0

0
0

文字

分享

0
0
0

彩虹極光

臺北天文館_96
・2014/12/05 ・990字 ・閱讀時間約 2 分鐘 ・SR值 455 ・五年級

-----廣告,請繼續往下閱讀-----

極光源自於太陽,自太陽抛出的高能粒子(也稱為太陽風),在接近地球時撞擊了上層大氣中的原子或離子而產生這般燦爛的天象。極光的顏色則是由於大氣中的原子吸收撞擊能量後再以發光的方式釋放出這些能量,因原子的不同產生了綠色或藍色各種不同的顏色的極光。大氣主要由氮(78%)與氧(22%)所組成,綠色光是來自氧原子被外來電子撞擊後,本身電子被激發至高能階激態,再放出光子躍遷至低能階。當原子離開激態所放出的光子為單一頻率的綠光,我們就看到了綠色的極光。極光大約在400~1000公里的高空即已發生,但是在100公里以下時,由於大氣太過濃密而使原子本身的碰撞都無法放出足夠的光,在低高度處,氮則會放出紫色、藍色與紅色的光,由於氮原子放出光子較快,所以極光較低的部分看起來比高處移動要快。較慢的部分主要是由氧原子放出的光。

通常極光會同時發生於地球的南北極,除此之外太陽系的其他行星也有極光的現象,如下圖是哈柏太空望遠鏡於1998年以紫外光拍攝的木星極光,另外一張是2004年1月哈柏太空望遠鏡以紫外光拍攝的土星極光。

hs-2000-38-a-web_print

108476main_HST_saturn_full

下方是歐洲太空總署的太空人Alexander Gerst 從國際太空站400公里高的軌道上拍下了這張全球最佳角度的極光照片。位於影像左側亮藍色的連續區域是太陽的餘暉,其上的黃色線條是受到地球大氣反射的陽光,這條帶狀的薄層正是保護地球免於受到太陽強烈幅射傷害的重要區域。影像前方是收縮起來的太空站機械手臂,正在等待下一次運補作業將送進來這個低重力實驗室的補給及設備。

Rainbow_aurora_node_full_image_2

Space_Aurora_node_full_image_2

Alexander Gerst 原是地球物理及火山的專家,於2009年成為ESA (Euro Space Agent)的太空人,在藍點任務(Blue Dot mission)中主持物理、生物、人類生理學、幅射研究及示範技術的延伸研究計劃。所有在這個世外實驗室執行的研究計劃,其結果將運用於未來探側太陽系及改善人類生活等目的。

-----廣告,請繼續往下閱讀-----

資料來源:2014.09.16, Alan Yang

本文轉載自 網路天文館

延伸閱讀

文章難易度
臺北天文館_96
482 篇文章 ・ 39 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

5
0

文字

分享

0
5
0
看不見的歐若拉——物理學家解釋火星上極光的成因
Ash_96
・2022/07/05 ・4548字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

極光。圖/envato elements

形成極光的要素有三,其中之一就是磁場。地球具有覆蓋全球的磁場,可以在兩極地區生成北極光和南極光;然而,火星沒有覆蓋全球的磁場,因此火星上的極光並非出現在兩極,只能在特定區域生成。

近期,愛荷華大學領導的研究團隊,根據美國航空暨太空總署(NASA)火星大氣與揮發物演化任務(MAVEN)探測器的數據,確認了火星離散極光是由太陽風和火星南半球地殼上空殘存的磁場相互作用所生成

極光三要素:大氣、磁場、高能帶電粒子

在介紹火星前,讓我們先把鏡頭轉到地球,談談地球上的極光在哪裡形成,以及如何形成。

地球極光出現的區域稱為極光橢圓區(auroral oval),涵蓋北極與南極地區,但並非以兩極為中心;換句話說,極光橢圓區也涵蓋了極圈以外的部分高緯度地區。另外,極光橢圓區的寬度與延伸範圍,會隨著太陽黑子 11 年的循環週期而變動。

