0

1
0

文字

分享

0
1
0

福衛七號要發射了!但你知道它上太空要幹嘛嗎?

劉馨香_96
・2019/02/19 ・2328字 ・閱讀時間約 4 分鐘 ・SR值 534 ・七年級

-----廣告,請繼續往下閱讀-----

福衛七號在國家太空中心整裝待發,只差美國一聲通知,就能啟程前往美國佛羅里達州,由 Space X 公司的獵鷹重型號(Falcon Heavy)火箭發射升空!

但,你知道它上太空要幹嘛嗎?

自從福衛三號 2006 年升空以來,天天為全球提供天氣觀測資料,盡心盡力替台灣做好國民外交,至今也高齡十三歲了。什麼時候才能退役,過著悠閒的退休生活呢?準備多年的福衛七號就是來接棒的,等到成功就位後,就能接替福衛三號的工作囉!

福衛七號模型。圖/科技部提供

福衛七號在太空中怎麼觀測氣象呢?

福衛七號是由臺灣的國家太空中心(National Space Organization,NSPO)與美國的國家海洋暨大氣總署(National Oceanic and Atmospheric Administration,NOAA)共同執行的合作案。主要任務是延續福衛三號,以無線電掩星技術(Radio Occultation)進行氣象觀測。

-----廣告,請繼續往下閱讀-----

那「無線電掩星技術」是什麼咧?衛星要怎麼在幾百公里的高空中觀測天氣呢?

無線電掩星技術利用的是電磁波在經過不同介質時,因為傳播速率不同,而使傳播路徑發生折射現象的原理。衛星上搭載全球定位衛星(GPS)訊號的接收器,GPS 的無線電訊號傳送到衛星前,會受到電離層與大氣層的折射,因此透過接收到的訊號回推折射情形,就能進一步計算出溫度、壓力和濕度等參數的垂直分布資訊,是我們每天氣象預報的重要資料來源呢!

福衛七號和福衛三號一樣,由 6 顆衛星構成星系,讓觀測可同時覆蓋地球各區,提供即時且完整的三維觀測資料。不同的是,福衛三號是由重約 62 公斤的微衛星組成,每顆衛星的軌道都會經過南北極,收集的資料均勻來自地球各緯度;而福衛七號的衛星每顆重約 300 公斤,部署在低傾角的軌道,衛星繞行平面和赤道平面的夾角小,因此能提供密集的中低緯度氣象觀測資料,將對台灣的氣象預報準確度帶來更大的幫助。

-----廣告,請繼續往下閱讀-----

除了掩星觀測,還有什麼功能?

當然這麼辛苦的發射衛星上太空,如果只有一個功能就太可惜啦!福衛三號和福衛七號都有額外搭載其他科學儀器,稱為科學酬載。像是福衛七號就還有搭載離子速度儀(Ion Velocity Meter, IVM)和無線電射頻信標儀(Radio Frequency Beacon, RFB),前者的量測資料能幫助掩星資料反演的準確度,而後者則是幫助研究電離層的結構。

本次福衛七號的計畫,除了和美國合作的 6 顆任務衛星,還包含一顆自主衛星──獵風者號。這顆衛星完全由台灣自行研發,包括 4 項衛星關鍵元件、過氧化氫衛星推進模組,和全球衛星導航系統無線電反射訊號接收儀(GNSS-Reflectometry, GNSS-R)。GNSS-R 的功能為接收 GPS 的「直射訊號」和被海面反射的「反射訊號」,藉由比較兩種訊號的強度與結構差異,可推算出海面風速、波高等資料,有助於了解颱風結構的發展。再搭配前述衛星星系的掩星觀測資料,未來對於颱風強度與路徑的預測就會更準了!

未來對於颱風強度與路徑的預測就會更準了!颱風瑪莉亞。圖/中央氣象局颱風資料庫

回顧過去,展望未來

台灣從 1991 年開始發展第一期太空計畫,從無到有建立太空團隊與硬體設施,成功發射了任務為科學實驗的福衛一號、負責地球遙測的福衛二號與觀測氣象的福衛三號,奠基我國太空發展的基礎;2004 年進入第二期太空計畫,開始建立初步的自主研發能力,成功發展第一顆完全台灣自製的福衛五號,帶來高解析度光學遙測影像,並完成預計今年發射的福衛七號氣象衛星星系。

