雜誌與網路資訊兩者之間有更大的本質性差異,不然還是解決不了網路對於紙本書籍能否繼續存在的威脅。

其中一個可能的發展方向是,讓每一期的紙本雜誌在形象上,從原本看完即丟的消耗品,轉變為值得收藏的精品;讓讀者閱讀這本雜誌的心境,不是隨滑隨看的那種順手即興,而是細細品嚐時尚品牌的滿足。亦即,紙本雜誌的價值不只是由其內所刊登的文字來彰顯,包含配合文字內容的圖、表和插畫等,都是整體美術設計的一環,也都是這個品牌價值的重要成分。

甚至從這個品牌的概念出發,在紙本雜誌之外發展出與其相關的多重周邊商品;不只是與《科學月刊》相關的文創類商品,也包括與《科學月刊》內容相關的動態活動,例如演講、研習等。

站在下一個五十年起跑點的《科學月刊》

《科學月刊》從 541 期開始從黑白改成全彩印刷,美編的工作逐步從單純的版面編排進階到如何以美術設計吸引讀者的目光。最近的努力方向更進一步提升到以美編輔助閱讀的層次,希望以切合內容的圖、表和插畫等來幫助讀者更容易了解文章的原意,也希望藉由這樣的努力,將來能累積成《科學月刊》整體的新風格,成為具有品牌識別度的文創產品。

-----廣告,請繼續往下閱讀-----

從學術文章走向社會議題,《科學月刊》將以更多元的內容,將豐富知識及資訊傳遞給大眾。圖/pexels

與此同時,《科學月刊》在內容上也開始關照到多元化受眾的需求,包括以影像介紹為主的「顯影」、聊聊由科學聯想到的人文情懷之「非‧關科學」、介紹近期科學新聞的「News Focus」、相當於社論性質的「思辨之評」與不定期出現的人物專訪、活動介紹或書評等。這些盡量以一般大眾都能理解的筆觸所呈現的內容,都是我們希望《科學月刊》能夠從「學校內」跨出到「學校外」,讓社會上一般大眾也能從這些較易閱讀的內容入門,進一步接觸《科學月刊》所提供的各種科學資訊。畢竟,沒有無關科學的社會議題,而讓大眾願意閱讀科學,也是一本科普雜誌的重要社會責任

當然,《科學月刊》仍然沒有忘記我們的初衷。專業科學知識的介紹與科學議題的評論,仍是《科學月刊》每期的主軸,包括數學、物理、化學、生物和地球科學這五個基礎學門的專欄、每個月的封面故事所探討的科學專題及讀者投稿的精選文章。雖然這些文章的取材與內容仍然跟過去的《科學月刊》有著同樣的堅持,亦即以學術專業的角度決定「讀者該看什麼」,但是我們在決定的過程中,加重了非學術圈內人的專業文編之意見,在討論「讀者該看什麼」的同時,也希望能盡量兼顧讀者「想看、喜歡、認同」的題材。甚至也開始了相關文創類商品的設計,也開辦了與《科學月刊》內容相關的動態活動。

不管內容的呈現怎麼調整,但我覺得,也相信,現在的《科學月刊》都還秉持著當初 1970 年代那些前輩們很年輕的時候的豪氣,就是:這份刊物是希望能夠啟迪這個社會,以科學的精神來看待事務,以科學的精神來處理——不只是科學的事務而已,還包括我們的日常生活。

-----廣告,請繼續往下閱讀-----

《科學月刊》的下個五十年,相信會持續這份豪氣。


 

〈本文選自《科學月刊》2020 年 1 月號〉

在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

 

文章難易度
科學月刊_96
249 篇文章 ・ 3481 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

1

0
0

文字

分享

1
0
0
日本福島的核廢水該流向大海嗎?——《科學月刊》
科學月刊_96
・2023/10/29 ・5063字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/張郁婕
    • 日本大阪大學人間科學研究科、清大工科系畢
    • 現為國際新聞編譯
  • Take Home Message
    • 自 2011 年福島第一核電廠發生事故後,為了冷卻反應爐和防範地下水受汙染而每天產生核廢水,目前儲水空間即將不足。
    • 雖然經處理過後的核廢水含有放射性物質,不過濃度低於排放標準,日本政府將核廢水排放到海洋的做法獲得國際原子能總署背書。
    • 日本漁業業者相當不滿、認為有其他解決方案,臺灣政府僅表達「遺憾與反對」,並無進一步作為。

福島第一核電廠自 2011 年發生事故後,時隔 12 年再次躍上多國新聞版面。但這次不是因為災後核電廠除役與復興、訴訟或是 Netflix 上架的日劇《核災日月》,而是存放在福島第一核電廠廠區內的「核廢水」即將排放大海。福島第一核電廠的「核廢水」從何而來?又為什麼要在這個時間點排入大海?