-----廣告,請繼續往下閱讀-----

當太陽風和地球磁層的高能帶電粒子被地球磁場牽引,沿著磁力線加速往高緯度地區移動,最後和大氣中的原子碰撞時,就會形成多采多姿的極光。

綜合以上所述,可以得知極光的三個要素是:大氣、磁場、高能帶電粒子。

地球上這些「指引我們美妙未來的魔幻極光」,若屬於可見光波段,就能用肉眼觀測,並以相機記錄這夢幻舞動的光線。

極光橢圓區與地理北極、地磁北極相對位置圖。其中紅色實線表示極圈範圍,綠色區域則為極光橢圓區。圖/National Park Service

-----廣告,請繼續往下閱讀-----

火星的大氣層、磁場以及離散極光

在介紹離散極光之前,得先介紹它的幕後推手——行星際磁場(Interplanetary Magnetic Field,IMF)。IMF就是太陽風產生的磁場,在行星際空間主導著太陽系系統內的太空天氣變化,並阻擋來自星際間的高能粒子轟擊。

那麼 IMF 是如何產生的呢?當太陽風的高能帶電粒子從太陽表面向外傳播,會同時拖曳太陽的磁力線一起離開;太陽一邊自轉一邊拋射這些粒子,讓延伸的磁力線在黃道面上形成了螺旋型態的磁場。

以蛋糕裝飾來說明的話,太陽就像是在轉盤上的蛋糕,太陽風粒子就是擠花裝飾;而當蛋糕一邊以固定速度自轉,擠花逐漸向外擴散的同時,就會在蛋糕產生螺旋狀的軌跡。

因為太陽一邊自轉,一邊拋射太陽風的關係,IMF的磁力線會扭曲呈現如圖的螺旋狀。圖/維基百科
蛋糕的螺旋狀擠花。影片/Youyube

對太陽風和 IMF 有基本認識之後,讓我們把鏡頭轉向火星,談談火星的大氣層和磁層和地球有什麼不同。

-----廣告,請繼續往下閱讀-----

相較地球來說,火星的大氣層非常稀薄。這是因為太陽風的高能粒子轟擊火星大氣層,強大的能量將大氣層的中性原子解離為離子態,導致大氣層的散失;該過程稱作濺射(sputtering),發生在火星大氣層的濺射主要透過兩種方式達成—–第一,在 IMF 的作用之下,部分的離子會環繞磁力線運動,隨著 IMF 移動而被帶離火星;另外一部份的離子則像撞球一般,撞擊其他位於火星大氣層頂端的中性原子,引發連鎖的解離反應。 

MAVEN 任務的領銜研究員 Bruce Jakosky 說明,根據團隊研究的成果,太陽風的濺射效應會將火星大氣層中的惰性氣體氬解離,並將這些氬離子從大氣層中剝離。火星大氣層內氬的同位素(質子數相同,但是質量不同的元素)以氬-38 以及氬-36 為主,後者因為質量較小而較容易發生濺射。

藉由氬- 38 和氬-36 的佔比,Jakosky 的團隊推估火星約有 65% 的氬已經散逸至外太空。基於該研究結果還可以推算出火星大氣層中其他氣體的散逸情形;其中又以二氧化碳為焦點,畢竟行星需要足夠的溫度才能維持液態水的存在,而二氧化碳在溫室效應有很大的貢獻。

火星的大氣層因為太陽風的濺射效應逐漸被剝離。圖/NASA

接著,讓我們一探究竟火星磁場與地球有何不同。地球能形成全球磁場的奧秘是什麼呢?這要先從行星發電機理論開始說起,該理論指出行星要維持穩定的磁場有三個要件——導電流體、驅動導電流體運動的能量來源、科氏力。

-----廣告,請繼續往下閱讀-----

以地球為例,地核內部保留了地球形成初始的熱能,約有 4000°C 至 6000°C 的高溫。位於地核底層的高溫液態鐵,因為密度下降而上升至地核頂端,接觸到地函時,這些液體會喪失部分熱能而冷卻,因為溫度比周圍環境低,密度變高而下沉;如此不斷的熱對流循環下,讓帶有磁力的流體不斷運動,進而形成電磁感應。另外,科氏力的作用讓地球內部湧升的流體偏向,產生螺旋狀的流動效果,有如電流通過螺旋線圈移動的效果。

在火星所發現的地殼岩石證據顯示,火星在數十億年前曾經和地球一樣具有全球的磁場。科學家對火星磁場消失的原因還不是很清楚,其中一種假說認為可能跟火星質量較小有關,在火星形成之初散熱較快,造成火星外核液態鐵短時間內就凝固,無法像地球一樣,保留高溫地核使液態的鐵和鎳因為密度的變化,不斷從地核深處上升至地函,再冷卻下降,持續進行熱對流。

