0

3
1

文字

分享

0
3
1

光波操縱師─神奇的光子晶體--《科學月刊》

科學月刊_96
・2015/12/21 ・5409字 ・閱讀時間約 11 分鐘 ・SR值 611 ・十年級

欒丕綱/清華大學物理博士,中央大學光電系副教授。研究專長為光子晶體,聲子晶體,以及超穎材料。

mix1
(左)孔雀羽毛(右上)變色龍的皮膚(Source: Tambako The Jaguar)(右下)蝴蝶翅膀 自然界的光子晶體

有沒有能夠抓住光,卻不消滅光子的方法?光子晶體不僅能讓光轉彎,還能讓動物展現美麗的色彩!

1980 年代時,人類對於光的認識已經很深入。那時人們已懂得使用透鏡組件,藉由改變折射率與介質表面的特定形狀以控制光線的傳播方向,如使用望遠鏡觀察宇宙,製作顯微鏡觀察微生物。

人們知道單一頻率的光通過雙狹縫會有干涉現象,而光波通過小尺度的物體會產生繞射與散射。利用光從「密介質(折射率大的介質)」傳向「疏介質(折射率小的介質)」,入射角大於「臨界角」時會發生的全反射現象,可以設計出波束分離器(beam splitter)、波導(waveguide),與光纖。利用光是電磁波的事實,可以藉著控制光的偏振與相位做出光學波片(wave plate)、濾波器,以及調制器 (modulator)。利用量子力學與半導體物理的知識,人們知道如何操控光子與原子的交互作用,製造出所需要的雷射以供進一步應用。

-----廣告,請繼續往下閱讀-----

以上這些控制手段似乎缺少了什麼?仔細觀察,會發現這些對光的控制手段可歸納為以下幾種:(一)控制光的傳播方向,(二)控制光的傳播區域/ 範圍,(三)控制光的強度,(四)控制光波的相位與偏振,(五)控制光的相位一致性以及傳播方向的準確度。以上這些控制手段的共同特色就是「不能阻止光的傳播」。雖然光子可以被原子吸收或放射出來,但若試圖阻止光的傳播,那麼光子只能藉著被材料吸收而消失,轉換為其他能量,例如熱能。

04
光子晶體模型。Source: ENERGY.GOV

光子晶體的發想

1987 年左右,雅布羅諾維奇(Eli Yablonovitch)與約翰(Sajeev John)兩位科學家不約而同地思考著阻止光傳播卻不消滅光子的可能性。

雅布羅諾維奇是一位實驗物理學家,曾任職貝爾通信研究所(Bell Communications Research)的研究員。他當時思考的問題主要是如何抑制原子的「自發輻射(spontaneous emission)」以減少能量的浪費,並增加雷射的效率。根據雅布羅諾維奇教授的回憶,當時曾有一些研究者建議將發光的原子置於「兩面金屬牆」之間;另一些研究者則建議使用「一維布拉格光柵(1D Bragg grating)」以取代金屬牆。然而,雅布羅諾維奇博士認為這兩種方法都行不通。

第一種方法只能阻擋某一種偏振的光,因此只有一半的效果。另一種方法雖然能阻擋朝著布拉格光柵週期方向傳播的光,但是對於朝著垂直於週期方向(此方向介質是均勻的)傳播的光卻沒有效果。雅布羅諾維奇於是試著在紙上畫出他認為行得通的三維週期結構,並在往後的幾年中不停試著對介電質鑽洞,以找出確實可行的週期結構。經過了好幾年的失敗,並在跟理論物理學家的合作下,在鑽了大約五十萬個洞之後,終於找出了理想可行的三維週期結構。

-----廣告,請繼續往下閱讀-----

另一位光子晶體概念的提出者約翰,則是基於完全不同的理由而提出這個概念。約翰是一位理論物理學家,那時的他是一位普林斯頓大學(Princeton University)的年輕助理教授。當時他所思考的問題是,如何讓光在介質中的傳播停下來。

故事先回到1958 年,當年服務於貝爾實驗室(Bell Labs)的凝態物理學家(condensed matter physicist) 安德森(P. W. Anderson,1977年諾貝爾物理獎得主)從理論上發現了一個很驚人的現象,後來被稱作安德森局域化(Anderson localization):在一個充滿隨機分布的雜亂位能(random potential)的材料裡,電子可以因「多重散射(multiple scattering)」而被困在其中無法移動。根據量子力學,支配電子的各種行為的是薛丁格方程式(Schrödinger equation)─ ─ 這是一個波方程式(wave equation),因此安德森局域化現象其實是一個波現象,與電子的粒子性似乎並沒有直接關係。科學家們理解到這一點後,忍不住好奇的問:這樣奇特的波現象會不會也發生在光波與聲波系統?如果有,能不能觀察到?

約翰的博士論文所研究的就是局域化現象,因此他對於安德森局域化的理論內涵有很深的理解與掌握。對應於電子系統的隨機位能,在光學系統內所要準備的是具有隨機分布的凌亂折射率的透明介質。然而,研究者發現,理論上要達到把光完全困住的結果,所需要的介質樣品必須非常大,而且在實驗上很不容易把這個現象,與光在傳播過程中介質對光能量的逐步吸收效應區分出來。約翰於是建議先做出週期性的介質,再將介質的週期稍微弄亂一些,如此在某些頻段就可以用較小的介質樣品將光完全困住。

雅布羅諾維奇與約翰目前分別是加州大學柏克萊分校(University of California, Berkeley)與加拿大多倫多大學(University of Toronto)的教授。根據雅布羅諾維奇的說法,當年他們在學術界頂級的物理期刊《物理評論通訊》(Physical Review Letters)各自發表了他們的第一篇光子晶體研究論文,兩篇論文的刊登日期相隔不到一個月。當他們聽說了彼此獨立提出了相似的研究概念後,就相約吃午飯,並一起為這個概念取名為光子晶體(Photonic Crystals)。

