0

0
0

文字

分享

0
0
0

研究發現氮化鎵無毒、具生物相容性

only-perception
・2011/10/25 ・796字 ・閱讀時間約 1 分鐘 ・SR值 587 ・九年級

-----廣告,請繼續往下閱讀-----

來自北卡羅萊納州立(NC State)大學與 Purdue 大學研究者證明,半導體材料氮化鎵(gallium nitride,GaN)無毒與人類細胞相容 — 為這種材料在各種生醫植入技術中的運用開啟了大門。

GaN 目前用在許多技術中,從 LED 照明到光感應器,但其在生醫植入物中卻未被廣泛使用。然而,來自 NC State 與 Purdue 的新發現意味著 GaN 在一系列可移植技術中前途無量 — 從用於阿茲海默症神經刺激療法中的電極到用來監控血液化學物質的電晶體。

“第一項發現是,GaN,不像其它已被考慮用於生醫植入物的半導體材料,是無毒的。這把對於環境與病患的風險降到最低,” Dr. Albena Ivanisevic 說,他是一篇描述此研究之論文的共同作者。Ivanisevic 是 NC State 材料科學與工程副教授,以及 NC State 與北卡羅萊納大學 Chapel Hill 分校聯合生醫工程計畫的副教授。

研究者使用質譜儀技術來研究,當材料暴露在各種模擬人體內部條件的環境下時,有多少鎵會從 GaN 釋出。這很重要,因為鎵的氧化物有毒。不過研究者發現,GaN 在這些環境中非常穩定 — 由於釋出的鎵總量非常稀少,以至於它是無毒的。

-----廣告,請繼續往下閱讀-----

研究者也想測定 GaN 的潛在生物相容性。為了這麼做,他們將胜肽(peptides) — 構成蛋白質的基石 — 與 GaN 材料結合。研究者接著將塗佈胜肽的 GaN 與未塗佈的 GaN 放入細胞培養中,看看材料如何與細胞互動。

研究者發現,塗佈胜肽的 GaN 與細胞結合的效率更好。尤其是,當更多細胞結合到此材料時,這些細胞會擴散到一個更大的區域。

“這有意義,因為我們想要讓材料賦予我們對細胞行為有某種程度的控制,” Ivanisevic 說。”例如,能使細胞黏著到材料上或避開之。”

“眾多生醫植入物(例如感應器)所面臨的一個問題是,它們在體內會被生物材料包覆,我們已證明,我們能將 GaN 塗佈會吸引細胞並與之結合的胜肽。這指出,我們也能夠將 GaN 塗佈防止細胞生長的胜肽 — 使植入物保持「乾淨」。我們下一步將會是探索在 GaN 使用這種「抗污(anti-fouling)」胜肽。”

-----廣告,請繼續往下閱讀-----

資料來源:PHYSORG:Research finds gallium nitride is non-toxic, biocompatible – holds promise for implants [October 24, 2011 ]

轉載自only-perception

文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

2
3

文字

分享

0
2
3
第三類寬能隙半導體到底在紅什麼?
宜特科技_96
・2023/10/30 ・4510字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

寬能隙半導體晶片
圖/宜特科技

半導體產業崛起,我們常聽到「能隙」這個名詞,到底能隙是什麼?能隙越寬的材料又代表什麼意義呢?
近幾年 5G、電動車、AI 蓬勃發展,新聞常說要靠第三類的「寬能隙半導體」發展,到底寬能隙半導體在紅什麼?我們一起來了解吧!

本文轉載自宜特小學堂〈第三類寬能隙半導體到底在紅什麼?〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

宜特科技 第三類寬能隙半導體到底在閎什麼 影片連結
點擊圖片收看影片版

什麼是能隙(Band Gap)?寬能隙又是「寬」在哪裡?

身為理組學生或是工程師,甚至是關心科技產業的一般人,對於「能隙」兩字一定不陌生,但你了解什麼是能隙嗎?