火星地核內部缺乏驅動導電流體的原動力,導致火星內部的發電機幾乎停止運轉,無法形成全球的磁場。話雖如此,火星仍然具備小區塊的磁場,主要分布在火星南半球留有殘存磁性的地殼上空。

行星發電機理論中科氏力影響行星地核內熱對流的導電流體偏向。圖/Wikipedia

磁層與大氣層相互依存,火星在太陽風不斷吹襲之下,大氣層愈趨稀薄;火星內部又缺乏發電機的動力,無法形成完整的磁層。火星缺乏厚實的大氣層保護,就難以阻擋外太空隕石的猛烈攻勢,因此如今呈現貧瘠乾燥又坑坑疤疤的外貌。

-----廣告,請繼續往下閱讀-----

既然這樣,看似缺乏極光形成要素的火星,又是如何形成極光的呢?

雖然火星沒有覆蓋全球的磁層作為保護,但火星南半球仍帶有區域性的磁場。在那裡,磁性地殼形成的殘存磁場與太陽風交互作用,滿足了極光生成的條件。這種極光被稱為「離散極光」,與地球上常見的極光不同,有些發生在人眼看不見的波段(比如紫外線),所以也更加提升了觀測難度。

那麼,研究團隊是怎麼發現這種紫外線離散極光的呢?那就是藉由文章首段提到的 MAVEN 探測器所搭載的紫外成像光譜儀(Imaging Ultraviolet Spectrograph,IUVS)!

該團隊的成員 Zachary Girazian 是一位天文及物理學家,他解釋了太陽風如何影響火星上的極光。

-----廣告,請繼續往下閱讀-----

火星離散極光的發現

研究團隊根據火星上離散極光的觀測結果,比較以下數據之間的關係——太陽風的動態壓力、行星際磁場(IMF)強度、時鐘角和錐角[註 1] 以及火星上極光的紫外線,發現在磁場較強的地殼區域內,極光的發生率主要取決於太陽風磁場的方向;反之,區域外的極光發生率則與太陽風動壓(Solar Wind Dynamic Pressure)關聯較高,但是太陽風動壓的高低則與極光亮度幾乎無關。

N. M. Schneider 與團隊曾在 2021 年的研究發表提到,在火星南緯 30 度至 60 度之間、東經 150 度至 210 度之間的矩形範圍內,當 IMF 的時鐘角呈現負值,如果正逢火星的傍晚時刻,較容易觀測到離散極光;也就是說在火星上符合前述的環境條件很可能有利於磁重聯(Magnetic Reconnection)——意即磁場斷開重新連接後,剩餘的磁場能量就會轉化為其他形式的能量(如動能、熱能等)加以釋放,例如極光就是磁重聯效應的美麗產物。

未來研究方向:移居火星

因為火星上離散極光的生成與殘存的磁層有關,而磁層又關乎大氣的保存。所以觀測離散極光的數據資料,也能作為後續追蹤火星大氣層逸散情形的一個新指標。愛荷華大學的研究成果,主要在兩個方面有極大的進展——太陽風如何在缺乏全球磁層覆蓋的行星生成極光;以及離散極光在不同的環境條件的成因。

人類一直以來懷抱著移居外太空的夢想,火星是目前人類圓夢的最佳選擇;但是在執行火星移民計畫之前,火星不斷逸散的大氣層是首要解決的課題。缺乏覆蓋全球的大氣層保護,生物將難以在貧瘠的土壤存活。或許透過火星上極光觀測的研究成果,科學家們將發掘新的突破點;期許在不久的將來,我們能找到火星適居的鑰匙。

-----廣告,請繼續往下閱讀-----
  • 註1:IMF 的時鐘角(Clock Angle)與錐角(Cone Angle)

如何判定 IMF 的角度呢?因為磁場空間是立體的關係,我們測量 IMF 方向切線與 X、Y、Z 軸之間的夾角——也就是運用空間向量的概念,來衡量 IMF 的角度。時鐘角是指 Y、Z 軸平面上,IMF 方向與 Z 軸的夾角;而錐角則是在 X、Y 平面上,IMF 方向與 X 軸之間的夾角。