-----廣告,請繼續往下閱讀-----

現今看來,這個既含有「光子」又含有「晶體」的名字取得十分誘人。這個說法從每年有眾多光子晶體相關的研究論文被發表就可以看得出來。另一個觀察指標則可以簡單地經由Google搜尋查到,這兩位先驅的第一篇光子晶體論文目前分別累積了13725次與9582次引用次數。不過,在論文發表後,他們的論文並未立刻引起其他研究者注意。事實上,雅布羅諾維奇此論文發表後的頭三年,完全沒有其他人引用,前五年也只被引用兩次,而且這兩次還都是雅布羅諾維奇教授自己引用的。然而,進入90年代後,半導體製程技術的進步使得人們很容易製作尺寸從數百奈米至數微米的週期結構,而電腦運算資源的大幅成長,也讓人們很容易從理論上去計算出所設計的光子晶體的光學特性。這兩方面的重要發展促使了光子晶體的研究無論在數量與速度上,都以指數函數的方式隨時間成長。

光子晶體基本性質

講了那麼多故事後,那麼到底光子晶體的定義是什麼呢?背後的物理原理為何?所謂的光子晶體,其實就是「介電質的週期結構(periodic structure of dielectrics)」。

所謂介電質(dielectrics),即非金屬的材料;而所謂週期結構,就是在空間上無窮次重複的圖樣(repeat patterns)。化學課本告訴我們:「完美的固態晶體具有週期性的原子排列」。光子晶體的週期結構就像那樣,只不過光子晶體是將晶體中的原子以介電質的「人工原子」取代,尺寸也較真實晶體放大了數十倍甚至是數百倍。另外,在普通的半導體晶體物質中,導電須依靠電子通過週期性的位能;而在光子晶體中,光傳播是靠光波通過具有週期性變化的介電常數/折射率的介電質材料。

在半導體的研究中,人們很早就知道,週期位能對電子傳播的影響就是產生了能帶結構(energy band structure)與能隙(energy band gaps),後者又稱禁制帶(forbidden bands)。也就是說,可以在半導體中傳導的電子,它們的能量分布是一段一段的,而這每一段被稱為一個能帶。與此類似,在光子晶體中可傳播的光,其頻率的分布也是一段一段的,每一段稱為一個「頻帶(frequency band)」。夾在相鄰的兩個頻帶之間的則是頻隙(frequency band gaps) 或帶隙。根據量子力學,光子的能量與它的振動頻率成正比,比例常數是普朗克常數h,因此我們也稱光子頻隙為光子能隙。

-----廣告,請繼續往下閱讀-----
05
典型的週期介電質結構 (左)一維多層膜(中)介電層上之二維空氣柱(右)三維介電質「材堆」(woodpile)結構。

光子頻隙

為何會出現頻隙? 這不是個容易回答的問題。此處提供一個比較直覺的看法。當光波在週期結構中傳播時,會經歷多重散射,散射後的各分波與入射波一起疊加成總波場。這些分波疊加後在空間中形成建設性干涉與破壞性干涉的許多區域。在二維與三維的世界裡,破壞性干涉的區域若是形成各自分離的「孤島」,波能量仍可藉由連通的建設性干涉區,繞過這些孤島而傳播。反之,當建設性干涉的區域彼此互不相連,它們自己形成孤島時,波能量將無法傳遞。若在一整段頻率範圍內波能量都無法傳遞,則這一段頻率範圍就形成頻隙。

以上雖然說明了頻隙是波的一種破壞性干涉的效應,但很難從直覺上看出這個結果。頻隙可以很容易藉著不算太複雜的數值方法以電腦程式計算出來,但是幾乎不可能僅僅藉著用筆就推導出它在頻率軸上的正確位置與寬度。

光子晶體的應用

設計出這種有頻隙的光波介質,除了能將光波擋住,讓它傳播不了以外,有什麼積極性的應用嗎?答案是:有的。

通常用來製造光子晶體的方法,就是在一塊完整的介電質上周期性的打洞,或是用許多介電質小球或介電質柱子排成週期結構。利用光子晶體的頻隙特性,只要選擇將週期性做局部的破壞,就可以製造出許多有用的奈米光學元件。例如在介電質中製造「點缺陷(point defect,基本方法是在某一個該打洞的位置不打洞)」或「線缺陷(line defect,少打一整排洞)」,就可以將光波侷限在該缺陷附近以形成「共振腔(resonant cavity)」或是「光子晶體波導」。

-----廣告,請繼續往下閱讀-----
(左)點缺陷應用於共振腔(中)線缺陷應用於波導(右)光波能量在直角轉彎的光子晶體波導中的分佈情形。
(左)點缺陷應用於共振腔(中)線缺陷應用於波導(右)光波能量在直角轉彎的光子晶體波導中的分佈情形。

傳統波導是利用全反射將光侷限在波導中,若是波導的轉彎角度過大,全反射條件就會被破壞,導致漏光。然而,光子晶體波導藉由頻隙效應將光鎖在波導內,工作原理與全反射無關,因此可以大幅度改善傳統波導大角度轉彎的光能損耗問題,實現光迴路的微小化。這使得在小尺度製造出「積體光路」以取代傳統「積體電路」變得可行,換句話說,使用光子取代電子作為資訊傳輸與處理媒介的可能性將大幅提高。基於這種可能性,雅布羅諾維奇甚至在一篇介紹光子晶體的科普文章中,稱光子晶體為「光的半導體」。利用同樣的原理,也可以製造出橫截面是含有點缺陷與週期結構的光子晶體光纖,用以輔助或取代部分傳統光纖。

負折射應用

除了頻隙效應,光子晶體的傳導頻帶其實也有妙用。透過光子晶體頻帶所提供的特殊色散關係(dispersion relation),光波在某些頻率範圍內表現出不尋常的傳播行為。而其中最有趣的就是負折射。當光由真空進入介質中, 若折射波折向法線的同一邊, 則根據司乃爾定律(Snell’s law) 可定義此介質具有負的折射率。

目前至少有兩種方式可實現負折射。第一種是利用光子晶體在「頻帶邊緣」(band edge)的特殊色散關係製造出「負群指數」(negative group index),其類比於半導體能帶理論中電子的「負等效質量」(negative effective mass)。第二種方式是製造一種在每一個晶胞(unit cell)中包含有共振器(resonators)的金屬性光子晶體。適當選取頻率範圍,可使此介質的等效介電常數、磁導率以及折射率皆為負值。