福衛一號(左起)、二號、三號及五號模型。圖/科技部提供

接著,就是最新的第三期太空計畫!接下來十年(2019-2028),科技部將投入新台幣 251 億元的經費,再接再厲發展 10 枚衛星,分別是 6 枚先導型高解析度光學遙測衛星、2 枚超高解析度智能遙測衛星與 2 枚合成孔徑雷達衛星,並推動向外太空探索的研究。

-----廣告,請繼續往下閱讀-----

科技部預計這一系列衛星提供的即時影像與資料,對於災害監測、環境變遷、國土安全等問題帶來重要幫助,期望藉著發展這些衛星,結合產學研界研發能量,帶動尖端技術的發展,最終厚實台灣的太空產業。

你對太空計畫的方向、內容或是執行成果有什麼意見嗎?關於這些已經發射及尚在規劃的衛星們有什麼疑問嗎?

科技部長陳良基將於 2019 年 2 月 21 日(星期四)晚上 8:00,在科技部臉書直播開講,由泛科學專欄作家廖英凱擔綱主持人,談談台灣的太空計畫,歡迎來發問!

編輯報好康:只要你的問題被部長挑選回答的捧油,就有機會獲得精美禮物,甚至受邀至國家太空中心欣賞福衛七號發射實況喔!

 

參考資料:

-----廣告,請繼續往下閱讀-----
  1. 國家太空中心:福爾摩沙衛星七號 │ 計畫簡介
  2. 中央氣象局太空天氣作業辦公室:掩星技術(Radio Occultation)
  3. 國家實驗研究院:全球衛星導航系統無線電反射訊號接收儀(GNSS-Reflectometry, GNSS-R)
  4. 進一步探索福衛七號衛星
  5. 科技部 FB,〈飛向宇宙.浩瀚無垠 第三期太空計畫啟動!

 

文章難易度
劉馨香_96
5 篇文章 ・ 0 位粉絲
生科系畢業,喜歡腦、神經與心智。

0

5
1

文字

分享

0
5
1
馬斯克不屑一顧;比爾蓋茲卻視若珍寶!氫能源會成為永續發展的救世主嗎?
PanSci_96
・2024/02/04 ・5539字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

馬斯克的「氫能愚蠢說」被打臉了嗎?

馬斯克曾多次斷言發展氫能是個愚蠢的決定,更說氫氣不會自然出現在地球上。

然而今年 7 月,美國新創公司 Koloma 從比爾蓋茲與其他投資者手中,獲得了總計 9100 萬美元的融資,準備開採地下氫氣。今年 9 月,地質學家更是直接在法國的地底下發現大量氫氣,總量估計有 4,600 萬噸。
而且比起需要搭配綠能或是熱裂解設備才能製造的綠氫與灰氫,這些氫氣價格將會十分低廉,難道,氫氣的時代要到來了嗎?為了環保,我們得挖呀挖呀挖?

地球上真的還有氫氣嗎?

這張照片就能證明地底中含有氫氣?

這拍攝於澳洲的珀斯盆地,大大小小的圓圈被稱為仙女圈,在仙女圈內沒有植物生長,甚至向內凹陷形成鹽湖。當科學家調查這些仙女圈,他們意外發現土壤中竟然含有氫氣。氫氣與仙女圈之間的確切關係還未知,有人推測可能氫氣抑制了植物或是微生物菌落的生長,使得該區光禿甚至土壤流失。

我們知道氫氣是世界上最輕的氣體,一旦進入大氣,就會向上飄散,直至被拋至太空,離開大氣層。然而地球的大氣層中還是有少量的氫氣被束縛住,大氣濃度約為 0.55 ppm ,是臭氧的 13 倍。

-----廣告,請繼續往下閱讀-----
圖/pexels

但只要沒有進入大氣,還是被封在地底的氫氣因為不容易溢散,至今存量還很豐富。不只在澳洲,世界各地都觀察到了氫氣從地底向地表洩漏的情形。

第一炬奧運聖火至今還在燃燒?

位於土耳其奧林匹斯山山谷,就在希臘火神赫菲斯托斯的神廟廢墟上方,大大小小的火焰從土石間冒出,就好像赫菲斯托斯至今都還存在在該處一樣。該地的冒火處有十幾個,總燃燒面積高達 5000 平方公尺。

根據地質學家推估,這片火焰已經燃燒了 2500 年,根據史料比對,很有可能就是最早奧林匹克聖火的發源地。

圖/wikipedia

地質學家調查了這股火焰的形成原因,發現從岩石中噴出的氣體,除了含有 87 % 的甲烷以外,還含有百分之 7.5 到 11 是氫氣。這股持續 2500 年間不斷冒出的氣體,根據地質學家推估,與石油、天然氣成因不同,並不是因為遺骸或微生物等生物原因才產生的。而是大地之母地球源源不斷提供給我們的,這又是怎麼一回事?

