0

0
0

文字

分享

0
0
0

分子馬達與氫離子的生物發電瀑布 ATP synthase!

Scimage
・2011/09/30 ・459字 ・閱讀時間少於 1 分鐘 ・SR值 527 ・七年級

-----廣告,請繼續往下閱讀-----

生物使用ATP做為能量的貨幣,所以任何需要推動的生物化學反應幾乎都有ATP的參與。但是這樣的分子是怎麼樣源源不絕在生物體裡產生?

這問題很久以來一直困擾著科學家,一直要對最近完整的蛋白結晶與分子的動態量測才漸漸都完成。科學家才發現,原來大自然一直以一種非常精密又節能的分子耦合運動來完成ATP的合成。

下面的影片就是介紹這樣的過程,在細胞裡的葉綠素或是粒線體的內膜上都有跨膜所謂的ATP合成脢分子 (ATP synthase),這些分子的作用跟巨觀水力發電機非常像,都是藉著讓某種物質由高能往低能流的時候來擷取能量轉換成其他形式。 

在生物體體,因為照光(葉綠體)或是氧化有機物質(粒腺體)會產生高能的電子,這些電子經由膜上的一連串電子傳遞鍊,一個一個把電子往更低能的分子丟,然後利用丟電子所產生的能量差把氫離子打到膜的一邊,這樣一來內膜的兩端就是氫離子的濃度差異。然後只要這些氫離子經由流過ATPase,通過設計好的管道(像是旋轉門) 就可以讓ATPase發生轉動。因為轉動會讓蛋白質變形,所以就像用捏的方式把一個個ATP分子給捏出來了。

-----廣告,請繼續往下閱讀-----

http://www.youtube.com/watch?v=sBABGB8HTGo

轉載自 科學影像 scimage

文章難易度
Scimage
113 篇文章 ・ 4 位粉絲
每日介紹科學新知, 科普知識與實際實驗影片-歡迎每一顆好奇的心 @_@!

0

0
0

文字

分享

0
0
0
紅紅的葉子要怎麼行光合作用?紅葉和黃葉裡也有葉綠素嗎?——《樹葉物語》
時報出版_96
・2023/10/29 ・2029字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

顏色會依照我們觀看的對象吸收和反射的光而有所不同。樹葉因為會吸收所有藍色和紅色系光譜,只反射綠色,因此看起來是綠色的,而讓樹葉顯現綠色的東西,便是負責養育生命的葉綠素。

需要光合作用時也只會紅通通的日本紅楓

當然,也有葉子不是綠色的。樹木一生中雖然會變換顏色,但也有一開始長葉就不是綠色的。關於這類樹木,首先想到的便是日本紅楓(Acer palmatum ‘Shojo-Nomura’)。

日本紅楓連剛冒出葉子時也不泛綠色,和它的名字一模一樣,打一開始就很紅。那麼,日本紅楓紅色的葉子裡沒有葉綠素嗎?如果缺少葉綠素,樹木無法行光合作用;若不行光合作用,將無法製造生存所需的養分,那究竟該如何生存呢?

所有樹葉裡都有葉綠素,但是除了葉綠素,還有類胡蘿蔔素、花青素和單寧等各種成分,我們需要從這裡找出頭緒。類胡蘿蔔素、花青素和單寧等成分分別呈現黃色、紅色和褐色,葉子雖然從一開始就具備多種顏色的成分,但在更需要光合作用的時候,葉綠素會上來表面;待過了秋季,逐漸接近無法行光合作用的冬季,其他顏色的成分才會開始活躍,秋楓便是如此。然而,日本紅楓即使在需要光合作用的時期,葉子也只會紅通通的,非常奇妙。

-----廣告,請繼續往下閱讀-----

淺綠色顯露出來的瞬間

圖/wikimedia

日本紅楓是人們培育出來的品種,以做為造景用的觀賞樹木。換言之,日本紅楓並不是在自然狀態下生長的樹木,而是人們為了更長時間觀賞楓樹的紅色葉子所培育的品種,讓它一年四季都能呈現紅色。雖說紅色葉子裡頭同時含有泛綠色的葉綠素,但不管再怎麼看,都看不到綠色。