07
光子晶體的負折射現象。(這不是反射,藍色的線條為法線。)

2000年10月,倫敦帝國理工學院(Imperial College, London)的彭德里(J. B. Pendry)教授在《物理評論通訊》上發表一篇著名的文章,證明一塊折射率為-1的負折射介質板是一個「完美透鏡」,具有放大「消逝波(evanescent wave)」的神奇能力,可將波源「完美成像」而超越繞射極限。此文發表後,立即在學術界掀起了負折射研究的熱潮。在研究者的持續努力下,負折射的現象已證明確實存在,且Science 期刊基於其應用潛力(例如新式的讀寫頭等),將相關研究選為2003 年的十大科技成果之一。更有甚者,這方面的研究後來重新取了一個名字,現在被稱「超材料」或「超穎材料」,是當前最熱門的研究領域之一。超材料研究目前最受矚目的研究方向是可超越繞射極限的超級透鏡,以及可以將物體隱藏起來的隱形斗篷。這兩方面的報導常可在新聞中看到。具體的細節可以參考筆者從前寫的一篇文章。

-----廣告,請繼續往下閱讀-----

上述各種研究所談的都是光波或電磁波,但其實聲波或彈性波的特性與電磁波非常類似,可使用同樣的手法處理。藉著製造週期性的彈性材料,例如週期性的混搭兩種彈性係數與質量密度不同的材料,也可以製造出「聲子晶體(phononic crystals,或稱 sonic crystals)」,像控制光波一樣地控制聲波與彈性波(例如使用頻隙效應做防震)。此外,若是把「聲波共振器」做週期性的排列,人們也可以做出聲波版本的超材料,可用以設計聲波版的超級透鏡或聲波斗篷。

上述的介紹或許會讓讀者以為這些能控制光的週期結構都是人造的,這個觀念其實錯了。現在科學家們已在許多生物的身上發現了光子晶體。簡單舉幾個常見的例子:孔雀的羽毛、蝴蝶的翅膀,以及變色龍的皮膚,都被發現隱藏著特定的週期結構。換句話說,光子晶體就是牠們得以美麗以及迅速變化偽裝的秘密。

光子晶體以及相關的聲子晶體以及超材料研究,在當前依然非常火熱。許多概念已經釐清,某些夢想已經實現,還有一些設計的元件已經有小幅度的商業化。本文只對光子晶體概念做了最粗淺的介紹,有許多近年來的重要發展,例如光子晶體在太陽能電池研究中的應用,都沒有辦法仔細介紹。有興趣的讀者可以試著從參考資料以及相關的網路資料中去進一步的尋找想知道與想學習的材料。

參考資料

-----廣告,請繼續往下閱讀-----
  1. Yablonovitch, E., Photonic crystals: semiconductors of light, Sci Am., Vol. 285(6):47-51, 54-5., 2001.
  2. 欒丕綱,〈現代光學隱形術—從隱形斗篷到變換光學〉,《科學月刊》,508期,277 頁,2012年
  3. Teyssier, J. et al., Photonic crystals cause active colour change in chameleons, Nature Communications, Vol. 6: 6368, 2015.

FORNT本文選自《科學月刊》2015年5月號

延伸閱讀:
同步輻射光源解密
超短脈衝雷射改變世界

什麼?!你還不知道《科學月刊》,我們46歲囉!
入不惑之年還是可以
當個科青

文章難易度
科學月刊_96
249 篇文章 ・ 3494 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

6
1

文字

分享

0
6
1
你聽過「量子意識」嗎?電子雙狹縫實驗讓人猜測意識會影響物質世界,真的假的?
PanSci_96
・2024/03/06 ・3800字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

在市面上,我們常會看到號稱運用量子力學原理的商品或課程,像是量子內褲、量子能量貼片、量子首飾、量子寵物溝通、量子速讀、量子算命、量子身心靈成長課程等等。有人說,量子力學代表了意識具有能量,藉由調整心靈的共振頻率,就能保持身心健康,只要你利用量子力學原理進行療癒或冥想,就能提昇自己的能量,人能長高、身體變壯、每次考試都考一百分;又像是,量子力學就代表一種信息場,讓你跟別人有心電感應,只要轉念,讓宇宙能量幫助你,你就能發大財還能避免塞車。也有人說,別人吃一個下午茶,你也馬上吃一個下午茶,別人喝一杯咖啡,你也馬上喝一杯咖啡,別人跟家人吵架,你也馬上找一件事跟家人吵架,這就是量子糾纏。

然而,量子到底是什麼?跟身心靈、宗教和玄學真的扯得上關係嗎?是否真能幫助你維持健康又賺大錢呢?

在這一系列影片裡,我們就要來討論,量子力學的原理為何?背後又是基於哪些科學的研究成果。等你看完之後,相信對於量子力學跟上述五花八門商品究竟有沒有關係,心裡自然會有所答案。

量子力學和意識有關?

坊間常會聽到量子力學跟意識有關的說法;或許也是因為這樣,量子力學被許多身心靈成長課程甚至玄學拿來作為背書。但,量子力學真的是這樣子嗎?

說到量子力學跟意識的關係,我們就必須來看看,量子力學最著名的實驗之一,20 世紀的物理學大師費曼(Feynman)甚至曾經說過,這個實驗「包含了量子力學的核心思想。事實上,它包含了量子力學唯一的奧秘。」它,就是雙狹縫干涉實驗。

-----廣告,請繼續往下閱讀-----

雙狹縫干涉實驗

現在我拿的器材,上面有兩道狹縫,中間間隔了非常短的距離。等一下,我們會讓雷射光通過這兩道狹縫,看看會發生什麼事。

我們看到,雷射光在打向雙狹縫之後,於後面的牆上呈現有亮有暗的條紋分布,這跟我們在國、高中學過的波的性質有關。

在兩道光波的波峰相會之處,會產生建設性干涉,即亮紋的位置;而暗紋的部分,則是來自破壞性干涉,是兩道光的波峰和波谷交會之處,亦即,光的效應被抵銷了。

在歷史上,雙狹縫干涉實驗占有非常重要的地位。19 世紀初,英國科學家、也是被譽為「世界上最後一個什麼都知道的人」的湯瑪士.楊(Thomas Young),利用雙狹縫實驗,證明了光是一種波。