時隔 12 年再次躍上多國新聞版面。但這次不是因為災後核電廠除役與復興、訴訟或是 Netflix 上架的日劇《核災日月》,而是存放在福島第一核電廠廠區內的「核廢水」即將排放大海。圖/IMDb

回到地震發生時的核電廠

時間回到 2011 年 3 月 11 日。當時東日本大地震與隨後而來的海嘯摧毀了福島第一核電廠的電力系統,導致核電廠在停機之後無法持續注入冷卻水,直到反應爐冷卻。因此發生 1、3、4 號機組氫氣爆炸、1~3 號機組爐心熔毀,以及 1 ~ 4 號機組輻射外洩的事件 註1。這次事故更被歸類為國際核能事件最高級別(第 7 級)的最嚴重意外事故。

在事故發生後,首當要務就是持續冷卻反應爐,直到反應爐的溫度降低。冷卻反應爐需要水,所以當時曾引進海水作為冷卻水。這些在福島第一核電廠事故當下出現在廠房內、遭到放射性核種汙染的水,就是日後的「核廢水」。加上當地曾遭到海嘯襲擊,因此這些受到輻射汙染的核廢水也含有鹽分。

但廠區內受到輻射汙染的水並不是只有事故發生當下出現在廠房內的水,事故發生後只要雨水剛好落在福島第一核電廠廠房上,或是地下水流經福島第一核電廠房底下,都會受到放射性核種汙染。

-----廣告,請繼續往下閱讀-----

保護地下水也會產生核廢水

作為營運福島第一核電廠的東京電力公司,在事故發生後的首要任務就是防止更多乾淨的水遭到輻射汙染,同時也要防止受到輻射汙染的水流出廠房外。所以他們在福島第一核電廠 1~4 號機組外加裝擋水牆,希望隔絕乾淨的地下水流經廠房底下,但這些擋水牆實際上無法有效防止地下水從四面八方流經福島第一核電廠正下方。

再考慮到水的流向,寧可讓乾淨的水流進廠房底下受到輻射汙染、也不能讓受到輻射汙染的水外流,所以東京電力公司必須一直抽取廠房內部受到輻射汙染的水,讓廠房內的地下水位略低於廠房外的水位;但在抽水時又不能使廠房內的水位低太多,否則將會一口氣湧入更大量的地下水、產生更多受到輻射汙染的水。

時至今日,東京電力公司仍每天汲取流經 1~4 號機組的雨水與地下水,使得福島第一核電廠即使到現在,每天都還是會產生核廢水。經過 12 年來的各種嘗試,近年新增的廢水總量已有減少的趨勢,去(2022)年每日平均產生約 90 公噸的核廢水,已是事故發生以來最低的數值。

攝於 2011 年 3 月 16 日從左到右分別為 4、3、2、1 號機。圖/wikipedia

如何處理核廢水?

受到輻射汙染的水在被排放之前需要經過幾道淨化流程。首先是利用「銫吸附裝置」除去水中一部分的銫(caesium, Cs)和鍶(strontium, Sr),再經過淡水化裝置除去水中的鹽分,否則海水中的鹽分會侵蝕、損害廠房設備。接下來這些水有兩種命運:循環再利用或是成為核廢水。

-----廣告,請繼續往下閱讀-----

循環再利用

循環再利用是指受到輻射汙染的水經上述淨化處理後,可以回到福島第一核電廠 1~3 號機組,作為反應爐的冷卻水及輻射防護屏障。即便如此,這些受到輻射汙染的總水量遠多於福島第一核電廠 1~3 號機組的需求,所以絕大多數的水被汲取上岸後,都得存放在福島第一核電廠廠房內一桶又一桶的巨大水槽內,成為沒有其他用途的核廢水。