我再次重申,觀察樹木需要長時間、仔細地觀察。日本紅楓葉子上的紅色氣息轉淡的現象一年大概會發生兩次,分別是開花與果實逐漸成熟時,也就是樹木最需要養分的時刻。這時的日本紅楓葉子會發生非常細微的變化,乍看之下無法得知其差異:仍然泛著紅色,仔細觀察卻能在葉子某些部分感覺到綠色的氣息。

雖然葉子顯現紅色,但葉綠素若不進行光合作用,樹木就無法存活,在開花和結果等需要大量養分的關頭更是如此,這種時候只要仔細確認日本紅楓的葉子,將能感覺到葉綠素行光合作用活動的跡象。葉子上面延展的葉脈或葉柄端的紅色會轉淡,非常顯眼。果實結果和逐漸成熟時也一樣,可以在變淡的紅色之間突然看見綠色。即便葉子是紅色的,葉綠素還是會在它非常迫切需要養分時活躍起來,無怪乎顯現了綠色。

黃金松的樹葉只有黃色嗎?

日本紅楓是人工選育的品種,但自然狀態下也有樹木不是發綠色的芽,好比名為黃金松(Pinus densiflora ‘Aurea’)的樹木。雖然松樹的葉子一年四季都是綠色,黃金松的葉子卻呈金黃色。黃金松是松樹的品種之一,是相當稀有的樹木,它只有下方呈綠色,整體看來葉子是金黃色的。據說從以前開始,只要天氣乾旱,黃金松的金黃色葉子就會變成褐色,梅雨季則變成綠色,對於觀察氣候十分必要,不過這種說法並無科學根據。儘管如此,據說以前農夫們乾脆叫黃金松「天氣木」。

-----廣告,請繼續往下閱讀-----
非常稀有的黃金松是在自然狀態下也會發金黃色、而不是綠色的芽。

韓國曾經發現幾棵自然狀態下的黃金松,特別是慶尚北道蔚珍郡周仁里的黃金松就被指定為地方紀念物,是一株受到保護的珍貴樹木。這棵黃金松曾是預測氣候的標準,村裡亦相傳若發生戰爭,它的葉子會泛紅。

蔚珍郡周仁里的黃金松和旁邊其他樹木的葉子顏色不同,一眼就能清楚看出來。這棵佇立在斜坡上的樹木已有五十歲左右,由於被指定為文化財,四周圍上了柵欄、被確實地保護著。雖然遠處就見得到它神祕的模樣,但務必近距離觀察。必須仔細觀察葉子,才能得知樹木的祕密,知道樹木如何用金黃色的葉子製造養分、使自己生長。

即便植物圖鑑裡記載「除了葉子的基部,其他都是黃色」,實際上再怎麼觀察,仍然很難說是黃色,非要講的話,比較接近綠色和黃色混合在一起的淡綠色。當然,顏色以針葉來說算特別,但不能說是黃色或金黃色。與其說黃金松的葉子是金黃色的,不如說是以綠色為底,黃色顯現得稍微強一點。

無法丟掉綠色的原因

我們談日本紅楓和黃金松,但擁有紅葉或黃葉的樹木不只這些,尤其是觀賞用的培育品種中,還有不少葉子的顏色相當五彩繽紛。然而,不管是哪種樹木,都無法完全丟掉綠色,因為綠色是葉綠素的顏色,而葉綠素是樹木的生命之窗。

-----廣告,請繼續往下閱讀-----

——本文摘自《樹葉物語》,2023 年 5 月,時報出版,未經同意請勿轉載。

時報出版_96
174 篇文章 ・ 34 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

3
0

文字

分享

0
3
0
現代智人的祖先到底是誰?全人類「共同的母親」——《真的假的!奇怪知識又增加了》
晴好出版_96
・2023/08/01 ・2140字 ・閱讀時間約 4 分鐘

約在 3,000 萬年前,地球上出現了人猿總科,我們和其他猿類共同的老老老老老祖宗,從此與猴子們踏上了不同的道路。

又過了 1,000 多萬年,那些在樹梢中討生活的表祖宗逐漸演化成了如今的長臂猿,而我們的老老老祖宗,儘管還距離我們現在的樣子甚遠,但終於開始沾上了「人」字,在分類上進入了「人科」的範圍。