-----廣告,請繼續往下閱讀-----

氫氣知多少:哪來這麼多地底氫氣?

地底的氫氣怎麼來?

這與岩石的變質作用息息相關,我們知道火成岩、沉積岩會在高溫高壓下產生變質作用,轉為性質截然不同的變質岩。而富含鎂與鐵的矽酸鹽類礦物,例如橄欖石、輝石,當他們在高溫環境下與水作用,會轉為蛇紋石、水鎂石、磁鐵礦等礦物,這個過程稱為蛇紋石化作用。

圖/wikipedia

這種作用是一種化學反應,會將大量的水吸入岩石,讓岩石的密度下降。在反應結束後,除了礦物特性產生變化以外,還會生成副產物,也就是氫氣。如果地層中又剛好有二氧化碳存在,就會在高溫的環境下進一步甲烷化,將氫氣與二氧化碳轉成甲烷。

目前科學家認為,大部分地層中非生物性原因產生的的氫氣與甲烷,多是由這樣的過程產生的。奧林匹斯山的聖火,推測也是這樣產生的。

而對於地質學家來說,也代表尋找天然氫氣這一目標,也可以從盲目搜尋,轉為限縮在尋找有經歷過蛇紋石化作用的地層上。

-----廣告,請繼續往下閱讀-----
圖/usgs

但除了蛇紋石化作用以外,大自然還有兩種生產氫氣的主要方式:深層蘊藏與水的輻解。

地球內的氫氣

在地底深處,推測蘊藏著大量氫氣。它們深達地底,甚至可能存在於地函與地核之中。

我們現在的技術當然無法直接來個地心探險開採這些氣體,但科學家陸續從美國、俄羅斯、東歐等地的岩石鑽探結果可以觀察到,在越深的地方氫氣濃度越高。因此地質學家推測這些氫氣可能來自更深的地方,並正從橄欖岩緩緩地擴散,進入靠近地表的岩層之中。

然而,因為我們還無法進入地底,因此即便我們知道它們存在,但對於這些氫的形成原因目前還未有結論。有些科學家放眼整個太陽系的形成過程,推測在原始地球形成時,整顆行星包含地核之中就有氫的存在。而也有人認為,地核中的鐵元素與水反應,形成氧化鐵與一氫化鐵兩種物質型態,將氫存在地核之中。

-----廣告,請繼續往下閱讀-----

這個問題的解答,就等待地球科學家為我們帶來解答吧。而且了解這些元素存在於地核、地函的形式,也可以解開許多未知謎團,例如地核的詳細組成分、地函存在異常低電阻區的原因、改善地函動力學模型,以及找出哥吉拉到底在哪裡等等。

圖/giphy

輻射也能產生氫氣?

地殼中的釷、鈾等放射性元素,在漫長的衰變過程中,會緩慢地將地層中的水分子鍵結破壞,形成氧氣與氫氣。例如一顆 1 MeV 的 α 粒子,平均足以讓 10 個水分子解離。而當岩石擁有更高的孔隙率, α 粒子會更有機會與水分子產生作用,會有更高的氫氣產量。

但其實,考慮到衰變的速度以及放射性元素存在於地底的超低含量,這個方式的效率並不高,而且實際上 α 粒子用來解離水分子的能量只消耗了 1 % ,剩餘的能量都還是被附近的岩層吸收,以熱的形式消耗掉。

除了產量不高以外,理論來說在輻射發生的地方,應該要能看到氫氣與氧氣同時存在,但目前實地調查的結果,都只有發現氫氣。氧氣是否進一步參與了其他反應,或是已經逸散,或甚至這個理論需要再做調整,還需要更多的研究。

-----廣告,請繼續往下閱讀-----

好的,我們知道氫氣是怎麼產生的,那麼重點是,我們到底有多少氫氣能用呢?

地底有多少氫氣?