半導體能帶與能隙示意圖
半導體能帶與能隙示意圖。圖/宜特科技

能隙基本上要用量子物理的理論來跟大家說明,「能帶(Band)」的劃分主要為低能帶區的「價電能帶」(Valence Band,簡稱 VB),與高能帶區「導電能帶」(Conduction Band,簡稱 CB)的兩種,在 VB 與 CB 之間即是一個所謂的能帶間隙(Band Gap,簡稱 BG),簡稱「能隙」

能帶因電子流動產生導電特性
能帶因電子流動產生導電特性。圖/宜特科技

金屬材料能夠導電,主要是因為電子都位於高能的(CB)區域內,電子可自由流動;而半導體材料在常溫下,主要電子是位於低能的(VB)區域內而無法流動,當受熱或是獲得足夠大於能隙(BG)的能量時,價電能帶內電子就可克服此能障躍遷至導電能帶,就形成了導電特性。

-----廣告,請繼續往下閱讀-----

我們都知道功率等於電流與電壓加乘的正比關係,在高功率元件(Power device)的使用上如果半導體材料的能隙越寬,元件能承受的電壓、電流和溫度都會大幅提升。大眾所熟知的第一類半導體材料——矽(Si)能隙為 1.12 eV,具有成熟的技術與低成本優勢,廣泛應用於消費性電子產品;第二類半導體材料——砷化鎵(GaAs) 能隙為 1.43eV,相比第一類擁有高頻、抗輻射的特性,因此被廣泛應於在通訊領域。

為什麼需要用到第三類寬能隙半導體(Wide Band Gap,WBG)?

由於近年地球暖化與碳排放衍生的環保問題日益嚴重,世界各國都以節能減碳、綠色經濟為共同的首要發展方向,石化能源必須逐步減少並快速導入綠能節電的應用,因此不論是日常用品、交通運輸或軍事太空都逐步以高能效、低能耗為目標。

歐洲議會在 2023 年通過新法提高減碳目標,為 2030 年減碳 55% 的目標鋪路。國際能源署(IEA)也強建議各國企業在 2050 年前達到「淨零排放」,甚至有傳聞歐盟將通過燃油車禁售令,不論是考量環保或經濟,全球企業的綠色轉型勢在必行。因此在科技發展日新月異的同時,要兼顧大幅提升與改善現有的能源,已是大勢所趨。

目前半導體原料最大宗,是以第一類的矽(Si)晶圓的生產製造為主,但是以低能隙的半導體材料為基礎的產品,物理特性已到達極限,在溫度、頻率、功率皆無法突破,所以具備耐高溫高壓、高能效、低能耗的第三類寬能隙半導體(Wide Band Gap,WBG)就在此背景之下因應而生。

-----廣告,請繼續往下閱讀-----

現在有哪些的寬能隙(WBG)材料?

那麼有哪些更佳的寬能隙材料呢?目前市場所談的第三類半導體是指碳化矽(SiC)和氮化鎵(GaN),第三類寬能隙半導體可以提升更高的操作電壓,產生更大的功率並降低能損,相較矽元件的體積也能大幅縮小。
Si 與 C 的化合物碳化矽(SiC)材料能隙可大於 3.0eV;Ga 與 N 或 O 的化合物氮化鎵(GaN)或氧化鎵(Ga2O3)能隙也分別高達 3.4eV 與 4.9eV,大家可能沒想到的是鑽石的能隙更高達 5.4eV。

特性Si 矽SiC(4H)
碳化矽
GaN
氮化鎵
Ga2O3(β)
氧化鎵
Diamond
鑽石
能隙(eV)1.13.33.44.95.4
遷移率
(cm2/Vs)
1400100012003002000
擊穿電場強度
(MV/cm)
0.32.53.3810
導熱率
(W/cmK)
1.54.91.30.1420
半導體材料的物性比較。圖/宜特科技

氮化鎵(GaN)或氧化鎵(Ga2O3),雖然分別在 LED 照明或是紫外光的濾光光源,已經應用一段時間,但受限於這類半導體材料的特性,其實生產過程充滿了挑戰。例如:要製作 SiC 的單晶晶棒,相較 Si 晶棒的生產困難且時間緩慢很多,以及 GaN 與 Si 晶圓的晶格不匹配時,容易生成差排缺陷(Dislocation Defect)等問題必須克服,導致長久以來相關的製程開發困難及花費高昂,但第三類半導體市場潛力無窮,對於各國大廠來說仍是兵家必爭之地。

寬能隙半導體運用在那些產品上?