ALPS 處理水

為了降低核廢水的放射性核種濃度,這些存放在巨型水槽內的核廢水會經過專為福島第一核電廠事故設計的多核種除去設備(advanced liquid processing system, ALPS),而經過 ALPS 淨化處理的核廢水又稱「ALPS 處理水」。

-----廣告,請繼續往下閱讀-----

「多核種除去設備」,顧名思義利用物理或化學方法,大幅降低 62 種人造放射性核種的濃度 註2,但唯獨不能處理氫的同位素——氚(tritium, 3H)。這不是因為多核種除去設備成效不彰,而是即便開發其他設備也很難將氚從水中分離。

由於水分子包含氫原子,而氚和氫是同位素,它們的物理性質和化學性質幾乎一樣,難以使用物理或化學方法將它們分離,因此無法利用 ALPS 或其他方式濾掉氚。

福島第一核電廠內水循環示意圖。圖/科學月刊 資料來源/東京電力公司

快滿出來的核廢水

事實上,福島第一核電廠以外的一般核電廠所排放的廢水當中就含有氚,不過在一般情況下並不會特別放大檢視核電廠廢水當中的氚濃度。

此外,自然界中本來就含有氚,我們日常在使用或是飲用的水中也含有非常微量的氚。例如臺灣對飲用水中氚的容許濃度標準為每公升 740 貝克(Bq),並沒有要求零檢出,也就是數值低到儀器驗不出來的程度。

-----廣告,請繼續往下閱讀-----

但福島第一核電廠的核廢水並不一樣,因為這些是流經福島第一核電廠、遭到人造放射性核種汙染過的水。即使是已處理過的 ALPS 處理水,除了氚之外還是包含低量、因反應爐爐心熔毀而外洩的人造核種,並不能直接排到自然界中。

所以這些水自福島第一核電廠事故以來,被汲取上岸後就一直存放於福島第一核電廠廠區內。

然而福島第一核電廠廠區空間有限,按照它每天產生核廢水的速度來推算,今(2023)年 4 月最新的估計是最快在明(2024)年 2 月以後儲水空間就會不足。該如何為這些存放在廠區內的核廢水找尋新的出路,就成了近年難題。

這個問題在 2013 年討論之初,曾列舉了排放到大海、注入地層、埋到地底下、電解成氫氣後排放到大氣中、轉換成水蒸氣排放到大氣中五種方法。經多年評估、討論後,日本政府在去年決定選用國內、外最常見的核電廠含氚廢水的排放方法,在確保廢水中的放射性核種的濃度符合標準 註3、沒有超標的情況下,就能將核廢水稀釋後排放到海洋。

-----廣告,請繼續往下閱讀-----
ALPS。圖/wikimedia

民眾為什麼反對?

早在日本政府確定選擇「排入大海」這個方案前,就有許多反對聲浪。最主要的原因就如前面所說,福島第一核電廠核廢水和一般核電廠的廢水差異在於含有爐心熔毀釋放的人造放射性核種,氚只是這些放射性核種當中的其中一種。

即便福島第一核電廠核廢水在 ALPS 淨化處理後,除了氚以外的放射性核種濃度大幅降低,且符合科學上的排放標準,但和「沒有發生事故」的核電廠廢水相比,內容物組成還是有所不同。

不過國際原子能總署(International Atomic Energy Agency, IAEA)在今年 7 月公布的報告書表示,目前日本提出的方案符合國際安全標準,ALPS 處理水的輻射量也極低,幾乎可以無視輻射對人體或環境的影響,國際水域也幾乎不會因此受到影響。與此同時,IAEA 也會與第三方機構持續監測、分析 ALPS 處理水排放的狀況。

但上述都是關於核廢水放射性物質濃度是否符合目前科學認定的安全標準討論,撇開在科學上是否經得起檢驗、一翻兩瞪眼的檢測問題,民眾願不願意接納這些「科學上的論點」,有時還會有情感方面的考量。