世界各地都有發現自然氫氣的存在。對了,雖然這張地圖看起來氫氣的發現地點都集中在北亞與東歐,但這只是因為目前的探勘都聚集在這邊,並不代表真實的氫氣分布。

這些來自地底的氫氣,我們稱為地質氫,如果用顏色來分類,則稱為白氫或是金氫。如果氫氣的開採規模能像天然氣一樣龐大,白氫的價格,預計會落在每公斤 1 美元。

相比之下其他的氫氣生產方式,例如我們上次提到,由蒸汽重組產生的灰氫,售價約為 0.9~3.2 美元。由綠能生成的綠氫則是 3~7.5 美元。因此,如果白氫正式被大量使用,將大幅降低現在的氫氣價格,甚至帶動氫氣運輸、儲存、發電機組等產業鏈的發展,連帶降低其他顏色氫氣的隱含成本。

-----廣告,請繼續往下閱讀-----

比爾蓋茲與氫能產業

與馬斯克看衰氫能不同,比爾蓋茲不僅投資白氫的開發,也投資了不少氫能產業。

例如他就投資了西班牙公司 H2SITE ,一間致力於氫能運輸與氫氣製造的公司。因為現在運輸氫氣的成本是製造氫氣的三倍,如果能降低運輸成本,將有助於整個氫氣產業的發展。在開採方面,各國也都開始投入地質氫的調查與開採技術研發。

美國地質調查局初步估計,全球地底下可能藏有百億噸的氫氣等著被開發,能滿足全人類數千年的能源需求。當然,這個數字並沒有考慮到開發的困難度,只是單純地以全球存量作分析。

但也有人正打算轉個念頭,何不將熱水注入富含鐵的岩層中,促使更多的氫氣產生?類似於地熱發電會使用的增強型地熱系統,只是我們獲得的不是直接的熱能,而是氫氣。

-----廣告,請繼續往下閱讀-----

什麼?氫氣也是溫室氣體?

話說回來,氫氣真的會成為救世主嗎?先等等,事情可能沒那麼簡單。

氫氣作為最輕的氣體,存在於大氣的壽命大約只有兩年。但氫氣在存在的這段時間中,會與大氣中的羥自由基和其他氣體作用,產生一系列的反應。造成的結果包含增加甲烷停留在大氣的時間、臭氧的增加、與平流層中水氣的增加。

圖/wikipedia

因此,氫氣屬於一種「間接」溫室氣體,氫氣的一百年全球暖化潛勢 GWP 100 ,被評估為 11.6 ,也就是以 100 為區間進行評估,氫氣的溫室效應是二氧化碳的 11.6 倍。

此外,我們對氫氣的研究還太少,所以才到現在才發現它就在我們的身邊。而就跟我們上次提到的一樣,大量使用天然氣,就意味會有許多天然氣洩漏。而伴隨著氫氣被大量開採,一定會有更多的氫氣被釋放到大氣之中。這對我們的大氣是否會產生負面效應,甚至於弊大於利,都還需要更多研究。

最後想問問大家,馬斯克與比爾蓋茲,對氫能的看法十分兩極。你呢?你認為氫能會改變未來的能源形式嗎?

  1. 會,不論是什麼顏色的氫,大家都很認真的在進行研究,一定很快就有好結果。
  2. 不會,氫能運輸、儲存成本怎麼看都還太高
  3. 不論有沒有氫能,人類懂不懂得節制,才是關鍵中的關鍵

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

PanSci_96
1219 篇文章 ・ 2180 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
2

文字

分享

0
0
2
太空提案創意不設限!2023 RunSpace 太空創新無限挑戰獲獎團隊專訪
PanSci_96
・2023/11/13 ・3491字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

  • 撰文/陳子翔、林彥興

全新的太空時代已經揭開序幕,不同於上一次太空競賽時期,如今的太空發展不再是大國政府限定專利,隨者商業潛力的成長近年民間太空產業蓬勃發展,成為吸引創新思維和專業技能的重要領域。在太空產業充滿機會的新時代,RunSpace 太空創新無限挑戰也在去年正式開辦,為台灣太空新創注入能量!