現在知名大廠如意法半導體、英飛凌、羅姆等,對寬能隙材料的實際運用均有相當大的突破,如氮化鎵(GaN)在以 Si 或 SiC 為基板的產品已陸續發表,而我們最常接觸到的產品,就是市售的快速充電器,採用的就是 GaN on Si 材料製作的高功率產品。

除了功率提升,因為溫度與熱效應可大幅降低,元件就可以大幅縮小,充電器體積也更加玲瓏小巧,除了已商品化的快充電源領域,第三類半導體在 AI、高效能運算、電動車等等領域的應用也是未來可期。

-----廣告,請繼續往下閱讀-----

(延伸閱讀:泛科學—快充怎麼做到又小又快? 半導體材料氮化鎵,突破工作頻率極限)

現行以矽基材料為主的高功率產品,多以絕緣閘雙極電晶體(IGBT)或金氧半場效電晶體(MOSFET)為主,下圖可以看到各種功率元件、模組與相關材料應用的範圍,傳統 IGBT 高功率模組大約能應用至一百千瓦(100Kw)以上,但速度卻無法提升至一百萬赫茲(1MHz)。而 GaN 材料雖然速度跟得上,但功率卻無法達到更高的一千瓦(1kW)以上,必須改用 SiC 的材料。

功率元件與相關材料的應用範圍
功率元件與相關材料的應用範圍。圖/英飛凌

SiC 具有比 Si 更好的三倍導熱率,使得元件體積又可以更小,這些特性使它更適合應用在電動車領域。特斯拉的 model3 也從原先的 IGBT ,改成使用意法半導體生產的 SiC 功率元件,應用在其牽引逆變器(Traction inverter)、直流電交互轉換器與充電器(DC-to-DC converter & on-board charger),能夠提高電能使用效率與降低能損。

特斯拉充電樁
多家車廠加入特斯拉充電網路。圖/特斯拉

在未來更高的電力能源需求下,車載裝置除了基本要具備高功率,還需要極高速的充電能力來因應電力補充,車用充電樁、5G 通訊基地台、交通運輸工具、甚至衛星太空站等更大的電力能源需求,相關的電流傳輸轉換,電傳速度的要求以及降低能損,就必須邁向更有效率的寬能隙材料著重進行開發,超高功率的 SiC 元件模組需求亦會水漲船高。

-----廣告,請繼續往下閱讀-----

寬能隙半導體在開發生產階段,需進行那些驗證分析?

根據宜特的觀察,晶圓代工廠與功率 IDM 廠商正持續努力研究與開發。不過,新半導體材料在開發初期,會有許多需要進行研發驗證的狀況,近年我們已協助多家寬能隙半導體(WBG)產業的開發與生產驗證。

比如磊晶製程相關的結構或缺陷分析,就可以藉由雙束聚焦離子束(Dual beam FIB)製備剖面樣品並進行尺寸量測或成分分析(EDS),亦可搭配穿透式電子顯微鏡(TEM)進行奈米級的缺陷觀察;擴散區域的分析可經由樣品研磨製備剖面後,進行掃描式電子顯微鏡(SEM)觀察以及掛載在原子力顯微鏡 (AFM) 上的偵測模組-掃描式電容顯微鏡(SCM)判別摻雜區域的型態與尺寸量測。

下圖為 SiC 的元件分析擴散區摻雜的型態,我們可以先用 SEM 觀察井區(Well)的分布位置,再經由 SCM 判斷上層分別有 N 與 P 型 Well 以及磊晶層(EPI) 為 N 型。

SEM及SCM分析的量測圖
使用 SEM 剖面觀察 SiC 元件的結構,搭配 SCM 分析 N/P 型與擴散區的量測。圖/宜特科技

另外在摻雜元素及濃度的分析,則可透過二次離子質譜分析儀(SIMS)的技術,下圖 GaN on Si 的元件,先用雙束聚焦離子束(Dual beam FIB)進行剖面成份分析(EDS)判斷磊晶區域的主要成份之後,提供 SIMS 參考再進行摻雜元素 Mg 定量分析濃度的結果,作為電性調整的依據。

-----廣告,請繼續往下閱讀-----
使用 DB-FIB 觀察 GaN 元件的剖面結構與 EDS 成份分析,搭配 SIMS 分析摻雜濃度
使用 DB-FIB 觀察 GaN 元件的剖面結構與 EDS 成份分析,搭配 SIMS 分析摻雜濃度。圖/宜特科技

除了上述介紹 WBG 元件結構的解析之外,其它產品也都可以透過宜特實驗室專業材料分析及電性、物性故障分析來尋求解答,包括因應安全要求更高的產品可靠度測試與評估,藉由宜特可以提供更完整與全方位的驗證服務。

