0

1
0

文字

分享

0
1
0

你的他的牠的都可能變成我的--基因的平行轉移

王希文
・2015/07/24 ・1485字 ・閱讀時間約 3 分鐘 ・SR值 603 ・九年級

-----廣告,請繼續往下閱讀-----

source:PublicDomainPictures
source:PublicDomainPictures

編譯/ 王希文

電影侏儸紀世界裡的帝王暴龍因為被植入了樹蛙、烏賊和迅猛龍等其他生物的基因,不僅得到了調節體溫、改變膚色等特殊能力,更擁有讓主角一行人和螢幕前的你我膽顫心驚的超高智能,而這一切,就是「基因平行轉移」的成果。

為了戲劇效果,電影中呈現的基因轉移成果當然是誇張了一點,但所謂的「基因平行轉移」,又稱「水平基因轉移」或「基因側向轉移」,指的就是生物體間利用傳統生殖之外的方式進行基因的轉移。與此相對的,「基因垂直轉移」是基因經有性或無性生殖由親代轉移至子代。而「基因平行轉移」的現象並非只有在實驗室裡才會發生,在自然界其實也屢見不鮮。

什麼是基因平行轉移?

基因平行轉移(horizontal gene transfer,簡稱HGT)首次被提出是在1951年,美國西雅圖的學者在一刊物中指出,若在不具毒性的白喉桿菌(Corynebacterium diphtheriae)中轉移一段病毒基因會促使此桿菌具有毒性(同時解決了白喉之謎,即有些病患在感染後並未立即出現症狀,之後才突然地發病或一直維持帶原不發病)。此一現象在細胞內寄生蟲沃爾巴克氏體(Wolbachia)與其昆蟲宿主間,以及細菌的幾個基因與特定細胞--如癌症細胞--間,都是有被觀察到的。甚至我們經常吃的蕃薯中,也發現了農桿菌的基因序列。

-----廣告,請繼續往下閱讀-----

今年三月更有學者刊出其研究成果,指出許多動物的基因體在演化的過程中都經由基因平行轉移包括了細菌及真菌類的基因。經由比對26種動物基因體樣本,包含10種靈長類、12種果蠅(Drosophila)與4種線蟲(Caenorhabditis),他們透過計算多細胞生物或動物的基因序列與非多細胞生物的序列,將非常相似於非動物的序列視為基因轉移的結果。

他們計算得出的數據中,大約55%至88%分析的基因與原核生物的有顯著地相似度,可推測是由基因轉移而來。「我們本就想著基因平行轉移發生的情況應該比人們過去所想的要廣泛。」來自劍橋大學的阿拉斯泰爾‧克里斯普(Alastair Crisp)說道,他同時也參與此項研究。

克里斯普和他的團隊同時也發現多細胞生物中有些外來的基因是酵素,且極有可能還具有生物化學活性。在其中三種線蟲和所有的靈長類的基因體中,有95%的外來基因有自己的內含子(intron),表示這些基因可能在時間推移之下已被馴化(因原核生物之基因體不含內含子,為真核生物特有)。

基因平行轉移時至今日仍在進行著。雖然在人類與其他靈長類的基因體中,外來基因似乎只在他們最後的共同祖先中出現轉移,不過在某些果蠅和線蟲中,也可發現近代轉移的證據。

-----廣告,請繼續往下閱讀-----

「有些物種比其他物種更容易產生基因的平行轉移。」美國麻省伍茲霍爾的分子遺傳學家伊琳娜‧阿爾希波娃(Irina Arkhipova),她雖然沒有參與此次研究,卻也說:「但這絕對有可能發生且已經在演化中發生過,在形成多細胞生物的基因套路的功能多樣性中佔有一席之地。」

也沒有參與這項研究計畫的美國加州大學戴維斯分校的喬納森‧艾森,則注意到這個研究的結果中並未確鑿地排除基因缺失對他們成果可能造成的影響。

「在基因平行轉移的相關研究中這是相當常見的。」艾森透過電子郵件與「科學家(The Scientist)」雜誌說。「許多學者會拿出與基因平行轉移有一致性的證據(正如他們在此所做),但很少人會明確地檢驗其他的假設如基因缺失、錯誤的序列比對、趨同演化、趨異演化、噪音等。」