IMF 時鐘角和錐角示意圖。圖/ResearchGate

參考資料

  1. Science Daily. Physicists explain how type of aurora on Mars is formed.
  2. Z. Girazian, N. M. Schneider, Z. Milby, X. Fang, J. Halekas, T. Weber, S. K. Jain, J.-C. Gérard, L. Soret, J. Deighan, C. O. Lee. Discrete Aurora at Mars: Dependence on Upstream Solar Wind Conditions. Journal of Geophysical Research: Space Physics, Volume 127, Issue 4.
  3. Michelle Starr. Mars Has Auroras Without a Global Magnetic Field, And We Finally Know How. ScienceAlert.
  4. Michelle Starr. For The First Time, Physicists Have Confirmed The Enigmatic Waves That Cause Auroras. ScienceAlert.
  5. Southwest Research Institute. SwRI Scientists Map Magnetic Reconnection In Earth’s Magnetotail.
  6. 呂凌霄。太空教室學習資料庫
  7. 頭條匯。火星上的「離散極光」是如何形成的?物理學家有新發現,帶你揭秘
  8. Wilson Cheung。【北極物語】承載北極文化──極光。綠色和平
  9. 大紀元。火星上的極光是如何形成的? 科學家解謎
  10. BBC News 中文。北極光:美國科學家首次在實驗室驗證北極光產生原理
  11. 明日科學。科學團隊藉由 NASA 的太空船所收集的資料得知火星大氣層的流失可能肇因於強烈的太陽風
  12. 台北天文館。NASA 首次繪製火星周圍電流分布圖,證實火星有磁場。科技新報。
  13. 交通部中央氣象局太空天氣作業辦公室。太空天氣問答集
  14. Denise Chow. In an ultraviolet glow, auroras on Mars spotted by UAE orbiter. NBC News.
  15. NASA. NASA Mission Reveals Speed of Solar Wind Stripping Martian Atmosphere.
  16. NASA Goddard. NASA | Mars Atmosphere Loss: Sputtering.
Ash_96
2 篇文章 ・ 2 位粉絲
外交系畢業,很多人看成外文(是不是又回頭看一次? ) 常常在外向與保守的極端之間擺盪;借用朋友說的詞彙,我屬於營業式外向。 喜歡踩點甜點店和咖啡廳,大概是嚮往那種文青都會女子的感覺,或是純粹愛吃。 喜歡k-pop ,跳舞的時候會自動設定為開演唱會模式,自我催眠現在我最帥。

0

0
0

文字

分享

0
0
0
解密太空天氣:太陽系中我們難察覺,但真實存在的風暴——《科學月刊》
科學月刊_96
・2016/03/27 ・4995字 ・閱讀時間約 10 分鐘 ・SR值 549 ・八年級

-----廣告,請繼續往下閱讀-----

呂凌霄/中央大學地球科學院太空科學研究所教授,研究領域包含太空電漿物理、電腦數值模擬、太陽物理、磁層物理、行星際空間物理、激震波等。

 

太空天氣(Space Weather這個名詞, 早在距今約六十年前,也就是蘇、美首顆人造衛星升空的年代(1957~1958 年),就已經被提出來使用過了。可是當時科技不夠發達,因此太空天氣的變化,對一般民生的影響,微乎其微。因此其後的三十年,太空天氣這個名詞很少出現在文獻與新聞報導中,但是科學家仍沿用氣象中storm(暴風雨/暴風雪)這個字眼,來描述某些特殊的太空天氣事件,例如,日磁暴(solar magnetic storm)、磁暴(magnetic storm)、磁副暴 (magnetic substorm)、電離層暴(ionospheric storm)等。隨著科技的進步,同步衛星、全球衛星定位系統(GPS)、長距離的電力傳輸、越洋航空、太空探險,都深受這些太空中 storms 的影響。因此在三十年前,太空天氣再度被提出來,並成為太空科學家與一般民眾溝通的重要話題。

什麼是太空天氣?

太空天氣就是太空中的游離態氣體與磁場所構成的電磁環境與變化。雖然太空中好天氣的時間佔一半以上,但是談到太空天氣,大家想到的都是惡劣的太空天氣。驅動太空天氣的能量來源是太陽。圖一顯示太陽內部的結構。太陽的核融合反應產生的高溫讓太陽的大氣成為游離態氣體(電漿,plasma)。而影響太空天氣甚巨的太陽磁場,則是在太陽的對流層中產生的,其中表面對流層是超米粒組織與黑子的產生區,也是浮出太陽表面之暗紋與日珥等磁繩結構的主要產生區。