希望透過本文介紹,讓大家對第三類半導體有更進一步的了解,近期被稱為第四類半導體的氧化鎵(Ga2O3)也逐漸躍上檯面,它相較於第三類半導體碳化矽(SiC)與氮化鎵(GaN),基板製作更加容易,材料也能承受更高電壓的崩潰電壓與臨界電場,半導體材料的發展絕對是日新月異,也代表未來會有更多令人期待的新發現。

本文出自 www.istgroup.com。

宜特科技_96
5 篇文章 ・ 3 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

0

2
0

文字

分享

0
2
0
揭開 GaN 的力量:理解電路拓樸在設計中的重要性
鳥苷三磷酸 (PanSci Promo)_96
・2023/08/31 ・2948字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文由 德州儀器 委託,泛科學企劃執行。

從 IC 之父 Jack Kilby 在德州儀器發明世上第一顆積體電路,到現在已過了 65 年,而這項科技已經成為我們的日常,並且還在不斷進步。德州儀器不僅是積體電路的先驅者,更長期投資氮化鎵 (GaN) 的電源應用,例如資料中心伺服器電源、再生能源、或是小體積的電源供應器等,開發許多獨創的電路結構。在已到來的次世代半導體浪潮中,德州儀器早已站穩了腳步,成為高壓半導體領域的領導者。

氮化鎵作為新材料的崛起,已成為充電領域的新寵,甚至打敗了傳統的矽 (Si) 基充電頭。然而,要充分發揮氮化鎵的潛力,需要量身定制相對應的策略和戰術。

何謂電路拓樸?電路設計要考量什麼?

拓樸電路是氮化鎵最好的後勤部隊,能讓它發揮 100% 的力量。但這個拓樸電路又是什麼呢?

-----廣告,請繼續往下閱讀-----

先來談一下比較陌生的名詞「拓樸」。拓樸是幾何學中重要的概念,主要在研究物體在連續變化下時的不變性質。舉個數學家最愛的例子,就是研究如何把一個帶手把的馬克杯變成甜甜圈。這是什麼鬼題目?這就像問炭治郎什麼時候要開 5 檔,八竿子打不著吧?但對數學家來說,這個題目是可能的,因為帶手把的馬克杯和甜甜圈有個共通特徵,就是有一個洞!只要有這個共同特徵,我們確實就可以透過一系列的數學運算,將馬克杯變成甜甜圈。

undefined
在拓樸學中,有一個手把的馬克杯和甜甜圈是相同的。圖/wikimedia

舉例來說,漫威電影中班納博士變身成浩克,如果希望浩克的身上能看得出班納博士的影子,就必須用拓樸學先將班納博士的五官這些「特徵」定位好,製作成大家常看到有如網格的 3D 建模,變身成浩克時才不會整個走鐘(台語),臉部比例亂成一團。沒錯,拓樸解決的,是在兩種形狀間切換時,這些特徵與圖案的比例不會隨便亂跑,成為四不像的東西。

Final product image
用拓樸學先將班納博士的特徵定位好,製作成大家常看到有如網格的 3D 建模。出處:tutsplus

回到我們的氮化鎵電路,難道我們要利用拓樸學,把電路板的形狀變成一個甜甜圈或是浩克嗎?當然不是,這邊指的是用更少的元件、更低的延遲與漏電的設計,把相同功能的電路重新改寫配置。

簡單來說,電路拓樸就像是電路板上的藍圖,告訴我們如何把各種電子元件,比如電阻、電容、電感、電晶體等組織在一起,來完成我們想要的任務。

-----廣告,請繼續往下閱讀-----

每種電路拓樸都有它的優點和適用的場合。例如,Buck轉換器可以將輸入的電壓降低,適合用在需要較低電壓的應用上。Boost轉換器則可以提升電壓,適合用在需要較高電壓的應用上。LLC轉換器具有高效率和寬輸入電壓範圍的特性,適合用在需要高效率和靈活性的應用上。PFC(Power Factor Correction)則是一種用來提高電源效率的技術,它可以使輸入電流與電壓同步,減少能量損失等等。

Boost轉換器。出處:德州儀器
Buck轉換器。出處:德州儀器

然而,這些都是以矽為主的拓樸電路,為了充分發揮氮化鎵百分之百的潛力,我們不能僅僅依賴傳統的電路設計方法和拓樸,而是要重新塑造!

GaN+電路拓樸=最強?