「我想這些結果最後不會被普遍認同。」研究主持人克里斯普說。「但我想應該有助於爭議的減少。」

-----廣告,請繼續往下閱讀-----

資料來源:

文章難易度
王希文
5 篇文章 ・ 0 位粉絲
泛科學編譯作者 熱愛吃東西,尤其是甜點

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
派大星有頭無身,不該穿褲子?!
胡中行_96
・2023/11/13 ・1778字 ・閱讀時間約 3 分鐘

經典兒童動畫系列《海綿寶寶》(SpongeBob SquarePants)裡,主要角色海綿寶寶、派大星、蟹老闆、章魚哥等,還有其他海洋生物,各個人模人樣。就算沒穿上衣,也至少套了件褲子。[1]這裡其實有個值得深思的前提:任何動物倘若想學人類穿褲子,得先搞清楚下半身在哪裡。[2]而根據 2023 年 11 月登載於《自然》(Nature)期刊的海星論文,[3]我們能大膽宣告:派大星不應該穿褲子。不是會被海水沖走的那種乾脆別穿,而是根本就不曉得該怎麼辦的只好不要穿。

派大星表示:「呃…。」圖/SpongeBob SquarePants on GIPHY

棘皮動物 vs. 兩側對稱動物

海綿寶寶有次請派大星,把新鞋穿在腳上給牠看。「你會想看我穿在…手上嗎?」派大星問。睿智又隨和的海綿寶寶覺得都可以,畢竟手套也能戴在腳上。[4]此處劇情的安排,很巧妙地迴避了一個相當關鍵的問題,那就是如何區分海星的身體部位。

如果今天討論的是狗、蝙蝠、蜘蛛、鯊魚,甚至蛞蝓,這些動物的身體,皆有明確的頭尾以及對稱的兩邊。因此,就算找不到手、腳,也能硬把褲子套在下半身。[2]海星、海膽等棘皮動物(echinoderms),跟昆蟲、軟體動物、脊椎動物一樣,都是從左右對稱的祖先演化而來。[3, 5]現代海星幼年時期的外型,也還是兩側對稱動物(bilateria)的模樣;不過長著、長著就長歪了,變成由數瓣完全相同的單位,所組成的放射狀造型。[2, 3, 5]嘴長在底部中央,肛門則於背面朝上,[2]與擬人化還迸出眼睛、眉毛的派大星,大相逕庭。

海星(左)與海膽(右)成年(上)和幼體(下)的形貌。圖/Grausgruber A, Revilla-i-Domingo R. (02 AUG 2023) ‘Evolution: Tracing the history of cell types’. eLife, 90447.(Figure 1A;CC BY 4.0

海星頭尾的假說

生物學家早已知道,海星內部有內骨骼、肌肉,以及消化、水管和中樞神經系統等。然而,過往對其頭尾的方向順序,卻有多種不同的假設,例如:某隻觸角為首,對面那邊就是尾;每隻觸角各司其職,依序繞一圈,分別擔任從頭到尾的身體部位;由正中央的頭朝末梢,箭靶般向外劃分;或是蛋糕般由下而上層疊,整隻倒栽蔥等。[3]

-----廣告,請繼續往下閱讀-----

《自然》期刊這篇論文的美、英研究團隊,抓成年的 Patiria miniata 海星,來跟兩側對稱動物,比較基因分佈,以驗證上述的假說何者正確。比方說,一個活化的基因,若通常位在其他動物的頭部;我們就可以將它出現於海星身上的區塊,也視為頭部。[3]

海星有頭無身

研究團隊在Patiria miniata海星身上,比對到一些活化的前腦(forebrain)、中腦(midbrain),以及中腦與後腦(hindbrain)交界的基因,確定海星有頭部。然後,就沒有然後了。[2, 3]尋遍不著軀幹在哪的研究團隊表示,所謂的「觸角」或「腕」,其實是頭的延伸。[5]總之,以前的那一堆假說全錯,而且海膽等其他棘皮動物,很可能也是這種只有頭的情形。[2]換句話說,符合最新科學描述的派大星,應該是顆嘴巴貼著海床,沒穿褲子的頭,靠著周圍密佈的管足移動、覓食。[5]