-----廣告,請繼續往下閱讀-----

那麼,如果我們拿不是波的東西,來進行雙狹縫實驗,會看到什麼結果呢?讓我們試驗一下。

現在我手邊有一堆的彈珠,前面是用紙板做成的兩道狹縫,後面則是統計彈珠落點的紙板。我們讓這些彈珠朝狹縫的地方滾過去,並在彈珠最後的落點劃下記號;若在同樣位置的記號越多,就代表有越多彈珠打中該位置。

在丟了一百顆彈珠之後,我們可以看到,扣除掉一部份因為路徑被擋住、通不過狹縫的彈珠之外,彈珠最終抵達的位置,大致分別以兩道狹縫的正後方為最多,呈現兩個區塊的分布,不像先前光的雙狹縫干涉實驗中,出現明暗相間的變化。

所以,我們得到結論:若是拿具有物理實體的東西進行雙狹縫實驗,因為其一次只能選一邊通過,所以落點最終只會聚集在兩個狹縫後方的位置;而且要是行進的路徑不對,還可能會被擋住。

-----廣告,請繼續往下閱讀-----

至於波的情形,那就不同了,只要狹縫的大小適當,波可以同時通過兩個狹縫,並互相干涉,產生明暗相間的條紋。

換言之,是波,還是物質,兩者在雙狹縫實驗的表現是截然不同的。

只不過,以上的實驗似乎並沒有什麼太令人感到意外的地方,我們也看不出來,它跟量子,還有意識,到底有什麼關係?事實上,若要真正顯示出它的獨特之處,就要來看電子的雙狹縫干涉實驗。

電子的雙狹縫干涉實驗

我們知道,電子是組成原子的基本粒子之一,而原子又組成了世間萬物。可以說,電子是屬於物質的一種極微小粒子。

-----廣告,請繼續往下閱讀-----

在電子的雙狹縫干涉實驗,科學家朝雙狹縫每次發射一顆電子,並在發射了很多顆電子之後,觀察電子的最終落點分布會怎麼呈現。

既然電子是物質的微小粒子,那麼在想像中,應該會跟我們前面使用彈珠得到的結果差不多,電子會分別聚集在兩道狹縫後方的區域。

從實驗的記錄影片中可以看到,在一開始、電子數量還很少的時候,其落點比較難看得出有明顯規律,但隨著電子的數目越來越多,我們慢慢能夠看出畫面上具有明暗分布,跟使用光進行雙狹縫實驗時得到的干涉條紋,有著類似的結構。

這樣的結果,著實令人困惑。直覺來想,既然電子是一顆一顆發射的,它勢必不可能像光波一樣,同時通過兩個狹縫,並且兩邊互相干涉,產生明暗相間的條紋。

-----廣告,請繼續往下閱讀-----

但無可否認,當我們用電子進行雙狹縫實驗時,最後得到的結果,看起來就跟干涉條紋沒什麼兩樣。

對這出人意表的觀測結果,為了搞清楚發生什麼事,科學家又做了更進一步的實驗:

在狹縫旁放置偵測器,以一一確認這些電子到底是通過哪一個狹縫、又如何可能在通過狹縫後發生干涉。

這下子,謎底就能被解開了――正當大家這麼想的時候,大自然彷彿就像在嘲笑人類的智慧一樣,反將一軍。

科學家發現,如果我們去觀測電子的移動路徑,只會看到電子一顆一顆地通過兩個狹縫其中之一,並最終分別聚集在兩個狹縫的後面――換言之,干涉條紋消失了!

-----廣告,請繼續往下閱讀-----

在那之後,科學家做過無數類似的實驗,都得到一樣的結果:只要你測量了電子的路徑或確切位置,那麼干涉條紋就會消失;反過來說,只要你不去測量電子的路徑或位置,那麼電子的雙狹縫實驗就會產生干涉條紋。

在整個過程中,簡直就像是電子知道有人在看一樣,並因此調整了行為表現。

在日常生活中,若有人要做壞事,往往會挑沒人看得到的地方;反過來說,當有其他人在看,我們就會讓自己的言行舉止符合公共空間的規範。

量子系統也有點像這樣,觀測者的存在與否,會直接影響到量子系統呈現的狀態。

-----廣告,請繼續往下閱讀-----

只不過,這就帶出了一個問題:到底怎麼樣才算是觀測?如果我們在雙狹縫旁邊只放偵測器不去看結果算嗎?我們不放偵測器只用肉眼在旁邊看算嗎?或是,整個偵測過程沒有人在場算嗎?

這就是量子力學裡著名的觀測問題(measurement problem)。

結語

在量子力學剛開始發展的數十年,有許多地方都還不是那麼清楚,觀測問題就是其一。在歷史上,不乏一些物理學家,曾經認真思考,是否要有「人的意識」參與其中,才能代表「觀測」。

如果真是這樣的話,那麼「意識」就存在非常特別的意義,而且似乎暗示人的意識能夠改變物質世界的運作。

有一些物理學家曾認真思考,是否要有「人的意識」參與其中,才能代表「觀測」。圖/envato

可以想見地,上述出自量子力學觀測問題的猜測,後來受到部分所謂靈性導師跟身心靈作家的注意,於是,形形色色宣揚心靈力量或利用量子力學原理進行療癒、冥想或身心靈成長的偽科學紛紛出籠,直到近年都還非常流行。

另一方面,可能因為量子兩個字帶給人一種尖端科學的想像,坊間琳瑯滿目的商品即使跟量子力學一點關係都沒有,也都被冠上量子兩字;除此之外,商品宣傳裡也常出現一堆量子能量、量子共振等不知所謂的概念,不然就是濫用量子力學的專有名詞如量子糾纏、量子穿隧等,來幫自己的商品背書。只要有量子兩字,彷彿就是品質保證,讓你靈性提升、身體健康、心想事成。

對此,我就給三個字:敢按呢(Kám án-ne)?