RunSpace 是經濟部產業發展署太空計畫的一環,是一項沒有參賽資格限制,不限專業領域背景,不論是學生還是社會人士都可以報名參加的太空提案競賽。參加者除了提案參與競賽之外,也會在主辦單位舉辦的 Space Bootcamp 訓練營中提升實力,並與其他團隊互相交流。

邁入第二屆的 RunSpace,這次收到了比去年更多優秀且富有創意的提案。最終,三支團隊從決賽脫穎而出,冠軍與亞軍分別由「3Q」與「太空藥局」團隊奪得,而「Project Subsidium」則同時獲得季軍與企業最愛獎。

冠軍隊伍「3Q」提出以電子膠帶實現智慧溫控,降低衛星開發成本

電子紙是一種耗電極低且不需背光的顯示器技術,常見的應用包括電子書閱讀器、公車站牌到站資訊等等。但你有想過,這樣的技術居然也可以應用在太空中嗎?本次冠軍團隊「3Q」,提出名為「ASTRID」的可變色電子膠帶。利用電子墨水技術,它能像是烏賊的身體一樣根據環境改變顏色,調整衛星表面的吸熱放熱效率,從而實現衛星的智慧溫控。

-----廣告,請繼續往下閱讀-----

團隊負責人蘇惟思指出,衛星在太空中運行時,其中一面會受到高溫陽光照射,另一面又面向寒冷太空,同時內部的儀器自身也會產熱,因此唯有做好熱控系統,才能維持衛星運作,而散熱器(Radiator)正是衛星熱控系統中重要的一環。傳統上,衛星製造商往往要根據每個衛星的大小、運行軌道與內部儀器的需求,去設計出不一樣的散射器以滿足溫控需求。但若使用 ASTRID 電子膠帶,即可不用針對每個任務重新設計散熱器的形狀、大小與位置,而是透過改變散熱器表面的顏色,去滿足不同熱控需求,如此一來就能大幅降低衛星開發的時間與金錢成本。

蘇惟思表示,ASTRID 技術的構想與測在他大學就讀太空工程系時就已經開始,今年初他以這項技術在美國成立新創公司 SQUID3 Space,目前也正積極的進行募資與尋找潛在客戶,這次參與 RunSpace 競賽獲獎,也對投資者來說有一些加分效果。

最後,蘇惟思分享了寶貴經驗,為未來有志投身太空創新創的人提供建議。首先,他強調不要害怕在競賽中失利,或是被投資者、客戶回絕。去年他也有參與第一屆 RunSpace,而當時連前三名都沒有拿到,但不放棄繼續嘗試才有機會有好的成果。他還分享了曾有人告訴他:「如果創業期間,一週內沒有被客戶或投資者拒絕超過一次,就代表你不夠努力。」

他也提到在創業過程中,許多工程師容易犯一個錯誤,即先開發產品,然後再尋找客戶。在做專題或研究時,開發自己想做的產品,解決自己有興趣的問題是可行的方向,但是在​​創業上不要只埋頭於自己的專案,而沒有先暸解市場的需求。

-----廣告,請繼續往下閱讀-----

冠軍得主3Q團隊,在展覽攤位上以遠距視訊的方式與參展者互動,介紹 ASTRID 的相關資訊。

亞軍團隊「太空藥局」提出太空方舟製藥,期望開拓太空市場新藍海

RunSpace 是太空主題的競賽,但這並不意味只有航太與工程背景的團隊才能參加。亞軍團隊「太空藥局」就是來自生技產業,他們提出名為「太空方舟」概念,希望未來只要攜帶簡易的裝置和材料,就能在太空中生產人類生存所需營養素與藥品,滿足長時間太空旅行的需求。

團隊說明,太空方舟的構想是將人體所需的營養或藥物基因保存在經設計過的細胞中,並在需要時使用這些細胞來生產這些營養素與藥物。這樣一來,在資源與空間有限的太空旅行中,可以用很小的空間與循環資源實現永續生產,太空旅行所需的營養素將不再需要全都從地球發射升空,而是在太空船上實現自給自足。

這次 RunSpace 的提案中,太空藥局以蝦紅素為例,團隊指出蝦紅素是天然超級抗氧化劑,對於太空中長時間逗留的太空人有助於抵抗輻射、保護皮膚、減緩老化和降低罹癌風險。目前傳統蝦紅素的取得方式主要仰賴捕撈磷蝦,或是透過大量土地面積養殖藻類取得,但這兩種方式都需要使用地球上的資源,無法在太空生產,而且也容易對生態造成破壞。

-----廣告,請繼續往下閱讀-----

因此,太空方舟成了理想的解決方案,既實現太空環境下永續生產,也提供一個耗費資源更少、更環保的生產方式。同時太空方舟的技術還可以用於保存重要的營養與藥物生產基因迴路,提供資源安全性的策略,應對氣候變遷和戰爭等風險。