在繼續解釋之前,先看看太陽內部結構

3
圖一

-----廣告,請繼續往下閱讀-----

對流層 Convective Zone

位於距離中心0.7~1 太陽半徑的區域,由於太陽外部為寒冷的太空,導致此區氣體溫度快速向上遞減,造成不同程度的對流不穩定。透過游離氣體的對流運動,太陽的磁場在對流層產生。反過來,對流層的磁場也會影響游離氣體的運動。

輻射層 Radiative Zone

位在距離中心0.25~0.7 太陽半徑的區域,它就像X 光檢查室外的厚重鉛門,阻擋致命的短波輻射X ray 與γ ray。太陽的核反應所產生的短波輻射,被輻射層中的粒子不斷的吸收、放射,以至於平均大約要花150~200 萬年(也有人估計不到100 萬年),才能穿過這個緻密的輻射層,並成為較長波的紫外線與可見光。

-----廣告,請繼續往下閱讀-----

核心 Core:位在距離中心0.25 太陽半徑以內的區域為太陽核融合反應區。

米粒組織 granulation

是太陽表面的一種極淺層快速對流。成因是因為越接近太陽表面,溫度梯度越大,對流也越旺盛。米粒組織中央明亮邊緣較暗,是造成觀測上「太陽五分鐘震盪」的主因。米粒組織對太空天氣的影響甚微,但它們卻是太陽觀測上最糟糕的天然雜訊,嚴重影響科學家對太陽對流層的觀測。

超米粒組織 supergranulation

-----廣告,請繼續往下閱讀-----

是位在米粒組織下方的對流系統,約涵蓋0.9~1 太陽半徑的區域。超米粒組織邊緣為徑向強磁場區。更深層的高溫游離態氣體,可沿著這些磁場直達太陽表面。因此超米粒組織邊緣比中央區域更為明亮。

太陽黑子 sunspot:通常在超米粒組織邊緣形成。太陽黑子深度也差不多是0.1 太陽半徑。


日磁暴造成的惡劣太空天氣

用氫αH-alpha)光譜觀測太陽,在太陽盤面可以看到長短粗細不同的暗紋(filaments),暗紋轉到在太陽盤面邊緣就是光亮浮起的日珥(prominence),如圖二所示。長又粗的大尺度暗紋,生命期超過半個月(太陽自轉週期約一個月),開始上升後,要一天左右才會噴發。太陽黑子群附近對流旺盛,容易形成細又短的暗紋,生命期只有兩三天。開始上升後,只要幾小時就會噴發。在活動區一條細短暗紋噴發後,很快又會形成另一條細短暗紋。暗紋噴發時,會遇到上方的日冕(corona),於是就會像幼兒用筷子撈麵那樣,一部分麵條滑落麵碗,形成太陽閃焰(solar flare),一部分麵條打入空中變成日冕物質拋射(coronal mass ejection, CME)。噴發後的暗紋就變成磁雲。在磁雲與CME 的前方會形成激震波。這整個過程就構成了日磁暴事件。因此當一團黑子群出現在太陽盤面時,我們就可預期未來半個月,會持續有多次的日磁暴事件發生。至於盤面上大尺度的暗紋噴發,就像非地震帶的地震,很難預測!

圖二 (Big Bear Solar Observatory)
圖二:太空中大尺度的磁場與電漿交互作用,就像浸泡在糖漿中的棉線與糖漿的交互作用,糖漿動可以帶著棉線動,拉動棉線也可以讓糖漿移動。根據日震學的觀測,0.9~1 太陽半徑的區域,高低緯的徑向速度切很強,且方向相反。這樣的速度切所造成的渦流會逐漸旋緊通過該區的磁場,形成強磁場的磁繩(magnetic flux rope),並逐漸將電漿排除在外,使磁繩重量減輕,浮出太陽表面。磁繩中剩餘的電漿,在強磁場中容易輻射冷卻,變成由部分游離的電漿所構成的暗紋(filaments),側面看過去就是日珥(prominence)。這張影像是大熊湖太陽天文台(BBSO)套疊「盤面」與「邊緣」兩張影像所建構而成的。高低緯上層對流層的速度切不同所形成的大尺度暗紋在中低緯度浮出對流層時,還會帶動附近的對流(白色光亮的活動區),導致黑子以及黑子附近小尺度「細短」暗紋的形成。圖/Big Bear Solar Observatory