然而從人科到「人」還有著漫漫長路,1,600 萬年前,我們的老老老祖宗和紅毛猩猩的老老老祖宗形成了兩條不同的分支;又過了 600 萬年到 800 萬年,大猩猩的祖先進入了另一個車道。

至此,我們的老祖宗「人」的成分進一步增加,終於在分類上進入了「人族」。

-----廣告,請繼續往下閱讀-----

現代智人的祖先——露西

500 萬年前,我們的老祖宗與黑猩猩的祖先終於分離,開啟了屬於「現代人」的傳奇。

1974 年 11 月 24 日,美國古人類學家唐納德.喬納森(Donald Johanson)和他的同事在衣索比亞的阿瓦什河谷進行調查時,發現了一根暴露在沙土表面的人骨殘段。經過搜尋,他們又在周圍發現了其他骨骼碎片,還包括一塊下頜骨碎片。最終,他們花了三週時間搜尋到了 100 多件骨骼標本,在進行分析研究之後,他們得出結論,這些骨骼屬於同一個個體,他們給予了這個個體一個編號「AL288-1」。

這是一個足以震驚古人類學界的發現,喬納森和同事們為此在營地舉辦了慶祝晚宴。在晚宴的背景音樂,披頭四〈Lucy in the sky with diamonds〉的歌聲中,他們又為「AL288-1」取了一個更為大家所熟知的名字——露西。

經過進一步的研究,喬納森披露了更多關於露西的細節:

露西是生活在 320 萬年前,20 歲左右的女性南方古猿,屬於南方古猿阿爾法種(Australopithecus afarensis)。

她的腦容量不大,只有現代人類的 1/3 到 1/2。但是她已經出現了與黑猩猩明顯不同的特徵:露西已經習慣直立行走了。直立行走,一直被看作「猿向人類進化」過程中的重大事件。也正因此,露西所屬的南方古猿阿爾法種以前經常被稱為人屬物種的祖先,也就是我們現代人智人的祖先。

-----廣告,請繼續往下閱讀-----
南方古猿——露西。圖/《真的假的!奇怪知識又增加了:自說自話的總裁顛覆認知的科學奇想

不過基於化石證據進行的古人類研究經常會因為新發現的化石而顛覆。2011 年 5 月,美國克里夫蘭大學的古人類學教授約翰尼斯.海爾—塞拉西(Yohannes Haile-Selassie)在南方古猿阿爾法的分布區,又發現了一個生活在距今 330 萬年到 350 萬年的南方古猿近親種(Australopithecus deyiremeda)。這個新種類的原始人挑戰了「露西是人類的祖先」以及「在這個時期這個區域僅有一種人」的觀點。

這樣一來,曾被稱為「人類的非洲老祖母」的露西可能要地位不保,不過科學家為我們找來的那位「共同的母親」——「線粒體夏娃」的證據倒是愈發明確了。

媽媽的媽媽的媽媽⋯⋯ 粒線體的母系遺傳

每個人的細胞中都有來自母親和父親的 46 條 DNA。除此之外,我們的線粒體中還攜帶著線粒體 DNA,線粒體是為細胞提供能量的細胞器。與父母雙方各提供 23 條染色體不同,精子中沒有線粒體,因此受精卵中的線粒體全部來自卵細胞的細胞質,也就是線粒體 DNA 全部是由媽媽傳給孩子的

媽媽生了女兒,女兒再生孩子的時候,會繼續將母親的線粒體 DNA 傳遞下去;但是如果某位女性的所有後代都是男孩,因為男性不能傳遞線粒體DNA,她的線粒體 DNA 就丟失了。

-----廣告,請繼續往下閱讀-----
我們的線粒體(圖中編號 9)中還攜帶著線粒體 DNA,由於精子中沒有粒線體,因此線粒體 DNA 全部是由媽媽傳給孩子的。圖/wikipedia

粒線體夏娃 共同的母親

1987 年美國加州大學的瑞貝卡·卡恩(Rebecca Cann)艾倫·威爾遜(Allan Wilson)帶領研究小組做了全球性的實驗。他們提取了不同人種 148 個胎盤中的線粒體 DNA,並對其進行研究。