事實上,量子力學至今仍是持續演進的學問,我們對量子力學的理解也隨時間變得越來越豐富。現代的物理學家,基本上不認為我們可以用意識改變物質世界,也不認為「意識」在「觀測」上佔據一席之地,甚至可以說正好相反,人的意識在觀測上根本無關緊要。

不過,我們不會那麼快就直接進入觀測問題的現代觀點。在之後接下來的幾集,我們會先從基本知識開始說起,循序漸進,讓你掌握量子力學的部分概念。而在本系列影片的最後一集,我們才會重新回到觀測問題,並介紹量子力學領域近幾十年來在此問題上獲得的進展。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

討論功能關閉中。

PanSci_96
1219 篇文章 ・ 2193 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
為何電子元件已經做了塗膠防護處理,仍會發生腐蝕甚至導致產品失效?
宜特科技_96
・2023/12/22 ・5635字 ・閱讀時間約 11 分鐘

電子元件發生腐蝕
圖/宜特科技

像電動車、充電樁使用於車用、工業用與戶外級別的電子產品,因應使用環境電子元件都需要採用三防膠塗佈保護,才能防止污染、腐蝕等問題。但為什麼,產品即便已經做了塗膠防護處理,仍會發生硫化腐蝕最終導致故障呢?原因可能就出在「膠」選得不對!

本文轉載自宜特小學堂〈為何已採用三防膠塗佈的電子產品,仍然發生硫化腐蝕失效〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

選對三防膠材材有效 影片
點擊圖片收看影片版

近年來,伴隨環保概念提升與綠能意識抬頭,燃油類設備機具減少、電子產品數量增加,生活中最常見的就是電動車和充電樁變得越來越多。由於這類電子硬體設備會長期待在室外環境,加上日趨嚴重的空氣污染威脅,腐蝕性氣體、水分、污染物、懸浮微粒會直接或間接地造成產品中的元件生鏽或腐蝕,就會發生故障影響產品的使用壽命。而三防膠就是為了加強保護電子元件、延長設備壽命、確保安全性與可靠性所誕生的一種塗料。

一、 什麼是三防膠(Conformal Coating)?哪些產品特別需要使用三防膠?

有三防膠塗佈的電路板。圖/百度百科

三防膠又稱三防漆,跟大家概念中的膠或是漆有點像,它是常用於電路板上的一種特殊塗料。三防膠具有良好的耐高低溫特性,經由三防膠塗佈的電路板會產生一層「透明聚合物薄膜」,就能維持電路板外形並保護好電子元件,達到「防濕氣」、「防污」、「防腐蝕」的效果,因此才被稱為「三防」膠。

前面有談到,因應全球環境變化,電子產品卻越來越多元、越來越精密的條件下,現代電子硬體設備不僅擁有高性能,還需要具備抵抗惡劣環境的能力,像是應用在工業、車用、航太、戶外級別的電子產品,例如:資料中心、工業電腦、電動車、儲能站與低軌衛星等等……。

-----廣告,請繼續往下閱讀-----

這些產品比起一般家電的使用環境更加嚴苛,尤其在面對含硫化氣體污染高的環境,特別容易造成「硫化腐蝕現象」,因此在製程中,電子元件必須做好三防膠塗佈處理、提升產品可靠度是非常重要的事。

什麼是「硫化腐蝕」跟「爬行腐蝕」?

硫化腐蝕(Sulfur Corrosion):當空氣污染物中含有豐富的硫化合物,會導致許多工業器件上各種金屬與合金材料的表面產生嚴重的腐蝕現象,若伴隨其他氣體污染物的存在,會導致氣體協同效應進而產生不同硫化腐蝕的特徵與機理。富含硫的氣體,如硫化氫(H2S)、環八硫(S8)與二氧化硫(SO2)就是一般常見造成電子設備發生硫化腐蝕的氣體。

爬行腐蝕(Creep corrosion):爬行腐蝕是屬於硫化腐蝕其中一種的失效機理,典型的案例在印刷電路板與導線架封裝元件最為常見。由於裸露的金屬銅接觸到環境中硫化物的腐蝕性氣體,會進行反應生成硫化亞銅(Cu2S)的腐蝕產物,一旦電子產品表面清潔度不佳或環境有氯氣存在時,其固體腐蝕物將會沿著電路與阻焊層/封裝材料表面遷移生長的過程,導致相鄰焊盤和電路間的電氣短路失效現象,我們稱之為爬行腐蝕的失效模式。

印刷電路的爬行腐蝕
印刷電路的爬行腐蝕。圖/Barry Hindin, Ph.D, Battelle Columbus Operations
導線架封裝元件的爬行腐蝕
導線架封裝元件的爬行腐蝕。圖/Dr. P. Zhao, University of Maryland

當電子產品發生硫化腐蝕,會導致設備發生短路或開路的故障風險,像發生在印刷電路板或導線架封裝的爬行腐蝕(下圖一、圖二、圖三),或是表面貼裝被動元件的硫化腐蝕(下圖四),都是十分常見的案例。

電路板發生爬行腐蝕及硫化腐蝕失效的照片
(1)與(2)為印刷電路板的爬行腐蝕失效,(3)為導線架封裝的爬行腐蝕失效,(4)為表面貼裝晶片電阻的硫化腐蝕特徵照片。圖/宜特科技

二、 電子產品該選擇哪種方式做防護處理?