-----廣告,請繼續往下閱讀-----

日冕洞與高速太陽風造成的惡劣太空天氣

太陽除了藉著日珥噴發,噴出密度高、速度快的電漿外,平時太陽表面的電漿也會因為外太空電漿密度低所造成的壓力梯度力,持續吹出太陽風(solar wind)。由於日冕洞(coronal hole)區域的磁場接近徑向,因此來自日冕洞的太陽風,平均風速可達每秒800 公里。相較之下,來自日冕區的太陽風,平均風速只有每秒400 公里左右。當日冕洞移到緯度比較低的區域時,隨著太陽自轉,就有可能出現從日冕區吹出來的低速太陽風,被後方來自日冕洞的高速太陽風追撞,而形成行星際激震波(Interplanetary shock wave),如圖三所示。因此,只要在太陽X 光影像(solar X-ray image)中,看到一大塊日冕洞,正掃過太陽盤面中央區,科學家就會預測未來一兩天會有惡劣的太空天氣了。

慢速太陽風來自日冕區(約400 km/s) 高速太陽風來自日冕洞(約800 km/s) 太陽活動上升期或下降期,日冕洞可能出現在低緯地區
圖三-1
太陽活動極小週期,日冕洞出現在南北兩極(黑色區塊)。
慢速太陽風來自日冕區(約400 km/s)
高速太陽風來自日冕洞(約800 km/s)

太陽風中的磁場,在黃道面上的投影。 高速太陽風追撞低速太陽風,造成行星際激震波。
圖三-2
太陽活動上升期或下降期,日冕洞可能出現在低緯地區。
橘色線:太陽風中的磁場,在黃道面上的投影。
粉紅色區塊:高速太陽風追撞低速太陽風,造成行星際激震波。

宇宙射線與太空天氣

太陽閃焰與各種激震波都可以有效的加速粒子。其中帶正電的粒子,質量比較大,一旦被加速後,就很難被減速,因此在日珥噴發後,會發生太陽高能正質子事件(solar proton event)。外太空超新星爆炸所產生的激震波,也會產生高能的粒子,且能量更高。這些粒子也會進入太陽系,影響太空天氣。由於這些高能的正離子,以接近光速的速度前進,因此早期的科學家,誤以為它們是一種光,所以稱它們為宇宙射線(cosmic ray)。由於宇宙射線是一種高能的正離子,所以科學家就把它們比做太空天氣中的「雨」,取諧音為cosmic rain。宇宙射線雨和太陽風合起來就是有風有雨的太空天氣了!

-----廣告,請繼續往下閱讀-----

磁暴與磁副暴造成的惡劣太空天氣

除了太陽閃焰與各種激震波可以產生高能的帶電粒子,地球的磁場風暴也會產生本土性的高能粒子事件。浸泡在太陽風中的磁層,可說是一座最好的風力發電機,可將太陽風的能量,轉換為電磁能,推動磁層與電離層中電漿的環流運動。然而穩定的環流,很容易被異常的能量來源所破壞。當高速太陽風、行星際激震波吹過磁層時,或是太陽風中的磁場具有南向分量時,都會在地球的磁層中,灌入異常多的能量,是造成地球磁場風暴的主因。地球上的磁場風暴可大致分為兩種,磁暴與磁副暴。地面上的磁場擾動,是高空電流強度與位置改變所造成的。磁暴發生時地表的磁場變化是因為位在六個地球半徑以外的環電流(ring current)位置內移且強度增強所致。磁副暴發生時地表的磁場變化則是因為高緯100 公里高空的電離層中電流增強所致。雖然環電流的總電流量改變很大,但是距離遠,在地表產生的磁場改變量只有磁副暴的五分之一左右。不過也因為它距離遠,所以影響範圍是全球性的。磁暴持續時間可達數天到一週之久。磁副暴的影響只及中高緯地區,持續時間不超過兩小時。磁副暴發生時,會有極光的活動。通常一個磁暴期間會發生好幾個磁副暴。但是偶爾也有單一磁副暴事件,這意味著來自太陽風的能量變化不足產生磁暴與多個磁副暴。

太空天氣對於我們有什麼影響?