那麼,我們要如何重新塑造才能全部發揮 GaN 的實力呢?讓我們以一種常見的電路拓樸—功率因數校正 PFC 為例。

PFC,是電路中的交通指揮,負責將電路中電流與電壓同步,以達到最佳的效率。在電訊號經過漫長電路之後,常常導致輸出的電流與電壓波形出現時間差,不再同步。我們知道功率等於電壓乘以電流,因此兩者好好配合,才能發揮最大效益,如果兩者沒有同步,就會降低整體電路的有效功率。

-----廣告,請繼續往下閱讀-----
高功率因數。出處:wikimedia
低功率因數。出處:wikimedia

PFC 功率因數修正電路,現在看到在做的事情,就是讓它們好好同步,降低無謂的能量浪費。目前世界各地許多法規都直接要求在電路中加入 PFC,提升用電效率。

那麼問題來了,同樣是 PFC 電路拓樸,現在我們有兩種設計,下方的圖 1-雙升壓 PFC,跟下方圖 2-圖騰柱 PFC。

圖 1、雙升壓 PFC。出處:德州儀器
圖 2、無橋接式圖騰柱 PFC。出處:德州儀器

依照我們希望體積盡可能小的需求,直覺來說你要選哪一個呢?

當然是圖 2,因為他看起來比較簡單嘛。可惜的是,市面上大多矽基半導體的 PFC,都是選擇圖 1 方案。因為圖 2 方案的簡約設計,前提是關鍵的二極體必須具備低的「反向恢復時間」。

-----廣告,請繼續往下閱讀-----

所謂反向恢復時間,指的是電晶體在電源切斷的瞬間,電晶體內仍有殘留電荷,會反向放電,造成電路阻塞。而矽基半導體過長的反向恢復時間,會導致電源損耗上升。反之,氮化鎵因為反向恢復時間為零,可以完全適應高效的圖騰柱 PFC。

這邊提到的 PFC 只是氮化鎵的其中一種運用,別忘了,除了零反向恢復時間外,它還有著能承受高電壓與高溫的特性,再加上低漏電率的關鍵被動技能,在目前的半導體戰場上,可說是最強的挑戰者。未來在各種電源供應器上,應該很快都能看見它的身影。

當然,講到這邊,都僅止在題本作答。在實際的晶片設計中,各元件間的距離與電路安排,都需要經過多次的試驗和調整,才能找到最適合的電路拓樸和元件配置,而這也正是德州儀器所擅長的領域。

德州儀器設計出的電源供應器,已經遍佈全世界的重要設備中。除了提供高效的能源供應,節省下的能源,也直接減少了許多碳排。根據估計,對一個 100 MW 的資料中心來說,換上 GaN FET 之後,就算只有提升 0.8% 的效率增益,在 10 年內就能節省多達 700 萬美元的能源成本。尤其在 AI、量子電腦等科技發展蓬勃的現在,在「節流」這一塊的投資,真的非常重要!

-----廣告,請繼續往下閱讀-----

看到這鋰,如果你也想訓練這個「黑科技」氮化鎵,打造更強的電路、為世界的節能貢獻一份心力。或甚至像 IC 之父 Jack Kilby 那樣,發展全新的電路架構,做出足以改變世界的創舉,德州儀器歡迎所有熱血人才加入,一起來改變世界吧!

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 302 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

8
3

文字

分享

1
8
3
阿茲海默症靠吃藥效果有限?關鍵基因找到了!
PanSci_96
・2023/08/13 ・5061字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

你身邊有人罹患失智症嗎?失智症和其他破壞身體的疾病很不一樣,它攻陷和摧毀心智,使我們最愛的人變成陌生人。其中,有六到七成的失智症患者都患有阿茲海默症,2023 年 5 月,對抗阿茲海默症的護腦基因研究出爐,有機會打破幾乎束手無策的現狀,催生出治病的新藥和新策略。而且,這是 6000 人、跨越 30 多年用他們的人生教給我們的一堂課。

為什麼整個世紀阿茲海默症都沒藥醫?