為了有效地隔絕惡劣環境對電子設備的影響,除了前面提過三防膠(Conformal Coating)的處理手法,一般也會採用灌封(Potting)來處理。下表是灌封與三防膠的差異比較。

方法灌封三防膠
保護性中-優
加工與
重工性
劣(氣泡殘留、重工困難)
品管檢驗劣(外觀不可視)優(外觀可視)
應用性劣(侷限)優(輕薄)
環保
範例
圖/Epoxyset Inc.
圖/Charged EVs
灌封與三防膠處理方法之比較。表/宜特科技

雖然灌封比三防膠保護性更好,但並非所有電子元件都能用灌封處理,灌封在作業前必須考量電子元件,會因為加工的熱應力、固化收縮應力、氣泡殘留等等產生影響,也要評估較多的產品設計條件,包括:尺寸、外殼、重量、熱管理、加工、重工、檢驗、成本與環保等因素,才能確認該產品是否適合做灌封處理。

-----廣告,請繼續往下閱讀-----

而三防膠的加工快速、重工容易與成本較低的優點,既可以提升產品抗腐蝕的能力,又可維持印刷電路板的外形而不影響後續的組裝作業,可以說三防膠的泛用性會比灌封來得更高。

所以當電子設備需要在惡劣的環境運作,或是終端電子設備發生腐蝕失效時,三防膠通常是組裝、系統廠商針對電子產品腐蝕的問題會優先採用的方案,廠商可以直接管控三防膠塗佈製程的品質,能夠針對終端客戶退回產品時進行立即性的改善作業。

三、 原來三防膠有很多種?

目前三防膠的種類主要可分為八大類,包含:Silicone Resin(SR)、Acrylic(AR)、Polyurethane(UR)、Epoxy(ER)、Paraxylylene(XY)、Fluorine-carbon resin(FC)、Ultra-Thin Coatings(UT)與 Styrene Block Co-Polymer(SC)。一般三防膠的種類可依照材質區分種類,然而混合型的三防膠材則是以重量百分比佔高的材質為主,如果三防膠的厚度 ≤12.5um ,膠材將不受材料種類的拘限都被歸類於 UT 型。每一種三防膠都有不同的特性,常見的評估項目有厚度、黏著性、耐溫性、抗化學性、防潮性、加工與重工性、普遍性、疏孔性、耐鹽霧腐蝕性、表面絕緣電阻程度與成本高低等。

四、 為何已經採用三防膠塗佈的電子產品仍發生了硫化腐蝕失效,原因竟是國際規範不足?

一般業界針對三防膠的國際規範,大多是參照國際電子工業聯接協會(Association Connecting Electronics Industries;IPC) 所制定的試驗標準 – IPC-HDBK-830A、IPC-CC-830C 與 IPC-J-STD-001F。這幾項標準都是一般常見於三防膠相關的國際規範,它們定義了三防膠的設計、選擇與應用的準則,用於焊接電氣和電子組件要求,以及用於印製線路組件用電氣絕緣化合物的鑑定及性能。

-----廣告,請繼續往下閱讀-----
常見三防膠相關的國際規範
一般常見三防膠相關的國際規範。圖/IPC-HDBK-830A, IPC-CC830C and IPC-J-STD-001F

而針對三防膠的驗證項目,包括了:種類、厚度、均勻性、缺陷、重工、應用、耐溫溼度環境、耐鹽霧、表面絕緣電阻等。其它與三防膠有關的標準還有 IPC-A-610H、IEC-1086-2、MIL-I-46058C、MIL-STD-202H、Method 106、NASA-STD-8739.1、BS5917、UL94、UL746F 與 SJ 20671……許多的國際規範。

然而在眾多三防膠國際規範的耐腐蝕性項目評估中,卻獨缺了「腐蝕性氣體的試驗」,尤其是在含硫與其化合物相關的腐蝕性氣體。因此,一旦產品的使用環境含有硫或硫化合物相關的腐蝕性氣體,即使電子設備已採用三防膠塗佈,仍會發生硫化腐蝕失效的問題。

此外,電子設備中也不是所有組件皆可以採用三防膠的塗佈,由於膠材具備絕緣的特性,一般均無法塗佈於電性連接、電器接點處,例如:金手指、插槽與連結器等。下圖是有採用與未採用三防膠塗佈的導線架封裝晶片發生與未發生硫化腐蝕的照片。

未採用三防膠塗佈採用三防膠塗佈採用三防膠塗佈
導線架發生嚴重的硫化腐蝕膠材的抗硫化腐蝕能力不足製程的缺陷(氣泡)導致保護不足
導線架發生嚴重的硫化腐蝕膠材的抗硫化腐蝕能力不足製程的缺陷(氣泡)導致保護不足
導線架發生嚴重的硫化腐蝕膠材的抗硫化腐蝕能力優異膠材的抗硫化腐蝕能力優異
導線架發生嚴重的硫化腐蝕膠材的抗硫化腐蝕能力優異未採用三防膠塗佈
採用與未採用三防膠塗佈的導線架封裝晶片發生與未發生硫化腐蝕的照片。圖/宜特科技

五、 不是有塗或是夠厚就好,透過驗證平台選擇出正確的三防膠材才有效!

透過上述的說明可以了解,如果只是按照規範去選擇三防膠材後進行塗佈,可能會遺漏腐蝕性氣體或是其他因素的影響,無法讓產品獲得最完善的保護。為了解決窘境,宜特科技所提供的硫化腐蝕驗證平台,可以協助廠商選擇正確的三防膠材,並針對各種採用三防膠塗佈的電子產品,評估產品抗硫化腐蝕的能力並進行壽命驗證。

-----廣告,請繼續往下閱讀-----
透過宜特實驗室的硫化腐蝕驗證平台評估各種三防膠材搭配不同厚度在硫化腐蝕試驗的耐受性
透過宜特實驗室的硫化腐蝕驗證平台評估各種三防膠材搭配不同厚度在硫化腐蝕試驗的耐受性。
圖/Source: Dem Lee…Et al.,“Evaluation of the Anti-Sulfur Corrosion Capacity for Chip Resistor and Conformal Coating by Way of Flower-of-Sulfur(FoS)Methodology”, International Microsystems, Packaging Assembly and Circuits Technology Conference 2018, Section 28, 2018.