惡劣的太空天氣對民生的影響,至少可歸納為以下三種型態:輻射傷害、通訊干擾、與電磁感應造成的破壞。

輻射傷害

宇宙射線的穿透力強,可以打穿太空船與人造衛星,導致儀器設備受損;也可打穿人體,造成細胞受損,增加罹癌風險。日本的希望號火星探測器(Nozomi Mars Probe),在飛往火星的途中,就不幸遇到了「太陽高能正質子事件」而受損。如果換成是宇航人員在執行任務時遇到此種事件,將大大提高罹癌的風險。因此,除了早期不了解此種事件的嚴重性時,有幾次太空人登陸月球的紀錄,後來的太空探測,都以無人探測為主。

進入地球磁層後,大多數的宇宙射線被束縛在范艾倫輻射帶(Van Allen radiation belt)中。因為范艾倫輻射帶的底部約在500 公里高空,所以安置太空站的位置,都選在約400 公里高空,以降低太空人的輻射傷害。磁副暴期間磁場結構會發生大幅改變,因此不受磁場束縛、直接落入中高緯電離層與大氣層的高能粒子數量,會大幅增加。因此在磁副暴期間,跨極航線需要停飛或改道。其他長途飛行所接收到的輻射量,也會隨太空天氣不同而有數十倍以上的差異。

-----廣告,請繼續往下閱讀-----

通訊干擾

地表上空100~250 公里的電離層,電漿濃度相當高。地面與衛星的通訊,包括GPS 衛星,都要穿過此層。由於衛星通訊所採用的高頻電磁波會受到傳播路徑上電子濃度的影響而偏折。因此任何造成電離層電子濃度不均勻的物理機制,都會影響地面與衛星之間的通訊。造成電離層電漿密度不均勻的原因很多。磁暴與磁副暴期間,地球磁場結構改變,會導致部分夜側電離層電漿大量流失到磁層中,造成該區電離層電漿密度異常下降,影響通訊。電離層電漿,也會受到日出、日落、與中性風場的影響,產生各種電漿不規則體,影響通訊,這也是臺灣電離層研究特別關注的課題。地表的無線電通訊也會受到太空中激震波所產生的大振幅無線電波的影響而長時間斷訊,這就是所謂的無線電暴(radio burst)。由於大振幅無線電波是沿著磁場傳出去。因此即使該激震波沒有撞到地球,只要激震波的磁場線連到地球附近,地表就會發生無線電暴。

電磁感應的傷害

太陽閃焰所發出來的短波輻射,以及磁副暴期間落入中高緯電離層中的極光高能粒子,都會增加電離層的電子濃度與導電率。即使是同樣強度的電場,若導電率增加,電流就會增加。電離層的電流增加,會導致地表的磁場改變,產生感應電場,導致地表電力系統短路毀損,也會對網路通訊設備、精密的IC 製造業、與心律調整器造成影響。同樣的,磁副暴發生時,同步軌道區域的磁場變化很大,因此感應電場也很強。如果同步通訊衛星上的電磁防護設備做得不夠好,就很容易受損。

展望

過去三十年來,太空天氣預報,已經成為先進國家太空單位的例行任務。了解太空天氣,不僅可以避免災害的發生,未來也可化災害為能量,利用感應電場開發出另一種天然的乾淨能源。

科學月刊_96
249 篇文章 ・ 3496 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
1

文字

分享

0
1
1
誰脫了火星的外衣?–太陽風剝光火星大氣
歐柏昇
・2015/11/07 ・1876字 ・閱讀時間約 3 分鐘 ・SR值 533 ・七年級

source:NASA
source:NASA

譯 / 歐柏昇

是誰造成火星表面不再適合居住?

美國國家航空暨太空總署( National Aeronautics and Space Administration, NASA)的火星大氣與揮發物演化(Mars Atmosphere and Volatile Evolution, MAVEN)任務,確認了一個關鍵的過程,可能使得火星氣候,從溫暖潮溼、可能支持表面生命的環境,轉變為今日寒冷乾燥的行星。

MAVEN的數據,讓研究人員能夠定出目前火星的大氣層,被太陽風剝蝕而流向太空的氣體流失率。這些發現顯示,太陽風暴期間,火星大氣受到的侵蝕明顯增加。此任務的科學結果,發表在11月5日的《科學》期刊和《地球物理研究通訊》。

-----廣告,請繼續往下閱讀-----

華盛頓的NASA科學任務部副主任及太空人約翰.格倫斯菲爾德(John Grunsfeld)說:「火星看起來曾經有厚的大氣層,足夠溫暖而得以維持液態水。液態水是我們目前所知生命所需的關鍵成分和物質。了解火星大氣發生了什麼事,將會告訴我們關於任何行星大氣的動力與演化的知識。知道行星的環境,為何從微生物可以居住在表面,轉變為無法居住的環境,是非常重要的事。這是NASA火星之旅所提出的關鍵問題。」