1906年德國一位醫師阿茲海默(Alois Alzheimer)發表一個病例,這名女性患者在生前接受治療的期間答非所問、時間感混亂,也不知道自己身在何處,這種導致大腦病變的疾病後來就稱為阿茲海默症(Alzheimer’s disease)。

這位病患過世後,阿茲海默醫師解剖她的大腦,發現腦部嚴重萎縮,而且腦組織的切片經過銀染色後,可以看到布滿許多斑塊,神經細胞也扭曲變形,這兩種腦部的變化到現在還是診斷阿茲海默症的重要依據。

後來的科學家接棒研究,檢驗出這些斑塊是由一類叫做類澱粉蛋白質(amyloids)的不可溶蛋白質所形成,這些蛋白質會沉澱在神經細胞外面,部分研究者猜想這些斑塊或許是導致神經細胞活性衰減或死亡的兇手。而這些異常蛋白質跟食物裡的澱粉沒有關係,只是因為染色以後看起來和澱粉染色類似,澱粉的拉丁語是 amylum,所以早期的科學家就把它叫做類澱粉蛋白質 amyloid,一直延用到今天。

-----廣告,請繼續往下閱讀-----
異常蛋白質染色以後看起來和澱粉染色類似。圖/PanSci YouTube

神經細胞的扭曲變形則是因為神經細胞裡面冒出了大量的 Tau 蛋白質,這種蛋白質會在細胞內部聚集成雜亂糾結的纖維狀結構,也可能因此造成神經細胞沒辦法正常運作。

抓到大腦異狀的可疑元凶了,離找到解藥就不遠了吧?沒想到焦急的病患和家人們這一等,就等了快要 90 年。

第一個阿茲海默症的藥一直到 1993 年才推出,而且只能延緩心智瓦解的速度,沒辦法逆轉病程。1993 到 2003 年之間,一共有 5 種藥上市,其中 4 種的功效是提高神經傳導物質乙醯膽鹼的濃度,使神經訊號能順利傳送;另一種藥作用在神經細胞膜上的 NMDA 受體(N-methyl-D-aspartate receptor),這種受體分布在腦部多個區域,可以接收神經訊號,和認知學習有關。打個比方,這些藥都像是給瀕臨油盡燈枯的腦神經細胞打強心針,再盡可能多傳遞一些訊號,只能暫時減輕症狀,沒辦法解除病因。

目前全球失智症患者估計已經超過五千五百萬人,估計 2050 年時會膨脹到將近一億四千萬人;臺灣更是現在進行式,推估 80 歲以上每 5 個人就有 1 個人失智。一個影響如此之大的疾病,卻只有少得可憐的解方。綜觀整部醫療史,這種山窮水盡的情況其實很少見,其他的病再怎樣難纏,或多或少總可以想出一些辦法,就算是萬病之王癌症,人類還是不斷做出新藥、新療法,不會落到這種兩手一攤無計可施的地步。

-----廣告,請繼續往下閱讀-----
臺灣五歲分年齡層失智症盛行率。圖/台灣失智症協會

2003 年以後又是一大段空白,到了 2021 年——距離發現阿茲海默症已經有 115 年之久——終於有新藥 Aducanumab 問世,它是第一種直接針對可能病因的藥物,鎖定的目標是清除類澱粉蛋白質。

爭議藥物強行通關,FDA委員憤而辭職

然而這款藥飽受爭議。大致來說,它最大的問題是雖然能減少類澱粉斑塊,但是只有部分受試患者的認知功能稍有改善。當時美國食品及藥物管理局(FDA)諮詢委員會的 11 名委員中 1 人棄權、10 個人投下反對票,可見得專家並不認同這款藥達到上市標準,但是 FDA 還是在病患人數多、有迫切醫療需求等等考量下強行核准過關。事後陸續有 3 名專家憤而辭職,掀起醫界不小的波瀾。

2023 年 1 月,第二種新藥 Lecanemab 推出,治療過程中可以把認知功能退化速度減少約四分之一;5 月上旬,第三種藥 Donanemab 公布第三期人體臨床試驗結果,減少認知退化速度約三分之一。兩種藥也都針對類澱粉斑塊,療效比第一種藥 Aducanumab 好了不少,但是使用上有限制,例如 Lecanemab 建議在疾病早期使用,效果可能比較好,然而很多阿茲海默症患者確診時已經是中晚期。兩種藥也有副作用,例如用藥後部分患者發生腦水腫或腦出血。

換句話說,現在寥寥無幾的藥都還有無法忽視的缺陷。找藥已經找到焦頭爛額的科學家,靈光一閃,另闢蹊徑從基因下手。而且,真的在陰霾中找到了一線亮光。

-----廣告,請繼續往下閱讀-----

害腦基因 VS. 護腦基因,腦部小宇宙裡的戰爭

過去兩三個世代的科學家費盡心思,上山下海去搜索和阿茲海默症罹病風險相關的基因,他們決定直球對決:想辦法抑制或清除掉致病基因產生的壞東西,大腦自然就沒事了。

比如說,第一型早老素(PSEN1)、第二型早老素(PSEN2),以及 APOE 脂蛋白(Apolipoprotein E)基因等等。早老素顧名思義,被認為和腦神經功能衰退相關;APOE 則是和人體代謝膽固醇及三酸甘油酯有關,也會影響腦部類澱粉蛋白質的沉積過程。

有會傷害大腦的基因,那有沒有能保護大腦的基因呢?