結果顯示,這些線粒體 DNA 有高度的相似性。經由計算,他們得出了一個令人震驚的結論:現代人類應該有一位共同的母親,她是生活在約 15 萬年至 20 萬年前的一位非洲女性。對此進行報導的記者羅傑·勒溫(Roger Lewin)為這位「共同的母親」取了個眾所皆知的名字——「線粒體夏娃」。

其實「夏娃」這個稱謂並不準確,「她」應該不是一個人,而是這個遺傳位點的共同祖先。牛津大學的人類遺傳學教授布萊恩·賽克斯(Bryan Sykes)是世界上第一個證明可以從古人類的遺骸中提取 DNA 的學者。1999 年,他帶領小組,在研究分析了 6,000 多份歐洲人的線粒體 DNA 後,將他們分類歸屬於七個「母系氏族」,也就是七個「夏娃」。

她們是所有歐洲人的先祖,每個歐洲人的 DNA 都可以追溯到這七位「夏娃」的身上。他為她們取了名字,並根據考古學、地質學等知識,構築出了她們的生活,寫出了一本像小說一樣的科普書《夏娃和她的七個女兒》。

-----廣告,請繼續往下閱讀-----

——本文摘自《真的假的!奇怪知識又增加了:自說自話的總裁顛覆認知的科學奇想》,2023 年 7 月,好出版,未經同意請勿轉載。

1

4
0

文字

分享

1
4
0
「真.無線充電」?試試電磁波獵能手環,你的身體就是最好的捕能裝置!
PanSci_96
・2023/04/22 ・2679字 ・閱讀時間約 5 分鐘

你的手機能無線充電嗎?不過,雖說是無線充電,但還是得要放在充電盤上,由充電盤連結一條電線,這樣的充電方式,想必跟大家期待的「真.無線充電」有落差。

好消息是,有人提出一種藉由捕捉空間中的無線電波、獲得電能的無線充電方式,所以代表這些電能是完全免費的!但……這是真的嗎?

隔空充電可行嗎

現在我們已經可以透過無線網路串連全球的資訊,但是遠距能量傳輸卻尚未成真。

當代的無線通訊裝置,舉凡手機電話、wifi 網路、無線電、衛星定位等,都可以靠著不斷地發射無線電波來交換訊息。不過其實仔細想想,無線電波、電磁波其實就是不斷變化的電磁場。既然可以透過磁場變化來傳遞能量,那這些強大的電磁波網絡,是不是也可以拿來傳遞電能呢?

-----廣告,請繼續往下閱讀-----

實際上還真有類似的例子,一百年前最早的收音機竟然完全不需要插電!礦石收音機只需要天然礦石、金屬針、線圈和一些電線,就能收到附近廣播電台送出的訊號,轉換成聲音並放出。

那麼為什麼沒有沿用至今呢?主要就是效率的問題。礦石收音機需要不斷調整金屬針接觸礦石的位置,還得拉長長的天線來捕捉更多的無線電波;市售的礦石收音機玩具,甚至附有一條長長的鱷魚夾電線,可以接到大型金屬家具,產生更清楚、更大聲的聲音。當然這種收音機很快就被以電驅動的真空管收音機取代了。

2021 年初小米曾發表過隔空充電技術專利,利用指向型遠距充電,系統會先定位出手機的位置,再透過多個天線組成的陣列將電波瞄準發射給手機,克服電磁波發散的問題,據稱能在數公尺內進行無線 5W 的無線充電,雖然還不到快充,但也算是革命性突破。不過目前還在技術發表階段,尚未正式推出。

礦石收音機是利用天然礦石或晶體,加上天線、地線和調諧電路,所製成的收音機。圖/維基百科

無線射頻獵能

再換個角度思考,能量在傳遞的時候會向四周發散,而我們生活周遭到處都是會發出電磁波的 3C 產品,那能不能反過來,捕捉這些由其他電器溢散的電磁波,並轉為能量呢?