-----廣告,請繼續往下閱讀-----

對於福島漁業來說,政府好不容易才在 2021 年解除試驗性捕魚,當地漁業才正準備要復甦。更何況日本政府先前曾承諾在未取得漁業相關業者的理解之前,不會將福島第一核電廠的核廢水排入大海,但現在的態度卻是要趕在福島第一核電廠放不下更多核廢水之前,陸續將核廢水排入大海,讓當地漁業業者相當不滿。

受核放射線影響,阿武隈川被禁漁10年。圖/wikimedia

此外,也有一派反對聲浪認為日本政府僅因經濟效益考量,而選定「排入海洋」的解決方案,考慮不夠周全、詳盡。雖然規模不同、在日本也未曾將含氚的廢水先蒸發成水蒸氣後排放,若採用這種做法或許就能大幅降低對海洋生物的危害。

也有民間團體提議,如果認為核廢水太占體積,將 ALPS 處理水混合類似水泥的材質進行固化處理,就能堆疊起來繼續存放於福島第一核電廠廠區內,而不會汙染到廠區外的環境。但上述這些做法仍有實務上的困難之處,例如廢水蒸發會影響到陸域環境、固化處理後仍會繼續消耗存放空間等。

在臺灣的我們會被影響嗎?

福島第一核電廠核廢水排放在即,臺灣行政院原子能委員會(原能會)近年多次重申福島第一核電廠的廢水是核電廠事故後的廢水,不能和一般核電廠排放的含氚廢水混為一談。

-----廣告,請繼續往下閱讀-----

也許值得慶幸的是,臺灣和日本的直線距離雖然很近,但洋流方向卻未必如此。福島第一核電廠的核廢水排放後,會因為太平洋的環流系統流向,先往東朝美國加州附近水域擴散,再順時針繞來臺灣。

根據原能會的試算,最快要四年後才會流至臺灣附近海域,屆時放射性物質的濃度已低於儀器偵測極限,濃度低到難以被偵測,不會對臺灣附近海域造成輻射安全上的危害。

但中央研究院環境變遷研究中心研究員吳朝榮以過去觀測的海洋數值模擬,福島第一核電廠的核廢水排放後最快一年內就能抵達臺灣附近海域。

目前原能會已和漁業署、氣象局等跨部會合作監測福島第一核電廠核廢水的擴散狀況並進行漁獲、水產的輻射檢測,相關資訊都公開在「放射性物質海域擴散海洋資訊平台」隨時供民眾查閱。

在臺灣的我們暫時不需要過於擔心福島第一核電廠的核廢水會影響臺灣水域,核廢水排放海洋對環境的衝擊也會遠小於福島第一核電廠事故發生之初的狀態。臺灣方面針對日本食品的輻射檢驗標準仍高於歐、美國家,在現行邊境輻射檢驗標準下毋須過於擔心。

註解

  1. 當時 4 號機組處於定期檢修期間,反應爐內並沒有燃料棒,爆炸原因為與 3 號機組共用管線。當 3 號機組爐心熔毀後,放射性物質和氫氣隨著共用管線流入 4 號機組而發生氫氣爆炸。2 號機組雖然免於廠房爆炸,但 2 號機組內部也發生爐心熔毀,當時為了釋放 2 號機組內部壓力避免發生氫氣爆炸,曾將 2 號機組內部含有放射性物質的氣體釋出,造成輻射外洩。
  2. 放射性核種指的是會自然釋放輻射的放射性元素,依據這些放射性元素的形成方式,又可分為存在於自然界中的「天然核種」與「人造核種」。核電廠發電過程產生的放射性元素,都屬於人造核種。
  3. 目前日本針對福島第一核電廠「核廢水」濃度規範是:
    a.針對所有放射性核種整體的有效輻射劑量須低於每年 1 毫西弗(mSv/year)。
    b.除了氚以外的其他放射性核種實際濃度佔該核種告示濃度的比值總和(稱為「告示限度比」或「告示濃度比總和」)必須<1。

參考資料

  • 行政院原子能委員會,2023 年 6 月 13 日。原能會成立跨部會合作平台,做好日本福島含氚廢水排放因應準備,行政院原子能委員會
  • 台灣科技媒體中心,2023 年 6 月 13 日。「日本將排放含氚核廢水」專家意見,台灣科技媒體中心
  • 〈本文選自《科學月刊》2023 年 9 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
所有討論 1
科學月刊_96
249 篇文章 ・ 3481 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。