同時隊長也分享了團隊進入太空產業的想法,他指出太空旅行需在有限的空間與資源下,循環生產足夠人類長時間生存的物資,而台灣的環境其實也與太空旅行有相似之處。台灣沒有廣大的土地與豐富的天然資源,也因此太空方舟不僅是針對太空旅行的藥品、營養品的生產方案,也是未來台灣可以採用的永續生產方式。

此外,團隊認為生物科技本來就是台灣的強項,非常有潛力可以應用在太空需求,且在太空產業中,生醫領域相對於火箭或是衛星領域還是個藍海,有很多商業與技術發展潛力,值得台灣投入。

季軍隊伍「Project Subsidium」提出太空無人機 EVAid,打造太空漫步萬能助手

本屆季軍得主則是 Project Subsidium,團隊的兩位成員皆是台科大在學學生,並分別來自電機系與建築系。他們提出了名為 EVAid 的小型太空無人機,旨在成為太空漫步的萬能助手,協助太空人太空漫步的工作進行與活動紀錄拍攝。除了奪下季軍之外,這項提案也獲得了本屆中華電信企業最愛獎的肯定。

-----廣告,請繼續往下閱讀-----

Project Subsidium 團隊表示,這個特殊的團隊名稱取名靈感來自 NASA 的太空探索任務,因 NASA 多採用與任務內容或精神有關的一個英文單字為太空任務取名。團隊也笑著說,在斟酌要使用哪個英文單字後,他們覺得使用拉丁文感覺更酷更有趣一些,而"subsidium"則是拉丁文協助的意思,呼應 EVAid 太空無人機能提供太空漫步協助的目標。

EVAid 外觀呈現四面體,每個端點裝有離子引擎,並在表面設有太陽能板。EVAid 的一大特色是模組化的設計,讓它可根據不同的需求,去設計不同模組安裝在擴充接點上。比如裝設攝影機、燈光、工具架甚至是機械手臂,滿足太空人艙外活動時拍攝、照明、放置工具的需求。由於其自帶推進器,因此 EVAid 也可以成為太空人的移動工具,或是接上太空站的艙體協助移動太空站組件。

即便成員都不是航太背景,Project Subsidium 團隊認為,太空產業要深入可以非常專業,但在網路資源豐富的現代,一些涉及範圍比較廣的題目,只要有心其實也是每個人也都可以嘗試,也會有自己的專業派上用場的地方。例如在控制系統和無人機相關知識,就與電機系所學相關,而建築系的專長則在設計圖繪製會模型製作上派上了用場。

團隊也分享了以學生身份參加 RunSpace 過程中遇到的一些小挑戰,像是在參賽過程中還是要顧及學校課程與考試,成果發表與頒獎的時間也很不巧的正好是期中考週。另外他們也提到,暑期團隊成員分隔兩地,也有遠距工作與溝通的問題需要克服。

-----廣告,請繼續往下閱讀-----

最後,Project Subsidium 團隊分享了這兩年參與 RunSpace 學到的寶貴經驗,他們表示不需要一次就試圖做規模龐大,想要"Do Everythig"的專案,而是要考量商業可行性。在類似 RunSpace 的競賽中,明確的目標和可行性分析至關重要。

季軍得主 Project Subsidium 的作品 EVAid 模型展示,端點為離子引擎的噴嘴,中間的圓形處則是與其他模組相接的接點。

2023 RunSpace 太空創新無限挑戰圓滿落幕,而下一屆的 RunSpace 預計將邀請更多國際上的太空科研單位與業界團隊加入策略夥伴,同時讓更多國際上的團隊報名參賽,共同推動太空創新,也讓 RunSpace 成為更加國際化,主題多元的太空盛事!

PanSci_96
1219 篇文章 ・ 2180 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

4
1

文字

分享

0
4
1
走高山只為預測颱風,臺灣氣象學開拓者——近藤久次郎
PanSci_96
・2023/02/10 ・3388字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/廖子萱

蕞爾臺灣島,地跨熱帶與副熱帶季風氣候區、四面環海,縱貫的百岳更加深了氣候的複雜程度。

在這樣的地理條件下,即便當今借助氣象衛星進行天氣分析,預報仍偶見差之毫釐、失之千里。一百年前,人們對於山岳、海洋與其相生的自然現象往往常處於未知,而至今日手機隨手可得及時的氣象預報,在短短一百年間,臺灣氣象科學從無到有,蓬勃發展。這背後的功臣包括了中央氣象局、高山氣象站、地震觀測站,這些單位的前身與發展,皆與近藤久次郎有關。

圖1. 1897 年臺北測候所。圖/交通部中央氣象局〈台灣氣象憶往之ㄧ〉

近藤久次郎(Kondo Kyujiro ,1858 – 1926)是臺灣首任總督府測候所技手兼所長,也是臺北測候所所長(現中央氣象局)。 1896 至 1924 年在臺期間,近藤引領總督府測候所設立了七座地方測候所,並協調地方基層治理單位,建構氣象觀測方法和資料搜集的網絡。他更推動高山觀測方法,以進行颱風預測、推動高山與地震觀測系統的建置,為臺灣氣象科學翻開了嶄新的一頁。

臺灣近代氣象觀測的發展

臺灣近代氣象觀測發展可追溯於清朝,光緒年間的1883年,清廷聘請杜伯克博士(Dr. William Doberck)赴香港擔任首任天文司(天文台台長),並在沿海稅關和燈塔裝置觀測設備,進行氣象觀察。臺灣基隆、淡水、安平、打狗四港的稅關,以及漁翁島(澎湖)、南岬(鵝鑾鼻)也陸續在 1885 年前後,展開十餘年的氣象記錄。然而,1895 年清廷與日本簽訂馬關條約割讓臺灣,氣象觀測工作就此停擺,多數的觀測儀器與記錄更在政權交替期間散失。

日本統治臺灣之後,由於當時國際航海安全多仰賴氣象資料,在英法強權的施壓下,臺灣總督府於1896年發布第 97 號敕令,以「台灣總督府測候所官制」編制氣象觀測單位,而日本中央氣象台則選派本文主角,技手(技士)近藤久次郎來臺勘查、策劃氣象觀測站。同年,總督府也在民政局通信部海事課增設「氣象掛」一單位,統理全島氣象事務,如氣象觀測、天氣調查、颱風警報、地震檢測等工作。

-----廣告,請繼續往下閱讀-----

1896 年四月至六月間,近藤久次郎與民政局通信部海事課課長遠藤可一翻山越嶺、走訪各地,行跡遠至鵝鑾鼻。根據兩人的調查基礎,臺灣總督府先後於臺北、臺中、臺南、恆春和澎湖設置測候所(後三為 1987 年設立),近藤也在日本中央氣象台台長中村精男(Nakamura Kiyoo)的任命下擔任臺北測候所所長,開始逐步搭建全島的氣象觀測網絡。

在各地氣候觀測所選址的條件上,近藤久次郎配合日本政府在農業、工業、航海與公共衛生等發展項目的資料需求,為詳實觀測各區域氣候根據相對距離由北至南畫設臺北、臺中、臺南、恆春測候所 。此外,還參考了夏季與秋季的颱風路徑設立澎湖測候所,用以觀察自香港與馬尼拉而來的颱風。

除了本島的氣象觀測,近藤還曾於1897年,帶著晴雨計、寒暖針遠赴火燒嶼(綠島)、紅頭嶼(蘭嶼)進行氣象觀測、測量山頂高度,策劃設立觀測站。而後隨著總督府逐步克服東部地區交通和電信的限制, 1900 年、1910 年臺東和花蓮測候所分別建設完成,時至 1924 年近藤久次郎卸任前,全臺共設有七座「一般測候所」。

十九世紀末的觀測所主要沿用清朝遺留的官廳或民房,屋頂簡單設有的風力與風向儀,室內則作為辦公之用。一般測候所以風力塔為主要的觀測設施、可測量風向、風速、風壓、日照和日射;辦公室外設置氣象觀測坪以測量氣溫、雨量、地面溫度等;測候所外另設有提供執勤人員進駐的官舍。

-----廣告,請繼續往下閱讀-----

而在時間方面,位於政治中心的臺北觀測所實施 24 小時氣象觀測;其他測候則每四個小時實施觀測、每日六次,用於地區性天氣預報,並將資料匯報予臺北測候所以利發布臨時颱風警報、氣候月報和年報,進一步進行總體性的氣象分析。

擴大氣象觀測網路,發佈氣象預報歷史頁面

為了擴大氣象觀測網絡,總督府會同官廳、派出所、郵局等單位協助蒐集雨量和氣溫資料,並於 1896 年 7 月以「民通 151 號」公報始建立暴風警報通報流程,命令各官廳、海關、郵局、燈塔,將通信部海事課所轉發的暴風警報公布予地方民眾,九座燈塔更奉「總督府訓」兼任氣象觀測的任務,協助測量氣溫、氣壓、風、雲與雨量。

1897 年 9 月,近藤領導的臺北測候所開始發佈每日三次的氣象預報,並與琉球、九州南部測候所,以及徐家匯、香港、馬尼拉等地的氣象台交換氣象報告。 依循著新展開的天氣觀測模式,總督府府報開設「觀象」專欄,刊登臺北測候所撰寫的天氣預報(「本島氣象天氣豫報び天氣概況及暴風警報等」),開啟了臺灣天氣預報歷史性的一頁。直到1905年,全臺各地的雨量觀測網絡已達78處,涵蓋燈塔、支廳、派岀所、學校、郵局、農業試驗所、自來水廠等單位,各處配備簡易的氣溫觀測工具以協助記錄天候狀況。

很快地,日本在臺短短10年內,近藤久次郎已為氣象觀測網打下綿密的基礎。

不只是天氣預報,開啟高山觀測與地震研究先河

1900 年,近藤久次郎附議天文學者一戶直藏提出的新高山(今玉山北峰)報告(新高山ニ關スル研究報告),近藤提到:「新高山山頂是天然絕佳的天文觀測與氣象學研究位置」,他認為高山觀測有助於天文和氣象研究,可藉由研究大氣動力上升的過程進行天氣預測,尤其臺灣每逢夏季,颱風挾帶滂沱大雨常引發災情,若能在台灣百岳中設置幾處高山觀測所,定有助於颱風警戒和天候預設。

-----廣告,請繼續往下閱讀-----

於是, 1911 年近藤久次郎與一戶直藏率先提出「新高山觀測所設置計畫」,向總督府倡議在玉山、阿里山興建高山觀測所和天文台,間接促成玉山觀測站(1943 年始建造)與阿里山觀測站(1932年建造)的設置。

近藤久次郎除了推動高山氣象、天文與航空研究,也曾與臺北測候所同仁積極推動與地震和火山相關的研究: 1896 年,臺北臨時測候所首次藉由人體感受進行地震觀測; 1897 年正式落成的臺北測候所,引進格雷-米爾恩型地震儀(Gray-Milne Seismograph); 1900 年,由被譽為日本地震之父的大森房吉所改良的大森式水平地震儀(Omori horizontal pendulum seismograph)以及強震儀(Strong motion seismograph)裝設於臺北測候所。

這些地震觀測儀也在 1906 年 3 月 17 日的「嘉義梅山地震」發揮了記錄地震波形與餘震數據的作用,獲得的數據使大森房吉找出梅山地震與斷層的關係,並將之命名為「梅仔坑斷層」(後更名梅山斷層)。而後,大森房吉還將研究與近藤所著的說明書刊登於報紙,傳遞地震成因與餘震的科學知識,緩解民間傳說帶來的社會不安。時至1907年,在近藤的協助推動下,全臺共有七所測候所兼做地震觀測,當時的紀錄,也成為現代地震研究珍貴的早期觀測資料。

1924 年,近藤久次郎因病去職返回日本,1926年因胃癌而逝世。 1896 至 1924 年,近藤來臺近將三十年,他在擔任總督府測候所與臺北測候所所長期間,建制氣候所與觀測網絡、編輯並彙整氣象資料;開啟暴風雨警報、颱風預測等重要的氣象預報機制;也協助推動高山氣候觀測、天文觀測與地震研究,著實是臺灣近代氣象科學研究的先河。

-----廣告,請繼續往下閱讀-----

註解

  • 註 1:然而,由於當時日本與臺灣之間並無定期班船和通訊設備可供交通和信息的傳遞,使得測候所無法如期配備氣象觀測儀器並興建正式氣候站,故先以既有房舍作為臨時氣候所。而後各地氣候所材陸續興建並增添觀測設備:臺北測候所於 1897 年 12 月 19 日遷入臺北城內南門街三丁目;臺中測候所於 1901 年 5 月 20 日遷入臺中城內藍興堡台中街;台南測候所於 1898 年 3 月 1 日遷入台南城內太平境街第 216 號官有家敷地;恆春測候所於 1901 年 11 月 24 日遷入恆春縣前街四番地;澎湖測候所於 1898 年 3 月 1 日遷入澎湖島媽公城內西町。(資料來源:中央氣象局委由財團法人成大研究發展基金會、國立成功大學單位研究之《台灣氣象建築史料調查研究》, 2001 年 2 月出版。)
  • 註 2:資料參考徐明同〈台灣氣象業務簡史〉
PanSci_96
1219 篇文章 ・ 2180 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。