但是也有科學家偏要和別人逆向,他們問的問題很簡單:既然有會毒害大腦的基因,那有沒有能保護大腦的基因呢?他們認為,只要弄清楚這些基因是用什麼方式為腦細胞穿上金鐘罩鐵布衫,人類就可以效仿了。

但是這種研究非常困難。原因是如果要找壞基因,可以藉由比對病人和健康人的 DNA,先勾勒出一個模糊的輪廓。就好像拿癌細胞和健康細胞來互相比較,可以挖到深埋在 DNA 裡的致癌基因。但是要找護腦基因,卻沒有對照組可以當成參考的基準點。也因為這個主要障礙,這類研究推進得相當龜速。

-----廣告,請繼續往下閱讀-----

為什麼沒有對照組呢?因為最理想的受測者必須滿足三項條件。第一,他體內要攜帶能保護腦的基因,雖然科學家這時候還不知道這些基因是什麼;第二,他同時也帶有會傷害腦的基因;還有關鍵的第三點,那就是要可以觀察到護腦基因發功,壓過傷腦基因的破壞力道。

天啊,這也太困難了!不過科學家找到了理想的試驗對象,或許更精確的形容詞是,終於讓他們「等」到了。

尋找阿茲海默症致病基因——阿茲海默症家族

在南美洲哥倫比亞,有一個被早發型阿茲海默症魔咒纏身的大家族,人數約有 6 千人,其中許多人通常在 40 到 50 歲間就發病,遠比一般人早,病情惡化速度也更快。科學家追蹤這個家族 30 多年,鑑別出和腦部退化相關的多個遺傳因素。

2023 年 5 月,研究團隊在《Nature Medicine》發表成果,他們分析了大約一千兩百位帶有早發型致病基因的家族成員,從中找到一名特殊個案,這個男性首次接受認知功能測試的時候是 67 歲,已經超過發病年齡中位數 20 多年,但是卻只有輕度的認知障礙,沒有惡化成失智。

-----廣告,請繼續往下閱讀-----

之後,科學家掃描這個人的大腦,發現腦部堆積大量的類澱粉斑塊,還有 Tau 蛋白質造成的神經細胞纖維糾結,簡單來說,他的大腦就像一個嚴重失智病人的腦。不過,其中有一塊名叫內嗅皮質(entorhinal cortex)的腦區,只有少少的 Tau 蛋白質。

內嗅皮質緊貼著掌管記憶形成過程的海馬迴(hippocampus),它的角色有點像海馬迴的守門人,能把遠處腦區傳來的電訊號接力送進海馬迴,先前已知內嗅皮質和記憶及空間定位能力有關。

2014 年諾貝爾生醫獎得主歐基輔和穆瑟夫婦,因為發現動物利用腦中一組排列成六角形網格狀的特殊細胞來記住地圖和認路,因而獲得殊榮,網格細胞就是位在內嗅皮質。阿茲海默症患者的內嗅皮質通常在疾病早期就遭到破壞,因此導致頻繁迷路、出得了門回不了家的症狀。或許我們該幫索隆檢查一下內嗅皮質?

常常迷路的索隆。圖/tenor

研究團隊進一步分析這個男性的基因,發現他有一個稱為 RELN 的基因發生突變。RELN 基因已知和思覺失調症、躁鬱症等腦部變化有關聯,但科學家以往對這個基因和阿茲海默症的關聯了解得不多。

-----廣告,請繼續往下閱讀-----

RELN 基因和阿茲海默症的關聯

為了瞭解這種突變會觸發什麼後續效果,研究者改造小鼠的基因,試驗結果發現,突變 RELN 基因轉譯出來的蛋白質,會促使 Tau 蛋白質發生化學修飾,降低了某些腦區裡 Tau 蛋白質聚集形成纖維糾結的能力。

這項研究其實是史上第二例基因突變大幅延緩早發型阿茲海默症病程的報告,第一例是同一個家族的一位女性,2019 年發表在《Nature Medicine》,她比同家族人晚了將近 30 年才發病,不過她發生突變的地方是在 APOE 基因,突變後 APOE 脂蛋白的致病力減弱,比較難以造成腦部病變。