「哦~」派大星恍然大悟。圖/SpongeBob SquarePants on GIPHY

多數動物發展出兩側對稱的身體後,不會再走回頭路。[2]海星倒著幹就算了,還在途中搞丟了軀幹,而且不曉得是什麼時候遺失的。研究團隊等於才剛解開一個謎團,馬上又發現了新的問題。接下來可得埋首化石堆,弄清楚海星在演化的過程中,發生了什麼事。[5]

  

-----廣告,請繼續往下閱讀-----

參考資料

  1. List of SpongeBob SquarePants characters’. Wikipedia. (Accessed on 05 NOV 2023)
  2. Nature Video. (02 NOV 2023) ‘How would a starfish wear trousers? Science has an answer’. YouTube.
  3. Formery L, Peluso P, Kohnle I, et al. (2023) ‘Molecular evidence of anteroposterior patterning in adult echinoderms’. Nature.
  4. SpongeBob SquarePants: Your Shoe’s Untied/Squid’s Day Off’. IMDb. (Accessed on 03 NOV 2023)
  5. Davis N. (02 NOV 2023) ‘Starfish ‘arms’ are actually extensions of their head, scientists say’. The Guardian, Australia.
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

3
1

文字

分享

0
3
1
研究自閉症成因的新思路:環狀 RNA——專訪中研院基因體研究中心莊樹諄研究員
研之有物│中央研究院_96
・2023/09/22 ・5439字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|寒波
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

自閉症研究的新方向

臺灣民眾大概都聽說過「自閉症」這個名詞,自閉症是腦部發育障礙導致的複雜疾病,同時受到先天遺傳以及後天環境因素的影響,具體成因依然是個謎,科學家須對遺傳調控方面有更多了解。中央研究院「研之有物」專訪院內基因體研究中心的莊樹諄研究員,他的團隊結合生物學、資訊學以及統計學方法,發現自閉症的風險基因與 RNA 之間有複雜的交互作用,在自閉症患者與非患者的腦部有很大差異。如果持續研究 RNA 的調控機制,或能開闢新的方向進一步理解自閉症。

遺傳性疾病成因——致病基因

根據衛生福利部 2023 年統計數據,我國自閉症患者超過一萬九千人。自閉症的全稱為「自閉症譜系障礙(autism spectrum disorder,簡稱 ASD)」,常見症狀是溝通、表達、社交上有困難,經常出現反復固定的狹窄行為,目前尚無有效的治療藥物。雖然經典電影《雨人》的主角雷蒙或是韓劇《非常律師禹英禑》的禹英禑都令人印象深刻,不過天才或高智商的自閉症患者只是極少數,而且不同患者的症狀輕重差異很大,故稱之為「譜系」(spectrum)。

理解遺傳性疾病,可利用遺傳學與基因體學的研究方法,比較患者與非患者之間的遺傳差異,便有機會尋獲致病的遺傳成因。過往研究得知,有些遺傳性疾病只取決於單一或少數基因的強力影響,例如亨廷頓舞蹈症(Huntington’s disease)、纖維性囊腫(cystic fibrosis)等,致病原因較為單純。

自閉症自然也受到先天遺傳基因影響,然而,它涉及許多影響力不明顯的基因,而且影響每名患者的基因又不盡相同,讓遺傳與症狀的關係更加複雜。如果從 RNA 研究路徑出發呢?RNA 是核糖核酸,具有承載 DNA 訊息和調控基因等功能,相比於其他疾病,在 RNA 層次研究自閉症的另一挑戰是取樣極為困難,自閉症患者的病因位於大腦內部,通常無法直接從人腦取樣分析。所幸的是,若檢視去世者捐贈的大腦樣本,仍有機會一窺自閉症的腦內奧秘。

-----廣告,請繼續往下閱讀-----

莊樹諄分析的數據來自公共存取的 Synapse 資料庫,包括上百位自閉症患者與非自閉症者的資料。人數乍看不多,卻已是當今想同時探討同一個人的基因體(DNA 層次)與轉錄體(RNA 層次)間因果關係的最佳的選擇。藉由此一資料庫蒐集的人類腦部組織轉錄體資料,可全面探討各式各樣的 RNA,包含信使 RNA(messenger RNA,簡稱 mRNA)、小分子 RNA(microRNA,簡稱 miRNA),以及莊樹諄鎖定的研究目標:環狀 RNA(circular RNA)