上圖為透過宜特實驗室的硫化腐蝕驗證平台,評估各種三防膠材搭配不同厚度條件在硫化腐蝕試驗的耐受性。其中未經三防膠塗佈的抗硫化晶片電阻樣本(黑色),經歷 25 天的試驗後發生失效,但塗佈膠材 C(綠色)與膠材 D(藍色)的樣本,僅僅經歷 5 到 10 天的試驗就發生了失效。

由此可證,並非所有三防膠材都有具備抗硫化腐蝕的能力,抗腐蝕能力主要取決於膠材本身的材料特性,某些特定膠材非常容易吸附含硫與其化合物相關的腐蝕性氣體,即使提高厚度,也無法有效降低硫化腐蝕的發生,即便電子零件本身有做抗硫化腐蝕的設計,一旦選擇不合適的膠材,反而會加速電子產品發生硫化腐蝕失效的風險。

下表是採用相同樣本搭配不同的三防膠材,經硫化腐蝕試驗後,進行橫切面的掃描式電子顯微鏡分析之比較。可以看到,雖然膠材 B 的塗佈厚度比膠材 A 更厚,但是膠材 B 抗硫化腐蝕的能力卻更差。

三防膠膠材 A膠材 B
厚度<30um>100um
電子顯微鏡照片三防膠材A三防膠材B
抗硫化腐蝕的能力
採用相同樣本搭配不同三防膠材料塗佈經硫化腐蝕試驗後進行橫切面的掃描式電子顯微鏡分析之比較。圖/宜特科技

藉由宜特實驗室的硫化腐蝕驗證平台,不但可以協助選擇正確的膠材,亦可針對採用各種三防膠塗佈的電子產品,依照國際規範標準,並以實際終端環境的腐蝕程度搭配模擬使用年限,透過上述客製化的實驗設計,能夠協助廠商評估產品抵抗硫化腐蝕的壽命驗證。

-----廣告,請繼續往下閱讀-----

本文出自 www.istgroup.com。

討論功能關閉中。

宜特科技_96
5 篇文章 ・ 3 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

0

2
3

文字

分享

0
2
3
第三類寬能隙半導體到底在紅什麼?
宜特科技_96
・2023/10/30 ・4510字 ・閱讀時間約 9 分鐘

寬能隙半導體晶片
圖/宜特科技

半導體產業崛起,我們常聽到「能隙」這個名詞,到底能隙是什麼?能隙越寬的材料又代表什麼意義呢?
近幾年 5G、電動車、AI 蓬勃發展,新聞常說要靠第三類的「寬能隙半導體」發展,到底寬能隙半導體在紅什麼?我們一起來了解吧!

本文轉載自宜特小學堂〈第三類寬能隙半導體到底在紅什麼?〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

宜特科技 第三類寬能隙半導體到底在閎什麼 影片連結
點擊圖片收看影片版

什麼是能隙(Band Gap)?寬能隙又是「寬」在哪裡?

身為理組學生或是工程師,甚至是關心科技產業的一般人,對於「能隙」兩字一定不陌生,但你了解什麼是能隙嗎?

半導體能帶與能隙示意圖
半導體能帶與能隙示意圖。圖/宜特科技

能隙基本上要用量子物理的理論來跟大家說明,「能帶(Band)」的劃分主要為低能帶區的「價電能帶」(Valence Band,簡稱 VB),與高能帶區「導電能帶」(Conduction Band,簡稱 CB)的兩種,在 VB 與 CB 之間即是一個所謂的能帶間隙(Band Gap,簡稱 BG),簡稱「能隙」

能帶因電子流動產生導電特性
能帶因電子流動產生導電特性。圖/宜特科技

金屬材料能夠導電,主要是因為電子都位於高能的(CB)區域內,電子可自由流動;而半導體材料在常溫下,主要電子是位於低能的(VB)區域內而無法流動,當受熱或是獲得足夠大於能隙(BG)的能量時,價電能帶內電子就可克服此能障躍遷至導電能帶,就形成了導電特性。

-----廣告,請繼續往下閱讀-----

我們都知道功率等於電流與電壓加乘的正比關係,在高功率元件(Power device)的使用上如果半導體材料的能隙越寬,元件能承受的電壓、電流和溫度都會大幅提升。大眾所熟知的第一類半導體材料——矽(Si)能隙為 1.12 eV,具有成熟的技術與低成本優勢,廣泛應用於消費性電子產品;第二類半導體材料——砷化鎵(GaAs) 能隙為 1.43eV,相比第一類擁有高頻、抗輻射的特性,因此被廣泛應於在通訊領域。

為什麼需要用到第三類寬能隙半導體(Wide Band Gap,WBG)?

由於近年地球暖化與碳排放衍生的環保問題日益嚴重,世界各國都以節能減碳、綠色經濟為共同的首要發展方向,石化能源必須逐步減少並快速導入綠能節電的應用,因此不論是日常用品、交通運輸或軍事太空都逐步以高能效、低能耗為目標。

歐洲議會在 2023 年通過新法提高減碳目標,為 2030 年減碳 55% 的目標鋪路。國際能源署(IEA)也強建議各國企業在 2050 年前達到「淨零排放」,甚至有傳聞歐盟將通過燃油車禁售令,不論是考量環保或經濟,全球企業的綠色轉型勢在必行。因此在科技發展日新月異的同時,要兼顧大幅提升與改善現有的能源,已是大勢所趨。

目前半導體原料最大宗,是以第一類的矽(Si)晶圓的生產製造為主,但是以低能隙的半導體材料為基礎的產品,物理特性已到達極限,在溫度、頻率、功率皆無法突破,所以具備耐高溫高壓、高能效、低能耗的第三類寬能隙半導體(Wide Band Gap,WBG)就在此背景之下因應而生。

-----廣告,請繼續往下閱讀-----

現在有哪些的寬能隙(WBG)材料?