阿茲海默的新假設與新挑戰

這兩份研究報告帶出了一個假設,以及一個挑戰。新的假設是,用人為方式加強 RELN 的護腦效果,或是削弱 APOE 的傷腦能力,對於開發新藥和新療法來說可能是更好的目標。

不過,持平來說,目前這類護腦基因突變僅僅發現兩例,還太少了,只能用試驗結果建立假說,也不能確定是不是適用於所有患者,必須累積更多調查和試驗數據才能判斷。

-----廣告,請繼續往下閱讀-----

提出的新挑戰則是,現在 FDA 核准的藥物都是鎖定類澱粉蛋白質為目標,還有一大堆同類的藥正在燒鈔票試驗中,但是新研究對於類澱粉斑塊致病假說是一記強而有力的警鐘。或許 Tau 蛋白質的角色一直被誤解了,它才是真正的幕後黑手?又或許根本不需要保護整個腦,只要想辦法保住關鍵腦區或必要的神經元通道,就可以對抗阿茲海默症?這些問題都是接下來研究的重點。

腦真的是類澱粉蛋白質殺的?阿茲海默症研究風向轉變中

類澱粉蛋白質是主要致病元兇的說法在近幾年已經受到不少質疑。原因有好幾個,概略來說,主因是科學家陸陸續續看到一些當事人大腦裡有類澱粉斑塊沉積,但是心智沒有明顯受影響的案例;還有,長久以來全球許多研究團隊把類澱粉蛋白質當作開發藥物的目標,結果失敗率幾乎是 100%,也讓人對這個假說起疑。

就在 2022 年,阿茲海默症醫療史上一樁惡名昭彰的醜聞爆發,更把致病原因的爭議推上最高點。

事件導火線是一位神經科學家揭露 2006 年發表在《Nature》的一篇阿茲海默症經典論文涉嫌造假,這篇報告以及它後續的研究,提出某個類型的類澱粉蛋白質可能導致阿茲海默症的看法。2022 年 7 月《Science》刊出長篇報導,指出科學界調查認為有數百張論文圖片疑似有問題。

2006 年發表在《Nature》的一篇阿茲海默症經典論文涉嫌造假,調查認為有數百張論文圖片疑似有問題。圖/PanSci YouTube

這把火最直接燒出來的問題是,會不會整整十六年來大家都被誤導了?白白浪費了大批科學家的時間,連帶燒掉幾千萬甚至幾億美元。這裡我們沒辦法再多講細節,如果你想更詳細瞭解這場「阿茲海默之亂」和後續影響,想知道研發阿茲海默藥物的百年崎嶇路和未來進程的更多新知,或是想跟上失智症的其他最新研究,歡迎加入我們的頻道會員來投票喔!

不過,這並不是說類澱粉斑塊假說就此被一竿子打翻,畢竟很多患者大腦有明確的斑塊沉積是事實,而且醜聞裡牽涉到的只是類澱粉蛋白質之中的特定類型;再加上 2023 年針對類澱粉斑塊的 Lecanemab 和 Donanemab 兩款新藥的確有療效,也是有力的佐證。

目前生物醫學界的看法,逐漸轉向認為阿茲海默症很可能不是單一種疾病,而是應該再切分出多種亞型,類澱粉蛋白質斑塊是部分患者的病因但不是全部。打個比方,就好像同樣是肺癌,按照基因差異和疾病進程不同,醫師和科學家可以把患者再分成多個小群,每一群都有相對更適合的療法。

阿茲海默症很可能不是單一種疾病,而是應該再切分出多種亞型。圖/PanSci YouTube

舉例來說,前面說到的從阿茲海默症家族發現的傷腦和護腦基因,以及關鍵腦區有沒有受損,或許就有機會成為打開分型治療之門的幾把鑰匙。

如果這個多亞型的新觀點成立的話,那麼要怎麼樣為患者分型?有哪些生物標記可以用?每種亞型要怎麼治療?這些一連串問題勢必會變成接下來研究的重點,我們也可以想像得到,阿茲海默症的醫療即將出現百花齊放的局面,不過呢,這又是另一個故事了。如果你身邊有人也對這個議題好奇,歡迎分享給他,如果你就是阿茲海默症的患者跟照顧者,在此跟你說聲辛苦了。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

所有討論 1
PanSci_96
1219 篇文章 ・ 2184 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。