自閉症成因不明,目前尚無治療用藥物。有自閉症的人需要社會與家人的支持及陪伴,透過療育和行為輔導的協助,慢慢活出自我。
圖|iStock

不能轉譯,但似乎會互相影響?非編碼 RNA

莊樹諄的教育背景是資訊學博士,博士後研究的階段投入生物資訊學,之前主要從事 RNA 與靈長類演化方面的研究,探討多樣性切割、RNA 編輯(RNA editing)等議題,環狀 RNA 則是他近年來特別感興趣的題材。

根據生物資訊學的預測,環狀 RNA 這類長鍊的 RNA 分子有數萬個,但實際上有多少仍不清楚。它們在大腦神經系統特別常見,似乎涉及許多基因調控的工作。莊樹諄目前最關注環狀 RNA 對自閉症的影響,不過他指出這番思路不限於自閉症,阿茲海默症、帕金森氏症、精神分裂症(schizophrenia)等疾病也能用同樣的方法探索。

不過,什麼是環狀 RNA 呢?按照序列長度、作用,可以將 RNA 分為很多種類。DNA 轉錄出的 RNA 經過處理,有些形成 20 多個核苷酸長的短鏈 RNA,如 miRNA 屬於此類。一些較長鏈的 mRNA 又會轉譯成氨基酸,產生各式蛋白質。還有些長鍊的 RNA 不會轉譯,仍然維持長鍊 RNA 的形式發揮作用,統稱為長鍊非編碼 RNA(long noncoding RNA,lncRNA),莊樹諄研究的主角環狀 RNA 大致上被歸屬於一種非編碼 RNA。這麼多種類的 RNA 彼此會互相影響,導致複雜的基因調控。

-----廣告,請繼續往下閱讀-----
長鍊非編碼 RNA(lncRNA)是 Pre-mRNA 選擇性剪接的產物,根據不同的生成方式,產生各種類型的環狀 RNA。
圖|研之有物(資料來源|International Journal of Oncology

由 DNA 轉錄而成的 RNA 是線形,至於「環狀」RNA 一如其名,是 RNA 長鏈首尾相接後形成的環形結構,相比線形 RNA 更加穩定,不容易遭到分解。這些長期存在的圈圈,假如序列可以和短鏈的 miRNA 互補,兩者便有機會結合在一起,讀者可以想像為類似「海綿」(sponge)的吸附作用。

miRNA 原本的工作是結合 mRNA,使其無法轉錄為蛋白質,抑制基因表現。可想而知,一旦 miRNA 被環狀 RNA 吸附,便無法再干擾 mRNA 作用,失去抑制基因表現的效果。因此環狀 RNA 能透過直接影響 miRNA,來間接參與調控其他的下游基因。這便是環狀 RNA 的許多種調控功能中,最常被研究的一種。

左圖是 miRNA 抑制 mRNA 轉譯的一般流程。右圖是環狀 RNA 像海綿一樣吸附 miRNA,讓 miRNA 原本抑制 mRNA 轉譯的「剎車」功能失去作用。因此環狀 RNA 透過直接影響 miRNA,就能間接參與調控其他的下游基因。
圖|研之有物(資料來源|Frontiers in Cardiovascular Medicine

自閉症的成因要往腦部深究,環狀 RNA 又在腦部表現最多,使得莊樹諄好奇當中的奧秘。然而儘管如今 RNA 定序已經很發達,環狀 RNA 由於結構的關係,一般的 RNA 定序方法無法抓到這類環形分子。莊樹諄指出這也是 Synapse 資料庫的一大優點,此一資料庫罕見地包含能找出環狀 RNA 的 RNA 定序資料,配合 miRNA、mRNA 與基因體等資料交叉分析,才有機會闡明環狀 RNA 的角色。