那麼有哪些更佳的寬能隙材料呢?目前市場所談的第三類半導體是指碳化矽(SiC)和氮化鎵(GaN),第三類寬能隙半導體可以提升更高的操作電壓,產生更大的功率並降低能損,相較矽元件的體積也能大幅縮小。
Si 與 C 的化合物碳化矽(SiC)材料能隙可大於 3.0eV;Ga 與 N 或 O 的化合物氮化鎵(GaN)或氧化鎵(Ga2O3)能隙也分別高達 3.4eV 與 4.9eV,大家可能沒想到的是鑽石的能隙更高達 5.4eV。

特性Si 矽SiC(4H)
碳化矽
GaN
氮化鎵
Ga2O3(β)
氧化鎵
Diamond
鑽石
能隙(eV)1.13.33.44.95.4
遷移率
(cm2/Vs)
1400100012003002000
擊穿電場強度
(MV/cm)
0.32.53.3810
導熱率
(W/cmK)
1.54.91.30.1420
半導體材料的物性比較。圖/宜特科技

氮化鎵(GaN)或氧化鎵(Ga2O3),雖然分別在 LED 照明或是紫外光的濾光光源,已經應用一段時間,但受限於這類半導體材料的特性,其實生產過程充滿了挑戰。例如:要製作 SiC 的單晶晶棒,相較 Si 晶棒的生產困難且時間緩慢很多,以及 GaN 與 Si 晶圓的晶格不匹配時,容易生成差排缺陷(Dislocation Defect)等問題必須克服,導致長久以來相關的製程開發困難及花費高昂,但第三類半導體市場潛力無窮,對於各國大廠來說仍是兵家必爭之地。

寬能隙半導體運用在那些產品上?

現在知名大廠如意法半導體、英飛凌、羅姆等,對寬能隙材料的實際運用均有相當大的突破,如氮化鎵(GaN)在以 Si 或 SiC 為基板的產品已陸續發表,而我們最常接觸到的產品,就是市售的快速充電器,採用的就是 GaN on Si 材料製作的高功率產品。

除了功率提升,因為溫度與熱效應可大幅降低,元件就可以大幅縮小,充電器體積也更加玲瓏小巧,除了已商品化的快充電源領域,第三類半導體在 AI、高效能運算、電動車等等領域的應用也是未來可期。

-----廣告,請繼續往下閱讀-----

(延伸閱讀:泛科學—快充怎麼做到又小又快? 半導體材料氮化鎵,突破工作頻率極限)

現行以矽基材料為主的高功率產品,多以絕緣閘雙極電晶體(IGBT)或金氧半場效電晶體(MOSFET)為主,下圖可以看到各種功率元件、模組與相關材料應用的範圍,傳統 IGBT 高功率模組大約能應用至一百千瓦(100Kw)以上,但速度卻無法提升至一百萬赫茲(1MHz)。而 GaN 材料雖然速度跟得上,但功率卻無法達到更高的一千瓦(1kW)以上,必須改用 SiC 的材料。

功率元件與相關材料的應用範圍
功率元件與相關材料的應用範圍。圖/英飛凌

SiC 具有比 Si 更好的三倍導熱率,使得元件體積又可以更小,這些特性使它更適合應用在電動車領域。特斯拉的 model3 也從原先的 IGBT ,改成使用意法半導體生產的 SiC 功率元件,應用在其牽引逆變器(Traction inverter)、直流電交互轉換器與充電器(DC-to-DC converter & on-board charger),能夠提高電能使用效率與降低能損。

特斯拉充電樁
多家車廠加入特斯拉充電網路。圖/特斯拉

在未來更高的電力能源需求下,車載裝置除了基本要具備高功率,還需要極高速的充電能力來因應電力補充,車用充電樁、5G 通訊基地台、交通運輸工具、甚至衛星太空站等更大的電力能源需求,相關的電流傳輸轉換,電傳速度的要求以及降低能損,就必須邁向更有效率的寬能隙材料著重進行開發,超高功率的 SiC 元件模組需求亦會水漲船高。

-----廣告,請繼續往下閱讀-----

寬能隙半導體在開發生產階段,需進行那些驗證分析?

根據宜特的觀察,晶圓代工廠與功率 IDM 廠商正持續努力研究與開發。不過,新半導體材料在開發初期,會有許多需要進行研發驗證的狀況,近年我們已協助多家寬能隙半導體(WBG)產業的開發與生產驗證。

比如磊晶製程相關的結構或缺陷分析,就可以藉由雙束聚焦離子束(Dual beam FIB)製備剖面樣品並進行尺寸量測或成分分析(EDS),亦可搭配穿透式電子顯微鏡(TEM)進行奈米級的缺陷觀察;擴散區域的分析可經由樣品研磨製備剖面後,進行掃描式電子顯微鏡(SEM)觀察以及掛載在原子力顯微鏡 (AFM) 上的偵測模組-掃描式電容顯微鏡(SCM)判別摻雜區域的型態與尺寸量測。

下圖為 SiC 的元件分析擴散區摻雜的型態,我們可以先用 SEM 觀察井區(Well)的分布位置,再經由 SCM 判斷上層分別有 N 與 P 型 Well 以及磊晶層(EPI) 為 N 型。

SEM及SCM分析的量測圖
使用 SEM 剖面觀察 SiC 元件的結構,搭配 SCM 分析 N/P 型與擴散區的量測。圖/宜特科技

另外在摻雜元素及濃度的分析,則可透過二次離子質譜分析儀(SIMS)的技術,下圖 GaN on Si 的元件,先用雙束聚焦離子束(Dual beam FIB)進行剖面成份分析(EDS)判斷磊晶區域的主要成份之後,提供 SIMS 參考再進行摻雜元素 Mg 定量分析濃度的結果,作為電性調整的依據。

-----廣告,請繼續往下閱讀-----
使用 DB-FIB 觀察 GaN 元件的剖面結構與 EDS 成份分析,搭配 SIMS 分析摻雜濃度
使用 DB-FIB 觀察 GaN 元件的剖面結構與 EDS 成份分析,搭配 SIMS 分析摻雜濃度。圖/宜特科技

除了上述介紹 WBG 元件結構的解析之外,其它產品也都可以透過宜特實驗室專業材料分析及電性、物性故障分析來尋求解答,包括因應安全要求更高的產品可靠度測試與評估,藉由宜特可以提供更完整與全方位的驗證服務。

希望透過本文介紹,讓大家對第三類半導體有更進一步的了解,近期被稱為第四類半導體的氧化鎵(Ga2O3)也逐漸躍上檯面,它相較於第三類半導體碳化矽(SiC)與氮化鎵(GaN),基板製作更加容易,材料也能承受更高電壓的崩潰電壓與臨界電場,半導體材料的發展絕對是日新月異,也代表未來會有更多令人期待的新發現。

本文出自 www.istgroup.com。

宜特科技_96
5 篇文章 ・ 3 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室