-----廣告,請繼續往下閱讀-----

還真的有人這麼做了。收集這些廢能,並轉化成可用電能的技術,就稱為「無線射頻獵能」。近十年來,有許多相關的技術與研究,不過效率大多還未到達實用階段。

就在今年一月,美國麻州大學團隊發表了一種可以用於無線射頻獵能的線圈手環,而且功率竟然比一般的線圈天線高十倍以上。

有趣的是,其實他們當時並不是在研究無線充電,而是如何使用 LED 快速閃爍來傳遞訊息;這種名為可見光通訊 VLC 的技術,有望成為未來 6G 通訊的方式。但發現到,這種技術需要 LED 以每秒數百萬次的頻率閃爍,過程中會釋放出大量不可用的無線電波,浪費掉許多能量;於是轉念一想,嘗試用線圈收集這些逸散的能量,降低傳訊時的能量浪費。

研究團隊發現,當線圈靠近金屬片時,收集能量的效率會變得更好。透過反射增強訊號,金屬片吸收環境中的電磁波再向外放出;隨著金屬片面積越大,攔截到的電磁波也越多,收集能量的效果也越好。

-----廣告,請繼續往下閱讀-----

但是無線充電就是要擺脫這些笨重的金屬板,於是研究人員開始拿生活周遭的 3C 產品來進行實驗。從獵能的功率來看,效果最好的依序是筆電、平板、手機。這和預期的一樣:面積越大,獵能效果越好。

然而,意想不到的是,實驗效果最好的,竟然是人體!

推測這是因為人體中含有大量水分,其容易導電、被極化的特性有助於蒐集空間中的電磁波。人體就是一根巨大的共振天線,能增加無線電訊號的發射效率,同樣的道理,也可以用來收集環境中的無線電波能量。

人體是巨大的共振天線!圖/GIPHY

研究團隊將線圈手環的設計稱為「Bracelet+」,是第一個借助人體的獵能裝置;後續又嘗試將線圈做成戒指和手環,希望能打造出輕便的隨身獵能裝置。

-----廣告,請繼續往下閱讀-----

那這樣是不是以後只要綁條線圈在手上,就再也不需要幫手機充電了呢?該線圈手環目前在數公尺的距離外最多可以捕獲微瓦等級的功率,也就是百萬分之一瓦。用這種電壓當然不可能幫手機充電,不過已經足以供應一些低功耗的隨身裝置,像是常見的智慧健康手環,或是負責監控體溫或血糖的元件,甚至類似心律調節器的植入式醫療器材,或許就可以利用該線圈設計,減少充電的頻率。

在 5G 物聯網的架構中,各種居家和隨身裝置必須隨時維持連線,如何為這些獨立、低功耗的裝置供電便成了重要的課題。在這種情況下,如果可以汲取周遭無線電波的廢能,不只可以節省能源,還能免去定期更換電池或充電的麻煩。

遠距充電熱潮

目前的 5G 和開發中的 6G 技術,都持續往電磁頻譜中更高頻率的部分去探索,設置覆蓋率更高、頻譜更寬的無線通訊網絡,而這些頻率的電磁波也將為無線充電帶來新的發展機會。

去年在 Scientific Reports 期刊上,有篇研究提出了 5G 網路作為電力網的想法。團隊針對 5G 使用的頻率設計出一種天線以及搭配的電路,可以在 180 公尺外接收到 6 微瓦,為無線電力網的夢想邁出了第一步。

-----廣告,請繼續往下閱讀-----

不過,在這波遠距無線充電的熱潮下,市面上也出現許多令人半信半疑的遠距充電技術。

例如 2011 年一家新創公司推出了超音波充電技術,宣稱可以透過空氣的震動替手機充電;然而,雖說超音波充電雖然在原理上可能可以運作,但在充電效率和經濟成本上根本不切實際,對人體健康的影響也相當有爭議。

除此之外,還有一家叫做 TechNovator 的公司推出了前所未聞的量子充電技術,他們宣稱可以透過「能量量子化」來傳輸能量,並且在「空間中創造能量結構」,還不需要任何形式的電磁場,就可以達成 100 瓦的無線充電!至於到底有沒有這麼好的事,就留給各位判斷了。

在所有物品與資訊都以無線網路相連的這個時代,無線的電力傳輸與電力網是關鍵的下一步;能夠有效的無線傳輸能量,才能讓我們生活周遭的智慧裝置擺脫電線的束縛,減少電池的消耗,成為一個自由移動,自給自足的物聯網。

-----廣告,請繼續往下閱讀-----

不論是透過可見光、wifi、還是 5G 訊號,無線且遠距的充電與獵能,將來勢必會有讓人驚豔的發展。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

所有討論 1
PanSci_96
1219 篇文章 ・ 2193 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。