尋找環狀 RNA 和自閉症的關聯

莊樹諄率領的團隊已經發表 2 篇環狀 RNA 與自閉症的研究論文,第一篇論文著重於尋找哪些環狀 RNA 和自閉症有關,研究假設是環狀 RNA 透過 miRNA 間接影響自閉症風險基因 mRNA 的表現。由於環狀 RNA、miRNA 和 mRNA 都多達數萬個,需要統計分析的幫忙。

-----廣告,請繼續往下閱讀-----

首先,將樣本分為有自閉症/無自閉症。要注意每個自閉症患者的基因表現仍有差異,納入夠多樣本一起比較,才有機會看出端倪。

接著,尋找環狀 RNA 和風險基因有顯著相關的搭配組合。例如:高比例自閉症的人,某個環狀 RNA 含量較高時,某個風險基因的 mRNA 表達量也較高,那這組環狀 RNA 和基因就存在正相關;反之則為負相關。

不過相關性很可能只是巧合,所以莊樹諄團隊比對序列,找到符合上述相關性的中介因子「miRNA」。最後再觀察「當排除 miRNA 影響時,環狀 RNA 與風險基因的顯著關係即消失」的組合,這些消失的組合,就是真正共同參與基因調控的「三人組」(環狀 RNA、miRNA、mRNA)。

一番分析後,篩選出的環狀 RNA 共有 60 個,其中涉及與 miRNA、mRNA 的組合總共 8,170 組。人類一共 2 萬個基因,與自閉症有關的調控網路就有 8,000 組之多,數字相當可觀,顯示環狀 RNA 的重要性。莊樹諄用統計手法找出的自閉症風險基因,和過去科學家已知的部分風險基因相符合,未來可以繼續探究在這 8,000 組調控網路中,有哪幾組是真的作用在生物上。

-----廣告,請繼續往下閱讀-----

在資訊與統計分析之外,莊樹諄的團隊也有人進行分子生物學實驗,驗證 RNA 調控網路的相互影響。以體外培養的人類細胞為材料,人為誘導遺傳突變,精確分析特定環狀 RNA 在細胞內分子層次的作用。實驗證實選取的環狀 RNA,確實會結合 miRNA,又影響 mRNA 的表現。

環狀 RNA 會取消原本 miRNA 抑制 mRNA 轉譯的「煞車功能」,進而影響自閉症風險基因的表現。
圖|研之有物(資料來源|中研院基因體研究中心

基因調控是什麼?

莊樹諄強調,使用資料庫的公開資料,好處是經過多方檢視,避免資料品質不一致的問題,缺點是大家都能取得數據,必須要跳脫既有的思考模式才能發現新的結果。他在環狀 RNA 議題的新思路,成為第二篇論文的內容:探討環狀 RNA 的遠端調控(trans-regulation)對自閉症的影響

基因的表達會受到基因調控元件(regulatory element,一段非編碼 DNA 序列)的影響,若調控元件就在基因附近,稱為近端調控(cis-regulation);如果調控元件不在附近,甚至位於另一條染色體上,則為遠端調控。

研究基因調控,通常近端比遠端調控容易,因為近端調控元件(cis-regulatory element)的位置就在基因旁邊,不難尋找;但遠端調控卻沒那麼直觀,作用機制也比較難以想像。實際上常常能發現一個基因的表現,受到多處近端調控,加上多處遠端調控的影響。如果想全方位認識一個基因的表現與調控,最好能都能得知近端與遠端的影響,否則難以掌握調控的全貌。

-----廣告,請繼續往下閱讀-----

莊樹諄的想法是,某些基因被遠端調控的過程,是否有環狀 RNA 參與?具體說來就是某個調控位置,先近端調控其周圍的環狀 RNA 基因,再藉由環狀 RNA 影響基因體上其他位置的基因表現,發揮遠端調控的效果。

如圖顯示,環狀 RNA 表達數量性狀基因座(circQTL)近端調控了環狀 RNA,遠端調控其他基因。莊樹諄的想法是,某些基因被遠端調控的過程,是否有環狀 RNA 的參與?
圖|研之有物(資料來源|Molecular Psychiatry