太陽風就像「小偷每天從收銀機偷走幾個硬幣」

MAVEN的測量指出,太陽風以每秒100公克的流率剝去火星的氣體。科羅拉多大學波德校區的MAVEN首席研究員Bruce Jakosky說:「就像小偷每天從收銀機偷走幾個硬幣,長時間下來,損失就變得很嚴重了。我們看到在太陽風暴時,大氣層受到的侵蝕明顯增加,因此我們認為,在幾十億年前,太陽還很年輕、更有活力時,流失率會更高。」

另外,一連串劇烈的太陽風暴,在2015年3月襲擊火星大氣,而MAVEN發現大氣加速流失。過去「流失率提高」與「太陽風暴增強」現象之結合,暗示著大氣向太空的流失,可能是改變火星氣候的主要過程。

太陽風是以質子和電子為主的粒子流,以大約每小時一百多萬公里的速率,從太陽的大氣層流出。太陽風攜帶的磁場,流經火星時可產生電場,就像地球上的渦輪機可以用來發電。(譯註:利用渦輪機發電,需要磁鐵和線圈(電線),稱為「電磁感應」原理。這裡的比喻當中,太陽風相當於磁鐵,而火星大氣相當於線圈,視同在火星大氣中通電。)此電場會將火星上層大氣中離子(帶電的氣體原子)加速,並射向太空。

-----廣告,請繼續往下閱讀-----

MAVEN檢測太陽風和紫外光如何從行星大氣頂端,把氣體剝去。新的結果指出,這顆紅色星球上有三個不同的區域,發生這樣的流失:太陽風朝火星背面吹去的「尾巴」之下、火星極區上空的「極區羽流」、以及大範圍環繞火星的雲氣。科學團隊判定,逃脫的離子有75%來自「尾部」區域,接近25%來自「羽流」區域,只有很小部分由周圍雲氣貢獻。

[圖片說明]太陽風剝蝕火星大氣之示意圖。羽流具有較高能量的粒子(紅色),但多數粒子是沿著尾部飛出。 Credit: NASA GSFC
太陽風剝蝕火星大氣之示意圖。羽流具有較高能量的粒子(紅色),但多數粒子是沿著尾部飛出。
Credit: NASA GSFC

MAVEN偵測O+離子的流動,紅色表示流量大、藍色表示流量小,箭頭代表流動的方向。
MAVEN偵測O+離子的流動,紅色表示流量大、藍色表示流量小,箭頭代表流動的方向。

  • [影片說明]這個影片利用MAVEN的資料,將太陽風從火星上層大氣剝去離子的情形視覺化。
  • Credits: NASA-GSFC/CU Boulder LASP/University of Iowa

大氣流失是火星變遷的關鍵

火星上古老的地區有豐富水的跡象──例如像河川切割出山谷的特徵,以及只有液態水存在才會形成礦物層。

-----廣告,請繼續往下閱讀-----

最近,研究人員利用NASA的火星偵察軌道器(Mars Reconnaissance Orbiter, MRO),觀察到水合鹽類季節性的出現,表示火星上存在著液態鹽水。然而,目前火星大氣太過寒冷且稀薄,行星表面無法維持常態性或大量的液態水。(譯註:可參考泛科學文章〈NASA:證實火星有流動的液態鹽水〉)

NASA戈達德太空飛行中心在馬里蘭州格林貝爾特的MAVEN計畫科學家Joe Grebowsky說:「太陽風的侵蝕,是大氣流失的重要機制,而且重要到足以造成火星氣候的明顯變化。MAVEN也在研究其他的流失過程──例如離子的撞擊或氫原子的逃脫──這些只會增加大氣流失的重要性。」

NASA的MAVEN任務在2013年11月發射前往火星,目標是判定這顆行星的大氣和水,流失了多少到太空中。這是首次有任務投入了解太陽曾經如何影響這顆紅色行星的大氣變化。MAVEN至今只在火星運作了一年(譯註:MAVEN在2014年9月18日抵達火星軌道),並會在11月16日完成首要的科學任務。

歐柏昇
13 篇文章 ・ 6 位粉絲
台大物理與歷史系雙主修畢業,台大物理碩士。現為台大物理系、中研院天文所博士生,全國大學天文社聯盟理事長。盼望從天文與人文之間追尋更清澈的世界觀,在浩瀚宇宙中思考文明,讓科學走向人群。