為了避免用語誤解,有必要先解釋一下什麼是「基因」。基因的概念隨著生物學發展持續改變,如今一般人熟悉的定義,基因是由 DNA 編碼序列構成,能轉錄出 mRNA,再轉譯為蛋白質的訊息載體。不過若將基因定義為會轉錄出 RNA 的 DNA 序列,那麼即使沒有對應的蛋白質產物,只要其衍生的 RNA 產物有所作用,也能視為「基因」,如 miRNA 基因、mRNA 或長鏈非編碼 RNA 基因。既然是有 DNA 編碼的基因,便會受到近端、遠端調控位置影響。

探索遠端調控機制有很多想法,莊樹諄可以說又打開了一條新思路。遠端調控位置不在基因旁邊,亦即基因體任何地方都有機會。假如直接挑戰基因與遠端調控位置的關聯性,可能相關的數量可謂天文數字,而且缺乏生物性的理由支持,找到的目標往往令人半信半疑。

莊樹諄引進環狀 RNA 涉及其中的可能性,尋找「環狀 RNA 基因的近端調控位置」與「目標基因的遠端調控」之交集,大幅縮小了搜索範圍。

-----廣告,請繼續往下閱讀-----
莊樹諄透過「環狀 RNA 基因的近端調控位置」與「目標基因的遠端調控」之交集,找到環狀 RNA 參與遠端調控的證據。
圖|研之有物(資料來源|莊樹諄

一番分析後,研究團隊從自閉症患者的基因體上,定位出 3,619 個近端調控的 circQTLs,這些表達數量性狀基因座相當特殊,可能藉由直接或間接遠端調控兩種模式來調控遠端基因(如上圖)。而這 3,619 個 circQTLs,與環狀 RNA、遠端基因三者形成了八萬六千多組的遠端調控網路。接著團隊使用了不同的統計方法,其中 8,103 組通過多重統計測試,顯示較高的機率是屬於間接遠端調控模式。

莊樹諄團隊透過統計手法,找到相當多基因和調控路徑,雖然目前仍不清楚它們影響自閉症的具體細節,卻無疑讓我們新增一分對自閉症的認識。

莊樹諄指出,這套統計方法或可應用至人類的其他複雜疾病(如思覺失調症),找出基因調控的多個可能路徑,提供臨床醫藥研發更多線索。

生物與資訊的跨領域結合

訪談中問到:為何會從資訊科學跨入到生物領域?莊樹諄回憶,1998 他博士班畢業那年才第一次聽到「生物資訊」這個詞,他基於對生命科學的興趣,以及因為內在性格想往學術轉型的想法,引領他到了中研院。

-----廣告,請繼續往下閱讀-----

莊樹諄接著說,2003 年李文雄院士延攬他進入基因體研究中心,之前他們不曾認識。他感謝李院士帶他進入了分子演化的世界,就此打開了研究視野。在剛開始成立自己的實驗室時,缺少人力,李院士讓當時的博後陳豐奇博士(現為國衛院群體健康科學研究所研究員兼任副所長)與他共同工作。莊樹諄強調,他所有分子演化的觀念與基礎,都是陳博士幫他建立的,如果說陳博士是他的師父,那李院士就是師父的師父了。

如今,莊樹諄在中研院的研究生涯邁入第 25 年,從資訊學背景投入生物學研究,大量使用統計工具,他經常需要持續整合不同領域的觀念與工具,推動自己的新研究。在訪談中,他也感謝諸多研究同儕的協助,特別是幾年前建立分生實驗室時,蕭宏昇研究員及其團隊成員的鼎力相助。

莊樹諄的團隊包含資訊、統計、分子生物三個領域的同仁,來自不同領域,傾聽他人意見自然也特別重要,這是他們實驗室的核心價值之一。莊樹諄認為在科學面前,人是很渺小的,需要互相尊重和理解,方能一起解開科學之謎。

最後,莊樹諄特別強調他個人在相關領域的研究,仍有極巨大的進步空間,感謝研之有物的主動邀訪,期望將來能與更多先進交流學習,也企盼年輕新血加入這個生物資訊的跨領域團隊。

莊樹諄期望在環狀 RNA 與基因調控網路的研究基礎之上,可以對自閉症這個複雜疾病的調控機制,提供更多科學線索,幫助臨床上的診斷和治療。
圖|研之有物
研之有物│中央研究院_96
293 篇文章 ・ 3356 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook